

KXUD9 SeriesAccelerometers and Inclinometers

FEATURES

Ultra-small Package - 3x3x0.9mm LGA

Digital SPI/I²C Output

User-programmable g-Range

User-programmable Low Pass Filter

Ultra-low Power Consumption

Lead-free Solderability

High Shock Survivability

Auxiliary Input for A/D Conversion

Self-test Function

MARKETS

APPLICATIONS

Cell Phones and Handheld PDAs

Gesture Recognition and User Interface Function

Game Controllers & Computer Peripherals

Inclination and Tilt Sensing

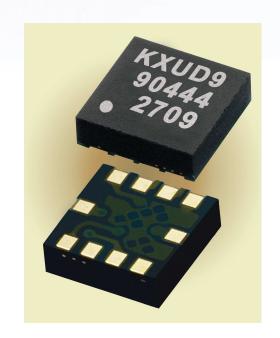
Ultra-Mobile PCs/Laptops/Hard Disk Drives

Free-fall Detection

Cameras and Video Equipment

Image Stabilization

Sports Diagnostic Equipment/Pedometers


Static or Dynamic Acceleration

PROPRIETARY TECHNOLOGY

The KXUD9 series is designed to provide flexibility. These sensors can accept supply voltages between 1.8V and 3.6V. Sensitivity is user selectable at 2g, 4g, 6g, and 8g. Several user-programmable internal low pass filters eliminate the need for external filter capacitors. The auxiliary input provides access to the embedded A/D converter.

These high-performance silicon micromachined linear accelerometers and inclinometers consist of a sensor element and an ASIC packaged in a 3x3x0.9mm Land Grid Array (LGA). The sensor element is fabricated from single-crystal silicon with proprietary Deep Reactive Ion Etching (DRIE) processes, and is protected from the environment by a hermetically-sealed silicon cap at the wafer level.

The sensor element functions on the principle of differential capacitance. Acceleration causes displacement of a silicon structure resulting in a change in capacitance. An ASIC, fabricated using a standard CMOS manufacturing process, detects and transforms changes in capacitance into an digital output voltage, which is proportional to acceleration. The sense element design utilizes common mode cancellation to decrease errors from process variation and environmental stress. The voltage is digitized by an on-board A/D converter and is accessed via inter-integrated circuit (I^2C) or serial peripheral interface (SPI) digital communications.

36 Thornwood Dr. - Ithaca, NY 14850 USA tel: 607-257-1080 - fax: 607-257-1146 - www.kionix.com - info@kionix.com

KXUD9 Series

Accelerometers and Inclinometers

PERFORMANCE SPECIFICATIONS

The performance parameters below are programmed and tested at 2.6V and 3.3V. However, the device can be factory programmed to accept supply voltages from 1.8V to 3.6V. Performance parameters will change with supply voltage variations.

	PERFO	RMANCE SPECIFIC	CATIONS		
PARAMETERS	UNITS	KXUD9-1026	KXUD9-2050	CONDITION	
Range	g	±2.0, ±4.0,	User-selectable full-scale output range		
Sensitivity ¹	Counts/g	819, 410, 273			
0g Offset vs. Temp	mg/°C	±0.5 t	-40°C to +85°C		
Sensitivity vs. Temp	%/°C	±0.01 (xy) ±0	-40°C to +85°C		
Noise Density	$\mu g / \sqrt{Hz}$	750 t			
Mechanical Resonance ²	Hz	3500 (xy)	-3dB		
-40°C to +85°C	Hz	50 de 100, 500, 1000 (available	User programmable		
Non-Linearity	% of FS	0.1 ty	% of full scale output		
Cross-axis Sensitivity	%	2.0 ty			
A/D Conversion Time	μs	200 ty			
SPI Communication Rate ³	MHz	1 m			
I ² C Communication Rate	kHz	400			
Power Supply	V	2.6 typical (3.6 max)	3.3 typical (3.6 max)	Standard	
	μA	220 ty	Operating		
Current Consumption	μA	0.3 ty	Standby		
	ENVIRO	NMENTAL SPECIF	ICATIONS		
PARAMETERS	UNITS	KXUD9-1026	KXUD9-2050	CONDITION	
Operating Temperature	°C	-40 to 85		Powered	
Storage Temperature	°C	-55 to	Un-powered		
Mechanical Shock	g	5,000 fo 10,000 fo	Powered or un-powered halversine		
ESD	V	2,0	Human body model		

NOTES

ORDERING GUIDE

Product	Output	Axes of Sensitivity	Range (g)	Sensitivity (counts/g)	Offset (counts)	Operating Voltage (V)	Temperature (\mathfrak{C})	Package
KXUD9-1026	Digital SPI/I ² C	XYZ	2, 4, 6, 8	819, 410, 273, 205	2048	2.6	-40 to +85	3x3x0.9mm LGA
KXUD9-2050	Digital SPI/I ² C	XYZ	2, 4, 6, 8	819, 410, 273, 205	2048	3.3	-40 to +85	3x3x0.9mm LGA

 $^{^{1}}$ User selectable from CTRL_REGC.

 $^{^{\}rm 2}$ Resonance as defined by the dampened mechanical sensor.

³ SPI communication rate can be optimized for faster communication. See SPI timing diagram, page 4 of Product Specifications.