Improved Quad CMOS Analog Switches

DESCRIPTION

The DG308B, DG309B analog switches are highly improved versions of the industry-standard DG308A, DG309. These devices are fabricated in Vishay Siliconix' proprietary silicon gate CMOS process, resulting in lower on-resistance, lower leakage, higher speed, and lower power consumption.

These quad single-pole single-throw switches are designed for a wide variety of applications in telecommunications, instrumentation, process control, computer peripherals, etc.

An improved charge injection compensation design minimizes switching transients. The DG308B and DG309B can handle up to $\pm 22 \mathrm{~V}$ input signals. An epitaxial layer prevents latchup.
All devices feature true bi-directional performance in the on condition, and will block signals to the supply levels in the off condition.

The DG308B is a normally open switch and the DG309B is a normally closed switch. (see Truth Table.)

FEATURES

- $\pm 22 \mathrm{~V}$ supply voltage rating
- CMOS compatible logic
- Low on-resistance - $\mathrm{R}_{\mathrm{DS}(\mathrm{on})}: 45 \Omega$
- Low leakage - $\mathrm{I}_{\mathrm{D}(\mathrm{on})}$: 20 pA
- Single supply operation possible
- Extended temperature range
- Fast switching - t_{ON} : < 200 ns
- Low glitching - Q: 1 pC

BENEFITS

- Wide analog signal range
- Simple logic interface
- Higher accuracy
- Minimum transients
- Reduced power consumption
- Superior to DG308A, DG309
- Space savings (TSSOP)

APPLICATIONS

- Industrial instrumentation
- Test equipment
- Communications systems
- Disk drives
- Computer peripherals
- Portable instruments
- Sample-and-hold circuits

Sampleandhold circuits

Available RoHS* COMPLIANT

FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION

TRUTH TABLE		
Logic	DG308B	DG309B
0	OFF	ON
1	ON	OFF

Logic " 0 " $\leq 3.5 \mathrm{~V}$
Logic " 1 " $\geq 11 \mathrm{~V}$

* Pb containing terminations are not RoHS compliant, exemptions may apply

Vishay Siliconix

ORDERING INFORMATION		
Temp. Range	Package	Part Number
-40 ${ }^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	16-Pin PlasticDIP	DG308BDJ DG308BDJ-E3
		$\begin{gathered} \hline \text { DG309BDJ } \\ \text { DG309BDJ-E3 } \end{gathered}$
	16-Pin Narrow SOIC	$\begin{gathered} \text { DG308BDY } \\ \text { DG308BDY-E3 } \\ \text { DG308BDY-T1 } \\ \text { DG308BDY-T1-E3 } \end{gathered}$
		$\begin{gathered} \text { DG309BDY } \\ \text { DG309BDY-E3 } \\ \text { DG309BDY-T1 } \\ \text { DG309BDY-T1-E3 } \end{gathered}$
	16-Pin TSSOP	DG308BDQ DG308BDQ-E3 DG308BDQ-T1 DG308BDQ-T1-E3
		DG309BDQ DG309BDQ-E3 DG309BDQ-T1 DG309BDQ-T1-E3

ABSOLUTE MAXIMUM RATINGS			
Parameter		Limit	Unit
Voltages Referenced, V+ to V-		44	V
GND		25	
Digital Inputs ${ }^{\text {a }}$, $\mathrm{V}_{\mathrm{S}}, \mathrm{V}_{\mathrm{D}}$		$(\mathrm{V}-)-2 \text { to }(\mathrm{V}+)+2$ or 30 mA , whichever occurs first	
Current, Any Terminal		30	mA
Peak Current, S or D (Pulsed at $1 \mathrm{~ms}, 10 \%$ duty cycle max.)		100	
Storage Temperature	(AK Suffix)	- 65 to 150	${ }^{\circ} \mathrm{C}$
	(DJ, DY and DQ Suffix)	- 65 to 125	
Power Dissipation (Package) ${ }^{\text {b }}$	16-Pin Plastic DIP ${ }^{\text {c }}$	470	mW
	16-Pin Narrow SOIC and TSSOP ${ }^{\text {d }}$	640	
	16-Pin CerDIP ${ }^{\text {e }}$	900	

Notes:
a. Signals on $\mathrm{S}_{X}, \mathrm{D}_{\mathrm{X}}$, or IN_{X} exceeding $\mathrm{V}+$ or V - will be clamped by internal diodes. Limit forward diode current to maximum current ratings.
b. All leads welded or soldered to PC board.
c. Derate $6.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $75^{\circ} \mathrm{C}$.
d. Derate $7.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $75^{\circ} \mathrm{C}$.
e. Derate $12 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $75^{\circ} \mathrm{C}$.

SPECIFICATIONS ${ }^{\text {a }}$									
Parameter	Symbol	Test Conditions Unless Specified$\begin{gathered} \mathrm{V}+=15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{IN}}=11 \mathrm{~V}, 3.5 \mathrm{~V}^{\mathrm{f}} \end{gathered}$	Temp. ${ }^{\text {b }}$	Typ. ${ }^{\text {c }}$	$\begin{gathered} \text { A Suffix } \\ -55^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \end{gathered}$		$\begin{gathered} \text { D Suffix } \\ -40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \end{gathered}$		Unit
					Min. ${ }^{\text {d }}$	Max. ${ }^{\text {d }}$	Min. ${ }^{\text {d }}$	Max. ${ }^{\text {d }}$	
Analog Switch									
Analog Signal Range ${ }^{\text {e }}$	$\mathrm{V}_{\text {ANALOG }}$		Full		-15	15	-15	15	V
Drain-Source On-Resistance	$\mathrm{R}_{\mathrm{DS} \text { (on) }}$	$\mathrm{V}_{\mathrm{D}}= \pm 10 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=1 \mathrm{~mA}$	Room Full	45		$\begin{gathered} 85 \\ 100 \\ \hline \end{gathered}$		$\begin{gathered} 85 \\ 100 \end{gathered}$	Ω
$\mathrm{R}_{\mathrm{DS} \text { (on) }}$ Match	$\Delta \mathrm{R}_{\mathrm{DS} \text { (on) }}$		Room	2					\%
Source Off Leakage Current	$\mathrm{I}_{\text {(off) }}$	$\mathrm{V}_{S}= \pm 14 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}= \pm 14 \mathrm{~V}$	$\begin{gathered} \hline \text { Room } \\ \text { Full } \end{gathered}$	± 0.01	$\begin{aligned} & \hline-0.5 \\ & -20 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 20 \end{aligned}$	$\begin{gathered} -0.5 \\ -5 \end{gathered}$	$\begin{gathered} 0.5 \\ 5 \end{gathered}$	
Drain Off Leakage Current	$I_{\text {(off) }}$	$\mathrm{V}_{\mathrm{D}}= \pm 14 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}= \pm 14 \mathrm{~V}$	Room Full	± 0.01	$\begin{aligned} & -0.5 \\ & -20 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 20 \end{aligned}$	$\begin{gathered} -0.5 \\ -5 \end{gathered}$	$\begin{gathered} 0.5 \\ 5 \end{gathered}$	nA
Drain On Leakage Current	${ }^{\text {D (on) }}$	$\mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}= \pm 14 \mathrm{~V}$	$\begin{aligned} & \hline \text { Room } \\ & \text { Full } \end{aligned}$	± 0.02	$\begin{aligned} & \hline-0.5 \\ & -40 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 40 \end{aligned}$	$\begin{gathered} -0.5 \\ -10 \end{gathered}$	$\begin{aligned} & 0.5 \\ & 10 \end{aligned}$	
Digital Control									
Input, Voltage High	$\mathrm{V}_{\text {INH }}$		Full		11		11		V
Input, Voltage Low	$\mathrm{V}_{\text {INL }}$		Full			3.5		3.5	V
Input Current	$\mathrm{l}_{\mathrm{INH}}$ or $\mathrm{l}_{\mathrm{INL}}$	$\mathrm{V}_{\text {INH }}$ or $\mathrm{V}_{\text {INL }}$	Full		-1	1	-1	1	$\mu \mathrm{A}$
Input Capacitance	$\mathrm{C}_{\text {IN }}$		Room	5					pF
Dynamic Characteristics									
Turn-On Time	t_{ON}	$\mathrm{V}_{S}=3 \mathrm{~V}$, see figure 2	Room			200		200	ns
Turn-Off Time	$\mathrm{t}_{\text {OFF }}$	$V_{S}=3 \mathrm{~V}$, see figure 2	Room			150		150	
Charge Injection	Q	$\mathrm{C}_{\mathrm{L}}=1000 \mathrm{pF}, \mathrm{V}_{\mathrm{g}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{g}}=0 \Omega$	Room	1					pC
Source-Off Capacitance	$\mathrm{C}_{\text {S(off) }}$	$\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$,	Room	5					
Drain-Off Capacitance	$\mathrm{C}_{\text {(off) }}$	$\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$,	Room	5					pF
Channel-On Capacitance	$\mathrm{C}_{\mathrm{D} \text { (on) }}$	$\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	Room	16					
Off-Isolation	OIRR		Room	90					
Channel-to-Channel Crosstalk	$\mathrm{X}_{\text {TALK }}$	$V_{S}=1 V_{\mathrm{RMS}}, f=100 \mathrm{kHz}$	Room	95					dB
Power Supply									
Positive Supply Current	$1+$		$\begin{aligned} & \hline \text { Room } \\ & \text { Full } \end{aligned}$			$\begin{aligned} & \hline 1 \\ & 5 \\ & \hline \end{aligned}$		$\begin{aligned} & \hline 1 \\ & 5 \end{aligned}$	A
Negative Supply Current	I-	V	$\begin{aligned} & \hline \text { Room } \\ & \text { Full } \end{aligned}$		$\begin{aligned} & \hline-1 \\ & -5 \end{aligned}$		$\begin{aligned} & \hline-1 \\ & -5 \end{aligned}$		$\mu \mathrm{A}$
Power Supply Range for Continuous Operation	V_{OP}		Full		± 4	± 22	± 4	± 22	V

SPECIFICATIONS ${ }^{\text {a }}$ (for Single Supply)									
Parameter	Symbol	Test Conditions Unless Specified$\begin{gathered} \mathrm{V}_{+}=12 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{IN}}=11 \mathrm{~V}, 3.5 \mathrm{~V}^{\mathrm{f}} \end{gathered}$	Temp. ${ }^{\text {b }}$	Typ. ${ }^{\text {c }}$	$\begin{array}{\|c\|} \hline \text { A Suffix } \\ -55^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \\ \hline \end{array}$		$\begin{gathered} \text { D Suffix } \\ -40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \end{gathered}$		Unit
					Min. ${ }^{\text {d }}$	Max. ${ }^{\text {d }}$	Min. ${ }^{\text {d }}$	Max. ${ }^{\text {d }}$	
Analog Switch									
Analog Signal Range ${ }^{\text {e }}$	$\mathrm{V}_{\text {ANALOG }}$		Full		0	12	0	12	V
Drain-Source On-Resistance	$\mathrm{R}_{\mathrm{DS} \text { (on) }}$	$\mathrm{V}_{\mathrm{D}}=3 \mathrm{~V}, 8 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=1 \mathrm{~mA}$	Room Full	90		$\begin{aligned} & 160 \\ & 200 \end{aligned}$		$\begin{aligned} & 160 \\ & 200 \end{aligned}$	Ω
Dynamic Characteristics									
Turn-On Time	t_{ON}	$\mathrm{V}_{S}=8 \mathrm{~V}$, see figure 2	Room			300		300	ns
Turn-Off Time	$\mathrm{t}_{\text {OFF }}$		Room			200		200	
Charge Injection	Q	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}, \mathrm{V}_{\text {gen }}=6 \mathrm{~V}, \mathrm{R}_{\text {gen }}=0 \Omega$	Room	4					pC
Power Supply									
Positive Supply Current	$1+$	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ or 12 V	Room Full			1 5		1 5	$\mu \mathrm{A}$
Negative Supply Current	I-		$\begin{gathered} \hline \text { Room } \\ \text { Full } \end{gathered}$		$\begin{aligned} & \hline-1 \\ & -5 \end{aligned}$		$\begin{aligned} & -1 \\ & -5 \end{aligned}$		
Power Supply Range for Continuous Operation	$V_{\text {OP }}$		Full		4	44	4	44	V

Notes:
a. Refer to PROCESS OPTION FLOWCHART .
b. Room $=25^{\circ} \mathrm{C}$, Full $=$ as determined by the operating temperature suffix.
c. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.
d. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
e. Guaranteed by design, not subject to production test.
f. $\mathrm{V}_{\mathrm{IN}}=$ input voltage to perform proper function.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

TYPICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$, unless otherwise noted)

TYPICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$, unless otherwise noted)

SCHEMATIC DIAGRAM (Typical Channel)

Figure 1.

TEST CIRCUITS

Figure 2. Switching Time

Figure 3. Off Isolation

Figure 4. Channel-to-Channel Crosstalk

$\Delta \mathrm{V}_{\mathrm{O}}=$ measured voltage error due to charge injection The charge injection in coulombs is $Q=C_{L} \times \Delta V_{O}$

Figure 5. Charge Injection

APPLICATIONS

Figure 6. A Precision Amplifier with Digitally Programmable Inputs and Gains

Figure 7. Sample-and-Hold

APPLICATIONS

A_{L} (Voltage Gain Below Break Frequency) $=\quad \frac{R_{3}}{R_{1}}=100(40 \mathrm{~dB})$
$\mathrm{f}_{\mathrm{C}}($ Break Frequency $)=\frac{1}{2 \pi \mathrm{R}_{3} \mathrm{C}_{X}}$
$f_{L}($ Unity Gain Frequency $)=\frac{1}{2 \pi R_{1} C_{X}}$
Max Attenuation $=\frac{R_{D S(o n)}}{10 \mathrm{k} \Omega} \approx-40 \mathrm{~dB}$

Figure 8. Active Low Pass Filter with Digitally Selected Break Frequency

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?70047.

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk and agree to fully indemnify and hold Vishay and its distributors harmless from and against any and all claims, liabilities, expenses and damages arising or resulting in connection with such use or sale, including attorneys fees, even if such claim alleges that Vishay or its distributor was negligent regarding the design or manufacture of the part. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

