

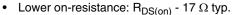
Vishay Siliconix

COMPLIANT

Precision 8-Ch/Dual 4-Ch Low Voltage Analog Multiplexers

DESCRIPTION

The DG408L, DG409L are low voltage pin-for-pin compatible companion devices to the industry standard DG408, DG409 with improved performance.


Using BiCMOS wafer fabrication technology allows the DG408L, DG409L to operate on single and dual supplies. Single supply voltage ranges from 3 V to 12 V while dual supply operation is recommended with \pm 3 V to \pm 6 V.

The DG408L is an 8 channel single-ended analog multiplexer designed to connect one of eight inputs to a common output as determined by a 3 bit binary address (A $_0$, A $_1$, A $_2$). The DG409L is a dual 4 channel differential analog multiplexer designed to connect one of four differential inputs to a common dual output as determined by its 2 bit binary address (A $_0$, A $_1$). Break-before-make switching action to protect against momentary crosstalk between adjacent channels.

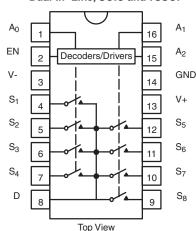
The DG408L, DG409L provides lower on-resistance, faster switching time, lower leakage, less power consumption and higher off-Isolation than the DG408, DG409.

FEATURES

- Pin-for-pin compatibility with DG408, DG409
- 2.7 V to 12 V single supply or ± 3 V to ± 6 V dual supply operation

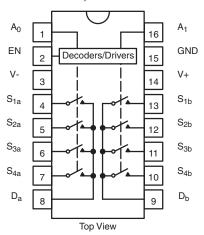
- Fast switching: ton 38 ns, tof 18 ns
- Break-before-make guaranteed
- Low leakage: I_{S(off)} 0.2 nA max.
- Low charge injection: 1 pC
- TTL, CMOS, LV logic (3 V) compatible
- 82 dB off-isolation at 1 MHz
- 2000 V ESD protection (HBM)
- Compliant to RoHS directive 2002/95/EC

BENEFITS


- · High accuracy
- Single and dual power rail capacity
- · Wide operating voltage range
- · Simple logic interface

APPLICATIONS

- Data acquisition systems
- · Battery operated equipment
- · Portable test equipment
- Sample and hold circuits
- Communication systems
- SDSL, DSLAM
- Audio and video signal routing


FUNCTIONAL BLOCK DIAGRAMS AND PIN CONFIGURATIONS

DG408L Dual-In- Line, SOIC and TSSOP

DG409L

Dual-In- Line, SOIC and TSSOP

Document Number: 71342 S09-1259-Rev. F, 13-Jul-09

^{*} Pb containing terminations are not RoHS compliant, exemptions may apply

DG408L, DG409L

Vishay Siliconix

TRUTI	H TABLE	■ DG408L	-					
A ₂	A ₁	Α ₀	EN On Switch					
Х	Х	Х	0	None				
0	0	0	1	1				
0	0	1	1	2				
0	1	0	1	3				
0	1	1	1	4				
1	0	0	1	5				
1	0	1	1	6				
1	1	0	1	7				
1	1	1	1	8				

TRUTH	TABLE DO	3409L	
A ₁	A ₀	EN	On Switch
Х	Х	0	None
0	0	1	1
0	1	1	2
1	0	1	3
1	1	1	4

Logic "0" = $V_{AL} \le 0.8 \text{ V}$ Logic "1" = $V_{AH} \ge 2.4 \text{ V}$ X = Do not Care


For low and high voltage levels for V_{AX} and V_{EN} consult "Digital Control" parameters for specific V+ operation.

ORDERING	ORDERING INFORMATION DG408L					
Temp. Range	Package	Part Number				
- 40 °C to 85 °C	16-Pin SOIC	DG408LDY DG408LDY-E3 DG408LDY-T1 DG408LDY-T1-E3				
- 40 0 10 85 0	16-Pin TSSOP	DG408LDQ DG408LDQ-E3 DG408LDQ-T1 DG408LDQ-T1-E3				

ORDERING I	NFORMATION [DG409L
Temp. Range	Package	Part Number
- 40 °C to 85 °C	16-Pin SOIC	DG409LDY DG409LDY-E3 DG409LDY-T1 DG409LDY-T1-E3
- 40 0 10 65 0	16-Pin TSSOP	DG409LDQ DG409LDQ-E3 DG409LDQ-T1 DG409LDQ-T1-E3

ABSOLUTE MAXIMUM RA	TINGS			
Parameter		Limit	Unit	
Voltage Referenced V+ to V-		14		
GND		7	V	
Digital Inputs ^a , V _S , V _D		(V-) - 0.3 to (V) + 0.3		
Current (Any Terminal)		30	mA	
Peak Current, S or D (Pulsed at 1 ms,	10 % Duty Cycle Max.)	100	IIIA	
eak Current, S or D (Pulsed at 1 ms, 1) orage Temperature	(A Suffix)	- 65 to 150	°C	
Storage remperature	(D Suffix)	14 7 (V-) - 0.3 to (V) + 0.3 30 100 - 65 to 150 - 65 to 125 650 600 900		
	16-Pin Plastic TSSOP ^c	650		
Device Dissipation (Dealers)	16-Pin Narrow SOIC ^c	600	mW	
Power Dissipation (Package) ^b	16-Pin CerDIP ^d	900	11100	
	LCC-20 ^e	750		

- $a. \ Signals \ on \ S_X, \ DX, \ A_X, \ or \ EN \ exceeding \ V+ \ or \ V- \ will \ be \ clamped \ by \ internal \ diodes. \ Limit \ forward \ diode \ current \ to \ maximum \ current \ ratings.$
- b. All leads soldered or welded to PC board.
- c. Derate 7.6 mW/°C above 75 °C.
- d. Derate 12 mW/°C above 75 °C.
- e. Derate 10 mW/°C above 75 °C.

SPECIFICATIONS	T T	1	I	l				***	
		Test Conditions Unless Otherwise Specified				uffix o 125°C		uffix	
		V+ = 12 V, ± 10 %, V- = 0 V			- 33 01	123 0	-40 0	10 03 0	
Parameter	Symbol	$V_{EN} = 0.8 \text{ V or } 2.4 \text{ V}^{f}$	Temp.b	Typ. ^d	Min.c	Max.c	Min.c	Max.c	Unit
Analog Switch			•				<u> </u>		
Analog Signal Range ^e	V _{ANALOG}		Full		0	12	0	12	V
Drain-Source On-Resistance	R _{DS(on)}	$V_D = 10.8 \text{ V}, V_D = 2 \text{ V or 9 V}, I_S = 10 \text{ mA}$ Sequence Each Switch On	Room Full	17		29 38		29 35	
R _{DS(on)} Matching Between Channels ^g	ΔR _{DS}	$V_D = 10.8 \text{ V}, V_D = 2 \text{ V or 9 V}$ $I_S = 10 \text{ mA}$	Room	1		3		3	Ω
On-Resistance Flatness ⁱ	R _{FLAT(on)}	ig – 10 mA	Room	3		7		7	
Switch Off Leakage	I _{S(off)}	V _{EN} = 0 V, V _D = 11 V or 1 V	Room Full		- 1 - 15	1 15	- 1 - 10	1 10	
Current	I _{D(off)}	V _S = 1 V or 11 V	Room Full		- 1 - 15	1 15	- 1 - 10	1 10	nA
Channel On Leakage Current	I _{D(on)}	$V_{S} = V_{D} = 1 \text{ V or } 11 \text{ V}$	Room Full		- 1 - 15	1 15	- 1 - 10	1 10	
Digital Control		,	•	ı		•			
Logic High Input Voltage	V _{INH}		Full		2.4		2.4		V
Logic Low Input Voltage	V _{INL}		Full			0.8		0.8	
Input Current	I _{IN}	$V_{AX} = V_{EN} = 2.4 \text{ V or } 0.8 \text{ V}$	Full		- 1.5	1.5	- 1	1	μΑ
Dynamic Characteristics		,		•					
Transition Time	t _{TRANS}	$V_{S1} = 8 \text{ V, } V_{S8} = 0 \text{ V, (DG408L)}$ $V_{S1b} = 8 \text{ V, } V_{S4b} = 0 \text{ V, (DG409L)}$ See Figure 2	Room Full	30		60 68		60 65	
Break-Before-Make Time	t _{OPEN}	$V_{S(all)} = V_{DA} = 5 V$ See Figure 4	Room Full	11	1		1		ns
Enable Turn-On Time	t _{ON(EN)}	V _{AX} = 0 V, V _{S1} = 5 V (DG408L) V _{AX} = 0 V, V _{S1b} = 5 V (DG409L)	Room Full	38		55 60		55 60	
Enable Turn-Off Time	t _{OFF(EN)}	See Figure 3	Room Full	18		25 35		25 30	
Charge Injection ^e	Q	$C_L = 1 \text{ nF, } V_{GEN} = 0 \text{ V, } R_{GEN} = 0 \Omega$	Room	1		5		5	рC
Off Isolation ^{e, h}	OIRR	$f = 100 \text{ kHz}, R_L = 1 \text{ k}\Omega$	Room	- 70					dB
Crosstalk ^e	X _{TALK}	1 = 100 KHZ, HE = 1 KSZ	Room	- 82					uБ
Source Off Capacitance ^e	C _{S(off)}	f = 1 MHz, V _S = 0 V, V _{EN} = 0 V	Room	7					
Drain Off Capacitance ^e	C _{D(off)}	f = 1 MHz, V _D = 2.4 V, V _{EN} = 0 V	Room	20					рF
Drain On Capacitance ^e	C _{D(on)}	$f = 1 \text{ MHz}, V_D = 0 \text{ V}, V_{EN} = 2.4 \text{ V}$ (DG409L only)	Room	31					ρı
Power Supplies									
Power Supply Range	V+				3	12	3	12	V
Power Supply Current	I+	$V_{EN} = V_A = 0 \text{ V or 5 V}$	Room	0.2		0.7		0.7	mA

- a. Leakage parameters are guaranteed by worst case test condition and not subject to production test.
- b. Room = 25 $^{\circ}$ C, Full = as determined by the operating temperature suffix.
- c. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
- d. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.
- e. Guaranteed by design, not subject to production test. f. V_{IN} = input voltage to perform proper function.

- g. $\Delta R_{DS(on)} = R_{DS(on)} Max R_{DS(on)} Min$. h. Worst case isolation occurs on Channel 4 do to proximity to the drain pin.
- i. R_{DS(on)} flatness is measured as the difference between the minimum and maximum measured values across a defined Analog signal.

DG408L, DG409L

Vishay Siliconix

SPECIFICATIONS	Dual Sup	oply V+ = 5 V, V = 5 V							
		Test Conditions				uffix o 125 °C	_	uffix	
		Unless Otherwise Specified V+ = 5 V, ± 10 %, V- = - 5 V, V- = 0 V			- 55 °C to	0 125 °C	- 40 °C	10 85 0	•
Parameter	Symbol	V _{EN} = 0.6 V or 2.4 V ^f	Temp.b	Typ.d	Min.c	Max.c	Min.c	Max.c	Unit
Analog Switch				, ,.		L			
Analog Signal Range ^e	V _{ANALOG}		Full		- 5	5	- 5	5	V
Drain-Source On-Resistance	R _{DS(on)}	$V_D = \pm 3.5 \text{ V}, I_S = 10 \text{ mA}$ Sequence Each Switch On	Room Full	20		40 50		40 50	Ω
Switch Off Leakage	I _{S(off)}	V+ = 5.5 , V- = 5.5 V	Room Full		- 1 - 15	1 15	- 1 - 10	1 10	
Current ^a	I _{D(off)}	$V_{EN} = 0 \text{ V}, V_{D} = \pm 4.5 \text{ V}, V_{S} = 4.5 \text{ V}$	Room Full		- 1 - 15	1 15	- 1 - 10	1 10	nA
Channel On Leakage Current ^a	I _{D(on)}	V+ = 5.5 V, V- = -5.5 V $V_{EN} = 2.4 \text{ V}, V_D = \pm 4.5 \text{ V}, V_S = 4.5 \text{ V}$	Room Full		- 1 - 15	1 15	- 1 - 10	1 10	
Digital Control		Ŧ							
Logic High Input Voltage	V _{INH}		Full		2.4		2.4		V
Logic Low Input Voltage	V _{INL}		Full			0.6		0.6	
Input Current ^a	I _{IN}	$V_{AX} = V_{EN} = 2.4 \text{ V or } 0.6 \text{ V}$	Full		- 1.5	1.5	- 1	1	μΑ
Dynamic Characteristics				1					
Transition Time ^e	t _{TRANS}	$V_{S1} = 3.5 \text{ V}, V_{S8} = -3.5 \text{ V}, (DG408L)$ $V_{S1b} = 3.5 \text{ V}, V_{S4b} = -3.5 \text{ V}, (DG409L)$ See Figure 2	Room Full	30		60 78		60 65	
Break-Before-Make Time ^e	t _{OPEN}	$V_{S(all)} = V_{DA} = 3.5 \text{ V}$ See Figure 4	Room Full	8	1		1		ns
Enable Turn-On Time ^e	t _{ON(EN)}	V _{AX} = 0 V, V _{S1} = 3.5 V (DG408L) V _{AX} = 0 V, V _{S1b} = 3.5 V (DG409L)	Room Full	25		55 68		55 60	
Enable Turn-Off Time ^e	t _{OFF(EN)}	See Figure 3	Room Full	20		40 50		40 45	
Source Off Capacitance ^e	C _{S(off)}	$f = 1 \text{ MHz}, V_S = 0 \text{ V}, V_{EN} = 0 \text{ V}$	Room	6					
Drain Off Capacitance ^e	C _{D(off)}	$f = 1 \text{ MHz}, V_D = 0 \text{ V}, V_{EN} = 0 \text{ V}$	Room	15					рF
Drain On Capacitance ^e	C _{D(on)}	$f = 1 \text{ MHz}, V_D = 0 \text{ V}, V_{EN} = 2.4 \text{ V}$	Room	29			_		

- a. Leakage parameters are guaranteed by worst case test condition and not subject to production test.
- b. Room = 25 °C, full = as determined by the operating temperature suffix.
- c. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this datasheet.
- d. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.
- e. Guaranteed by design, not subject to production test.
- f. V_{IN} = input voltage to perform proper function.
- g. $\Delta R_{DS(on)} = R_{DS(on)}$ max. $R_{DS(on)}$ min. h. Worst case isolation occurs on channel 4 do to proximity to the drain pin.
- i. R_{DS(on)} flatness is measured as the difference between the minimum and maximum measured values across a defined analog signal.

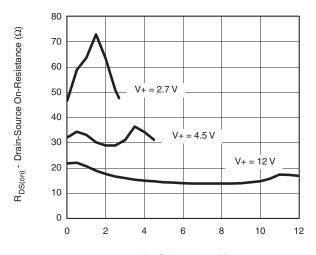
SPECIFICATIONS	Single Su								
		Test Conditions Unless Otherwise Specified				uffix o 125°C	_	uffix to 85 °C	
		$V + = 5 \text{ V}, \pm 10 \%, V - = 0 \text{ V}$			- 33 01	123 0	-40 0	0000	
Parameter	Symbol	$V_{EN} = 0.6 \text{ V or } 2.4 \text{ V}^{f}$	Temp.b	Typ.d	Min.c	Max.c	Min.c	Max.c	Uni
Analog Switch						L		L	
Analog Signal Range ^e	V _{ANALOG}		Full		0	5	0	5	٧
Drain-Source On-Resistance	R _{DS(on)}	$V+ = 4.5 \text{ V}, V_D \text{ or } V_S = 1 \text{ V or } 3.5 \text{ V},$ $I_D = 5 \text{ mA}$	Room Full	35		49 62		40 62	
R _{DS(on)} Matching Between Channels ^g	ΔR_{DS}	$V+ = 4.5 \text{ V}, V_D = 1 \text{ V or } 3.5 \text{ V},$	Room	1.5		3		3	Ω
On-Resistance Flatness ⁱ	R _{FLAT(on)}	$I_S = 5 \text{ mA}$	Room			4		4	
Switch Off Leakage	I _{S(off)}	V+ = 5.5 V, V _S = 1 V or 4 V	Room Full		- 1 - 15	1 15	- 1 - 10	1 10	
Current ^a	I _{D(off)}	$V_D = 4 V \text{ or } 1 V$	Room Full		- 1 - 15	1 15	- 1 - 10	1 10	nA
Channel On Leakage Current ^a	I _{D(on)}	$V+ = 5.5 V$, $V_D = V_S = 1 V$ or 4 V Sequence Each Switch On	Room Full		- 1 - 15	1 15	- 1 - 10	1 10	
Digital Control									
Logic High Input Voltage	V_{INH}	V+ = 5 V	Full		2.4		2.4		V
Logic Low Input Voltage	V_{INL}		Full			0.6		0.6	٧
Input Current ^a	I _{IN}	$V_{AX} = V_{EN} = 2.4 \text{ V or } 0.6 \text{ V}$	Full		- 1.5	1.5	- 1	1	μΑ
Dynamic Characteristics									
Transition Time ^e	t _{TRANS}	$V_{S1} = 3.5 \text{ V}, V_{S8} = 0 \text{ V}, (DG408L)$ $V_{S1b} = 3.5 \text{ V}, V_{S4b} = 0 \text{ V}, (DG409L)$ See Figure 2	Room Full	44		125 138		125 135	
Break-Before-Make Time ^e	t _{OPEN}	$V_{S(all)} = V_{DA} = 3.5 \text{ V},$ See Figure 4	Room Full	17	1		1		ns
Enable Turn-On Time ^e	t _{ON(EN)}	$V_{AX} = 0 \text{ V}, V_{S1} = 3.5 \text{ V (DG408L)}$ $V_{AX} = 0 \text{ V}, V_{S1b} = 3.5 \text{ V (DG409L)}$	Room Full	43		60 70		60 65	
Enable Turn-Off Time ^e	t _{OFF(EN)}	See Figure 3	Room Full	26		45 60		45 50	
Charge Injection ^e	Q	C_L = 1 nF, R_{GEN} = 0 Ω , V_{GEN} = 0 Ω	Room	1		5		5	рС
Off Isolation ^{e, h}	OIRR	$f = 100 \text{ kHz}, R_1 = 1 \text{ k}\Omega$	Room	- 70					dB
Crosstalk ^e	X _{TALK}	1 – 100 M12, 11 <u>L</u> – 1 M22	Room	- 80					ub
Source Off Capacitance ^e	C _{S(off)}	$f = 1 \text{ MHz}, V_S = 0 \text{ V}, V_{EN} = 0 \text{ V}$	Room	8					
Drain Off Capacitance ^e	C _{D(off)}	$f = 1 \text{ MHz}, V_D = 0 \text{ V}, V_{EN} = 0 \text{ V}$	Room	21					рF
Drain On Capacitance ^e	C _{D(on)}	f = 1 MHz, V _D = 0 V, V _{EN} = 2.4 V (DG409L only)	Room	32					Pr

Notes:

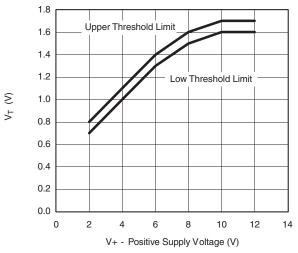
- a. Leakage parameters are guaranteed by worst case test condition and not subject to production test.
- b. Room = 25 °C, full = as determined by the operating temperature suffix.
- c. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this datasheet.
- d. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.
- e. Guaranteed by design, not subject to production test.
- f. V_{IN} = input voltage to perform proper function.
- g. $\Delta R_{DS(on)} = R_{DS(on)}$ max. $R_{DS(on)}$ min. h. Worst case isolation occurs on channel 4 do to proximity to the drain pin.
- i. R_{DS(on)} flatness is measured as the difference between the minimum and maximum measured values across a defined analog signal.

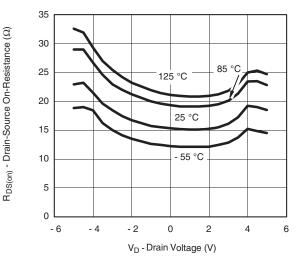
DG408L, **DG409L**

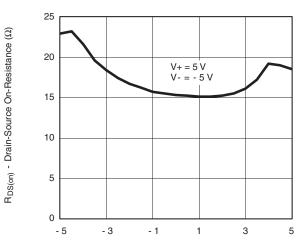
Vishay Siliconix

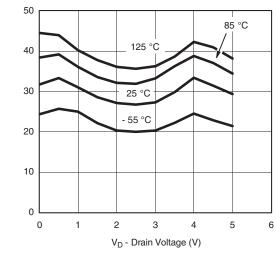

SPECIFICATIONS	Single Su	pply 3 V							
		Test Conditions Unless Otherwise Specified V+ = 3 V, ± 10 %, V- = 0 V			A Suffix - 55 °C to 125 °C		D Suffix - 40 °C to 85 °C		
Parameter	Symbol	$V_{EN} = 0.4 \text{ V or } 2.0 \text{ V}^{f}$	Temp.b	Typ.d	Min.c	Max.c	Min.c	Max.c	Unit
Analog Switch	-					L		·	
Analog Signal Range ^e	V _{ANALOG}		Full		0	3	0	3	V
Drain-Source On-Resistance	R _{DS(on)}	$V+ = 2.7 \text{ V}, V_D = 0.5 \text{ or } 2.2 \text{ V},$ $I_S = 5 \text{ mA}$	Room Full	60		80 105		80 100	Ω
Switch Off Leakage	I _{S(off)}	V+ = 3.3 V, V _S = 2 or 1 V, V _D = 1 or 2 V	Room Full		- 1 - 15	1 15	- 1 - 10	1 10	
Current ^a	I _{D(off)}	V = 0.0 V, VS = 2 0.1 V, VB = 1 0.1 2 V	Room Full		- 1 - 15	1 15	- 1 - 10	1 10	nA
Channel On Leakage Current ^a	I _{D(on)}	$V+ = 3.3 \text{ V}, V_D = V_S = 1 \text{ or } 2 \text{ V}$ Sequence Each Switch On	Room Full		- 1 - 15	1 15	- 1 - 10	1 10	
Digital Control									
Logic High Input Voltage	V_{INH}		Full		2		2		٧
Logic Low Input Voltage	V_{INL}		Full			0.4		0.4	V
Input Current ^a	I _{IN}	$V_{AX} = V_{EN} = 2.4 \text{ V or } 0.4 \text{ V}$	Full		- 1.5	1.5	- 1	1	μΑ
Dynamic Characteristics									
Transition Time	t _{TRANS}	$V_{S1} = 1.5 \text{ V}, V_{S8} = 0 \text{ V}, (DG408L)$ $V_{S1b} = 1.5 \text{ V}, V_{S4b} = 0 \text{ V}, (DG409L)$ See Figure 2	Room Full	75		150 175		150 175	
Break-Before-Make Time	t _{OPEN}	V _{S(all)} = V _{DA} = 1.5 V, See Figure 4	Room Full	32	1		1		ns
Enable Turn-On Time	t _{ON(EN)}	V _{AX} = 0 V, V _{S1} = 1.5 V (DG408L) V _{AX} = 0 V, V _{S1b} = 1.5 V (DG409L)	Room Full	70		95 115		95 105	
Enable Turn-Off Time	t _{OFF(EN)}	See Figure 3	Room Full	55		100 115		100 105	
Charge Injection ^e	Q	$C_L = 1 \text{ nF, } R_{GEN} = 0 \Omega, V_{GEN} = 0 V$	Room	0.4		5		5	рC
Off Isolation ^{e, h}	OIRR	R _I = 1 kΩ, f = 100 kHz	Room	- 70					dB
Crosstalk ^e	X _{TALK}	1 11 = 1 K22, 1 = 100 K112	Room	- 79					uB
Source Off Capacitance ^e	C _{S(off)}	f = 1 MHz, V _S = 0 V, V _{EN} = 0 V	Room	8					
Drain Off Capacitance ^e	C _{D(off)}	$f = 1 \text{ MHz}, V_D = 0 \text{ V}, V_{EN} = 0 \text{ V}$	Room	19					рF
Drain On Capacitance ^e	C _{D(on)}	$f = 1 \text{ MHz}, V_D = 0 \text{ V}, V_{EN} = 2 \text{ V}$ (DG409L only)	Room	33					۲,

- a. Leakage parameters are guaranteed by worst case test condition and not subject to production test.
- b. Room = $25 \, ^{\circ}$ C, full = as determined by the operating temperature suffix.
- c. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this datasheet.
- d. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.
- e. Guaranteed by design, not subject to production test.
- f. V_{IN} = input voltage to perform proper function.
- g. $\Delta R_{DS(on)} = R_{DS(on)}$ max. $R_{DS(on)}$ min. h. Worst case isolation occurs on channel 4 do to proximity to the drain pin.
- i. R_{DS(on)} flatness is measured as the difference between the minimum and maximum measured values across a defined analog signal.

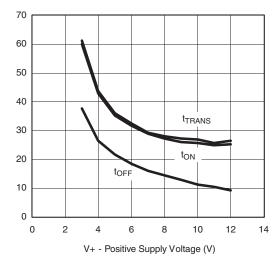

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.


TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted


 $\label{eq:VD-D} V_D \text{ - Drain Voltage (V)} \\ \textbf{R}_{\textbf{DS(on)}} \ \textbf{vs. V}_{\textbf{D}} \ \textbf{and Power Supply}$


Input Threshold vs. V+ Supply Voltage

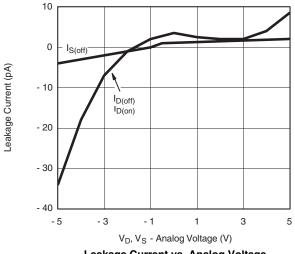
 $R_{DS(on)}$ vs. V_D and Temperature


 V_D - Drain Voltage (V) $\mathbf{R_{DS(on)}}$ vs. V_D and Power Supply

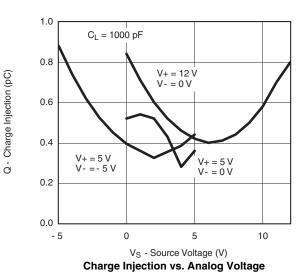
 $\mathsf{R}_{\mathsf{DS}(\mathsf{on})}$ - Drain-Source On-Resistance (Ω)

Switching Speed (nS)

R_{DS(on)} vs. V_D and Temperature



Switching Time vs. Positive Supply Voltage

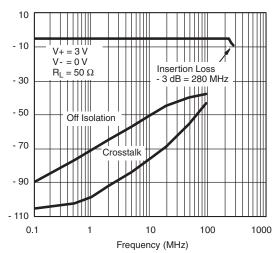

Vishay Siliconix

VISHAY

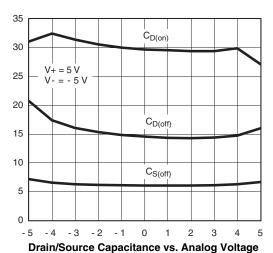
TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted

Leakage Current vs. Analog Voltage

35
30
25
V+ = 12 V
V- = 0 V
20
CD(off)
15
CS(off)
5
Drain/Source Capacitance vs. Analog Voltage


40 35 30 ton 25 t_{TRANS} 20 toff 15 10 5 0 5 6 3 ± - Dual Power Supply Voltage (V)

Switching Speed (nS)


Loss (dB)

C_D, C_S - Drain/Source Capacitance (pF)

Switching Time vs. Dual Power Supply Voltage

Insertion Loss, Off Isolation and Crosstalk vs. Frequency (Single Supply)

C_D, C_S - Drain/Source Capacitance (pF)

SCHEMATIC DIAGRAM Typical Channel

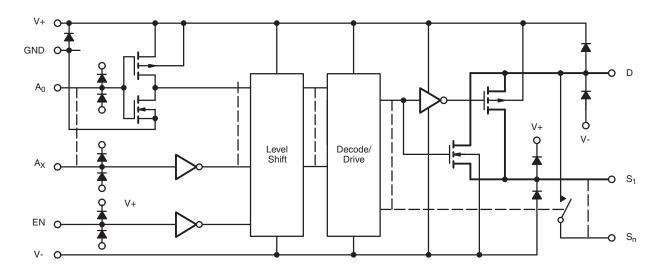


Figure 1.

TEST CIRCUITS

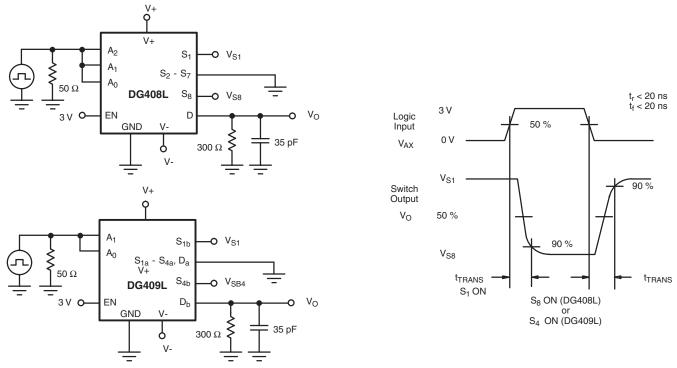


Figure 2. Transition Time

Vishay Siliconix

TEST CIRCUITS

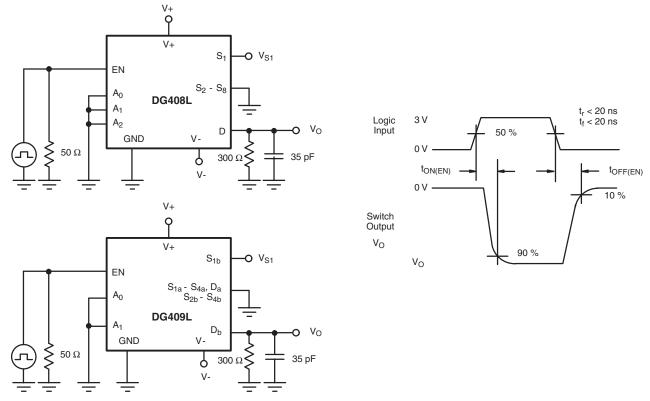


Figure 3. Enable Switching Time

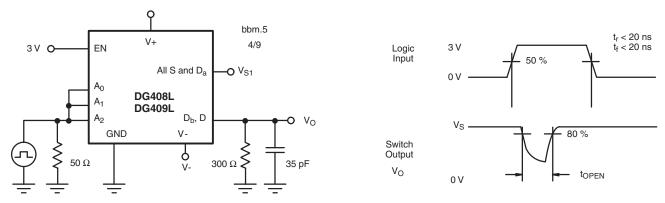


Figure 4. Break-Before-Make Interval

TEST CIRCUITS

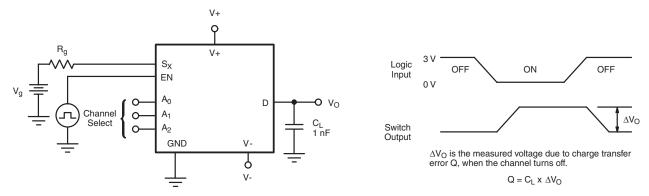


Figure 5. Charge Injection

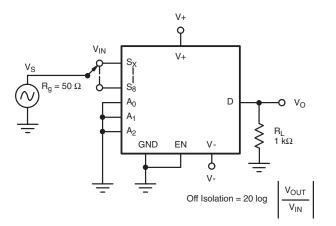


Figure 6. Off Isolation

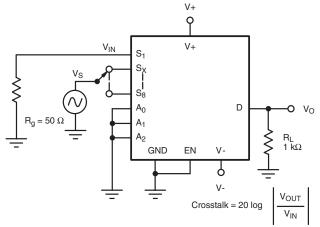


Figure 7. Crosstalk

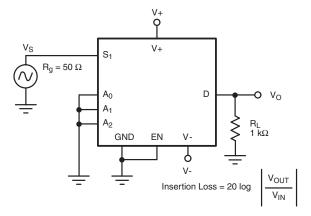


Figure 8. Insertion Loss

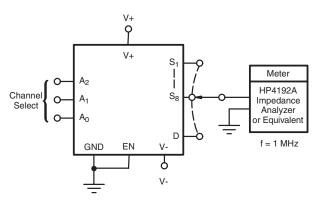


Figure 9. Source Drain Capacitance

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?71342.

Document Number: 71342 S09-1259-Rev. F, 13-Jul-09

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk and agree to fully indemnify and hold Vishay and its distributors harmless from and against any and all claims, liabilities, expenses and damages arising or resulting in connection with such use or sale, including attorneys fees, even if such claim alleges that Vishay or its distributor was negligent regarding the design or manufacture of the part. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Document Number: 91000 www.vishay.com
Revision: 11-Mar-11 1