ELECTRONICS. INC. 44 FARRAND STREET BLOOMFIELD, NJ 07003 (973) 748-5089

NTE1509
 Integrated Circuit 10-Step Dot/Bar Display Driver for Logarithmic Scale

Description:

The NTE1509 is a monolithic integrated circuit in an 18-Lead DIP type package that senses analog voltage levels and drives 10 LEDs, LCDs, or vacuum fluorescent displays, providing a logarithmic 3dB analog display. A single pin changes the display from a bar graph to a moving dot display. LED current is regulated and programmable, eliminating the need for current limiting resistors. The whole display system can operate from a single supply as low as 3 V or as high as 25 V
The circuit contains its own adjustable reference and accurate 10-step voltage divider. The high impedance input buffer accepts signals down to GND and up to within 1.5 V of the positive supply. Further, it needs no protection against inputs of $\pm 35 \mathrm{~V}$. The input buffer drives 10 individual comparators referenced to the precision divider. Accuracy is typically better than 1 dB .
The NTE1509's 3dB/step display is suited for signals with wide dynamic range, such as audio level, power, light intensity, or vibration. Audio applications include average or peak level indicators, power meters, and RF signal strength meters. Replacing conventional meters with an LED bar graph results in a faster responding, more rugged display with high visibility that retains the ease of interpretation of an analog display.
The NTE1509 is extremely easy to apply. A 1.2 V full-scale meter requires only 1 resistor in addition to the 10 display LEDs. One more resistor programs the full-scale anywhere from 1.2 V to 12 V independent of supply voltage. LED brightness is easily controlled with a single pot.
The NTE1509 is very versitile. The outputs can drive LCDs, vacuum fluorescents, and incandescent bulbs as well as LEDs of any color. Multiple devices can be cascaded for a dot or bar mode display with a range of 60 or 90dB. NTE1509s can also be cascaded with NTE1508s for a linear/log display or with NTE1549s for an extended-range VU meter.

Features:

- 3dB/Step, 30dB Range
- Drives LEDs, LCDs or vacuum fluorescents
- Bar or dot display mode externally selectable by user
- Expandable to displays of 90 dB
- Internal voltage reference from 1.2 V to 12 V
- Operates with single supply of 3 V to 25 V
- Inputs operate down to GND
- Output current programmable from 1 to 30 mA
- Input withstands $\pm 35 \mathrm{~V}$ without damage or false outputs
- Outputs are current regulated, open-collectors
- Directly Drives TTL or CMOS
- The internal 10 -step divider is floating and can be referenced to a wide range of voltages

Absolute Maximum Ratings:

Power Dissipation (Note 1) 1365mW

Voltage on Output Drivers ...25V
Input Signal Overvoltage (Note 2) ... $\pm 35 \mathrm{~V}$
Divider Voltage .. 100 mV to V_{+}
Reference Load Current .. 10mA

Note 1. The maximum junction temperature of the NTE1509 is $+100^{\circ} \mathrm{C}$. Device must be derated for operation at elevated temperatures. Junction to ambient thermal resistance is $55^{\circ} \mathrm{C} / \mathrm{W}$.
Note 2. Pin5 input current must be limited to $\pm 3 \mathrm{~mA}$. The addition of a $39 \mathrm{k} \Omega$ resistor in series with Pin5 allows $\pm 100 \mathrm{~V}$ signals without damage.
Electrical Characteristics: (Note 2, unless otherwise specified, all specifications apply with the following conditions:

$$
\begin{aligned}
& 3 V_{D C} \leq \mathrm{V}_{+} \leq 20 \mathrm{~V}_{\mathrm{DC}} \quad \mathrm{~V}_{\text {REF }}, \mathrm{V}_{\text {RHI }}, \mathrm{V}_{\text {RLO }} \leq\left(\mathrm{V}_{+}-1.5 \mathrm{~V}\right) \\
& 3 \mathrm{~V}_{\mathrm{DC}} \leq \mathrm{V}_{\text {LED }} \leq \mathrm{V}_{+} \quad 0 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{+}-1.5 \mathrm{~V} \\
& -0.015 \mathrm{~V} \leq \mathrm{V}_{\mathrm{RLO}} \leq 12 \mathrm{~V}_{\mathrm{DC}} \quad \mathrm{~T}_{\mathrm{A}}+25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{L}(\mathrm{REF})}=0.2 \mathrm{~mA} \text {, } \\
& -0.015 \mathrm{~V} \leq \mathrm{V}_{\mathrm{RHI}} \leq 12 \mathrm{~V}_{\mathrm{DC}} \quad \text { Pin9 connected to Pin3 (Bar Mode) }
\end{aligned}
$$

Parameter	Test Conditions	Min	Typ	Max	Unit
Comparator					
Offset Voltage, Buffer, and First Comparator	$\mathrm{V} \leq \mathrm{V}_{\mathrm{RLO}}=\mathrm{V}_{\mathrm{RHI}} \leq 12 \mathrm{~V}$, $\mathrm{I}_{\text {LED }}=1 \mathrm{~mA}$	-	3	10	mV
Offset Voltage, Buffer, and Any Other Comparator	$0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{RLO}}=\mathrm{V}_{\mathrm{RHI}} \leq 12 \mathrm{~V}$, $\mathrm{I}_{\text {LED }}=1 \mathrm{~mA}$	-	3	15	mV
Gain ($\Delta \mathrm{I}_{\text {LED }} / \Delta \mathrm{V}_{\mathbf{I N}}$)	$\mathrm{L}_{\text {(REF })}=2 \mathrm{~mA}, \mathrm{I}_{\text {LED }}=10 \mathrm{~mA}$	3	8	-	$\mathrm{mA} / \mathrm{mV}$
Input Bias Current (At Pin5)	$0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{+}=1.5 \mathrm{~V}$	-	25	100	nA
Input Signal Overdrive	No Change is Display	-35	-	+35	V
Voltage Divider					
Divider Resistance	Total, Pin6 to Pin4	16	28	36	k Ω
Relative Accuracy (Input Change Between Any Two Threshold Points)	Note 3	2.0	3.0	4.0	dB
Absolute Accuracy at Each Threshold Point	$\mathrm{V}_{\mathrm{IN}}=-3,-6 \mathrm{~dB}$, Note 3	-0.5	-	+0.5	dB
	$\mathrm{V}_{\mathrm{IN}}=-9 \mathrm{~dB}$, Note 3	-0.5	-	+0.65	dB
	$\mathrm{V}_{\mathrm{IN}}=-12,-15,-18 \mathrm{~dB}$, Note 3	-0.5	-	+1.0	dB
	$\mathrm{V}_{\mathbb{I N}}=-21,-24,-27 \mathrm{~dB}$, Note 3	-0.5	-	+1.5	dB
Voltage Reference					
Output Voltage	$0.1 \mathrm{~mA} \leq \mathrm{L}_{\text {L(REF) }} \leq 4 \mathrm{~mA}, \mathrm{~V}_{+}=\mathrm{V}_{\text {LED }}=5 \mathrm{~V}$	1.2	1.28	1.34	V
Line Regulation	$3 \mathrm{~V} \leq \mathrm{V}+\leq 18 \mathrm{~V}$	-	0.01	0.03	\%/V
Load Regulation	$0.1 \mathrm{~mA} \leq \mathrm{L}_{\text {L(REF) }} \leq 4 \mathrm{~mA}, \mathrm{~V}_{+}=\mathrm{V}_{\text {LED }}=5 \mathrm{~V}$	-	0.4	2.0	\%
Output Voltage Change with Temperature	$0^{\circ} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}, \mathrm{I}_{\text {L(REF })}=1 \mathrm{~mA}, \mathrm{~V}+=5 \mathrm{~V}$	-	1	-	\%
Adjust Pin Current		-	75	120	$\mu \mathrm{A}$

Note 2. Pin5 input current must be limited to $\pm 3 \mathrm{~mA}$. The addition of a $39 \mathrm{k} \Omega$ resistor in series with Pin5 allows $\pm 100 \mathrm{~V}$ signals without damage.
Note 3. Accuracy is measured referred to +10.000 V DC at Pin5, with +10.000 V DC at Pin6, and $0.000 \mathrm{~V}_{\mathrm{DC}}$ at Pin4. At lower full-scale voltages, buffer and comparator offset voltage may add significant error. See table for threshold voltages.

Electrical Characteristics (Cont'd): (Note 2, unless otherwise specified, all specifications apply with the following conditions:
$3 \mathrm{~V}_{\mathrm{DC}} \leq \mathrm{V}_{+} \leq 20 \mathrm{~V}_{\mathrm{DC}}$ $3 \mathrm{~V}_{\mathrm{DC}} \leq \mathrm{V}_{\mathrm{LED}} \leq \mathrm{V}_{+}$ $-0.015 \mathrm{~V} \leq \mathrm{V}_{\text {RLO }} \leq 12 \mathrm{~V}_{\mathrm{DC}}$ $-0.015 \mathrm{~V} \leq \mathrm{V}_{\mathrm{RHI}} \leq 12 \mathrm{~V}_{\mathrm{DC}}$
$\mathrm{V}_{\mathrm{REF}}, \mathrm{V}_{\mathrm{RH}}, \mathrm{V}_{\mathrm{RLO}} \leq\left(\mathrm{V}_{+}-1.5 \mathrm{~V}\right)$ $0 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}+-1.5 \mathrm{~V}$ $\mathrm{T}_{\mathrm{A}}+25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{L}(\mathrm{REF})}=0.2 \mathrm{~mA}$,
$\mathrm{V}_{\text {LED }}=3 \mathrm{~V}$, Pin9 connected to Pin3 (Bar Mode)

Parameter	Test Conditions		Min	Typ	Max	Unit
Output Drivers						
LED Current	$\mathrm{V}_{+}=\mathrm{V}_{\text {LED }}=5 \mathrm{~V}, \mathrm{~L}_{\text {L(REF })}=1 \mathrm{~mA}$		7	10	13	mA
LED Current Difference (Between Largest and Smallest LED Currents)	$\mathrm{V}_{\text {LED }}=5 \mathrm{~V}$	$\mathrm{l}_{\text {LED }}=2 \mathrm{~mA}$	-	0.12	0.4	mA
		$\mathrm{L}_{\text {LED }}=20 \mathrm{~mA}$	-	1.2	3.0	mA
LED Current Regulation	$2 \mathrm{~V} \leq \mathrm{V}_{\text {LED }} \leq 17 \mathrm{~V}$	$\mathrm{l}_{\text {LED }}=2 \mathrm{~mA}$	-	0.1	0.25	mA
		LLED $=20 \mathrm{~mA}$	-	1	3	mA
Dropout Voltage	$\begin{aligned} & \mathrm{LED(ON)}=20 \mathrm{~mA}, \mathrm{~V}_{\mathrm{LED}}=5 \mathrm{~V}, \\ & \Delta \mathrm{~L}_{\mathrm{LED}}=2 \mathrm{~mA} \end{aligned}$		-	-	1.5	V
Saturation Voltage	$\mathrm{I}_{\text {LED }}=2 \mathrm{~mA}, \mathrm{I}_{\text {L(REF })}=0.4 \mathrm{~mA}$		-	0.15	0.4	V
Output Leakage, Each Collector	Bar Mode, Note 4		-	0.1	10	$\mu \mathrm{A}$
Output Leakage	Dot Mode, Note 4	Pin10 to Pin18	-	0.1	10	$\mu \mathrm{A}$
		Pin1	60	150	450	$\mu \mathrm{A}$
Supply Current						
Standby Supply Current (All Outputs OFF)	$\mathrm{V}_{+}=5 \mathrm{~V}, \mathrm{~L}_{\text {L(REF })}=0.2 \mathrm{~mA}$		-	2.4	4.2	$\mu \mathrm{A}$
	$\mathrm{V}+=20 \mathrm{~V}, \mathrm{~L}_{\text {(REF })}=1 \mathrm{~mA}$		-	6.1	9.2	$\mu \mathrm{A}$

Note 2. Pin5 input current must be limited to $\pm 3 \mathrm{~mA}$. The addition of a $39 \mathrm{k} \Omega$ resistor in series with Pin5 allows $\pm 100 \mathrm{~V}$ signals without damage.
Note 4. Bar mode results when Pin9 is within 20 mV of V_{+}. Dot mode results when Pin9 is pulled at least 200 mV below $\mathrm{V}+$ or left open circuit. LED No. 10 (Pin10 output current) is disabled if Pin9 is pulled 0.9 V or more below $\mathrm{V}_{\text {LED }}$.
Threshold Voltage: (Note 3)

Output	dB	Min	Typ	Max	Output	dB	Min	Typ	Max
1	-27	0.422	0.447	0.531	6	-12	2.372	2.512	2.819
1	-24	0.596	0.631	0.750	7	-9	3.350	3.548	3.825
3	-21	0.841	0.891	1.059	8	-6	4.732	5.012	5.309
4	-18	1.189	1.259	1.413	9	-3	6.683	7.079	7.498
5	-15	1.679	1.778	1.995	10	0	9.985	10.000	10.015

Note 3. Accuracy is measured referred to +10.000 V DC a Pin5, with +10.000 V DC at Pin6, and $0.000 \mathrm{~V}_{\mathrm{DC}}$ at Pin4. At lower full-scale voltages, buffer and comparator offset voltage may add significant error. See table for threshold voltages.

Pin Connection Diagram

