DG271B

High-Speed Quad Monolithic SPST CMOS Analog Switch

FEATURES

- Fast Switching ton: 55 ns
- Low Charge Injection: 5 pC
- Low rids(on): 32Ω
- TTL/CMOS Compatible
- Low Leakage: 50 pA

BENEFITS

- Fast Settling Times
- Reduced Switching Glitches
- High Precision
APPLICATIONS
- High-Speed Switching
- Sample/Hold
- Digital Filters
- Op Amp Gain Switching
- Flight Control Systems
- Automatic Test Equipment
- Choppers
- Communication Systems

DESCRIPTION

The DG271B high speed quad single-pole single-throw analog switch is intended for applications that require low on-resistance, low leakage currents, and fast switching speeds.

Built on the Vishay Siliconix' proprietary high voltage silicon gate process to achieve superior on/off performance, each switch conducts equally well in both directions when on, and blocks up to the supply voltage when off. An epitaxial layer prevents latchup.

The DG271B has a redesign internal regulator which improves start-up over the DG271.

As a committed partner to the community and the environment, Vishay Siliconix manufactures this product with the lead (Pb)-free device terminations. For analog switching products manufactured with 100% matte tin device terminations, the lead (Pb)-free "-E3" suffix is being used as a designator.

FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION

TRUTH TABLE	
Logic	Switch
0	ON
1	OFF

Logic " 0 " $\leq 0.8 \mathrm{~V}$
Logic " 1 " $\geq 2.4 \mathrm{~V}$

ORDERING INFORMATION		
Temp Range	Package	Part Number
0 to $70^{\circ} \mathrm{C}$	16-Pin Plastic DIP	DG271BCJ-E3
-40 to $85^{\circ} \mathrm{C}$	16-Pin Narrow SoIC	DG271BDY-E3
		DG271BDY-T1-E3 (with Tape and Reel)

Vishay Siliconix

ABSOLUTE MAXIMUM RATINGS

$\mathrm{V}+$ to V -		
GND to V- . 25 V		
Digital Inputs ${ }^{\text {a }} \mathrm{V}_{\mathrm{S}}, \mathrm{V}_{\mathrm{D}}$		\ldots. (V-) -2 V to ($\mathrm{V}+$) +2 V or 20 mA , whichever occurs first
Current, Any Terminal		30 mA
Peak Current, S or D		
(Pulsed at $1 \mathrm{~ms}, 10 \%$ duty cycle max)		100 mA
Storage Temperature	(DY Suffix)	-65 to $150^{\circ} \mathrm{C}$
	(CJ Suffix) -65 to $125^{\circ} \mathrm{C}$

Power Dissipation (Package)b
16-Pin Plastic DIPc
470 mW
16-Pin Plastic Narrow SOICd
600 mW

Notes:

a. Signals on S_{X}, D_{X}, or I_{X} exceeding $V+$ or V - will be clamped by internal diodes. Limit forward diode current to maximum current ratings
b. All leads welded or soldered to PC Board.
c. Derate $6.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $75^{\circ} \mathrm{C}$
d. Derate $7.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $75^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

SPECIFICATIONS ${ }^{\text {a }}$							
Parameter	Symbol	Test Conditions Unless Specified$\begin{gathered} \mathrm{V}_{+}=15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V} \\ \mathrm{~V}_{\text {IN }}=2.4 \mathrm{~V}, 0.8 \mathrm{~V}^{f} \end{gathered}$	Temp ${ }^{\text {b }}$	$\begin{gathered} \text { C, D Suffix } \\ 0 \text { to } 70^{\circ} \mathrm{C} \\ -40 \text { to } 85^{\circ} \mathrm{C} \end{gathered}$			Unit
				Min ${ }^{\text {d }}$	Typ ${ }^{\text {c }}$	Max ${ }^{\text {d }}$	
Analog Switch							
Analog Signal Range ${ }^{\text {e }}$	$V_{\text {ANALOG }}$		Full	-15		15	V
Drain-Source On-Resistance	$\mathrm{r}_{\mathrm{DS}}(\mathrm{on})$	$\mathrm{I}_{\mathrm{S}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{D}}= \pm 10 \mathrm{~V}$	Room Full		32	$\begin{aligned} & 50 \\ & 75 \end{aligned}$	Ω
Switch Off Leakage Current	$I_{\text {S(off) }}$	$\mathrm{V}_{\mathrm{D}}= \pm 14 \mathrm{~V}, \mathrm{~V}_{S}=\mp 14 \mathrm{~V}$	$\begin{gathered} \hline \text { Room } \\ \text { Full } \end{gathered}$	$\begin{gathered} \hline-1 \\ -20 \end{gathered}$	± 0.05	$\begin{gathered} 1 \\ 20 \end{gathered}$	$n A$
	${ }_{\mathrm{L}}^{\mathrm{offi}}$)		$\begin{gathered} \hline \text { Room } \\ \text { Full } \end{gathered}$	$\begin{gathered} \hline-1 \\ -20 \end{gathered}$	± 0.05	$\begin{gathered} \hline 1 \\ 20 \end{gathered}$	
Channel On Leakage Current	$\begin{gathered} \mathrm{I}_{\mathrm{D}(\mathrm{on})}+ \\ \mathrm{I}_{\mathrm{S}(\text { on }}+ \end{gathered}$	$\mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}= \pm 14 \mathrm{~V}$	$\begin{gathered} \hline \text { Room } \\ \text { Full } \end{gathered}$	$\begin{gathered} \hline-1 \\ -20 \end{gathered}$	± 0.05	$\begin{gathered} 1 \\ 20 \end{gathered}$	
Digital Control							
Input Current with Voltage High	$\mathrm{I}_{\text {INH }}$	$\mathrm{V}_{\text {IN }}=2 \mathrm{~V}$	Full	-1	0.010	1	$\mu \mathrm{A}$
		$\mathrm{V}_{\text {IN }}=15 \mathrm{~V}$	Full	-1	0.010	1	
Input Current with Voltage Low	$\mathrm{I}_{\text {INL }}$	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$	Full	-1	0.010	1	
Dynamic Characteristics							
Turn-On Time	ton	$V_{S}= \pm 10 \mathrm{~V}$ See Figure 3	Room Full		55	$\begin{aligned} & 65 \\ & 80 \end{aligned}$	ns
Turn-Off Time	toff		$\begin{gathered} \hline \text { Room } \\ \text { Full } \end{gathered}$		50	$\begin{aligned} & 65 \\ & 80 \end{aligned}$	
Charge Injection	Q	$\begin{gathered} \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}, \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{gen}}=0 \mathrm{~V}, \mathrm{R}_{\text {gen }}=0 \Omega \\ \text { See Figure } 3 \end{gathered}$	Room		-5		pC
Source Off Capacitance	$\mathrm{C}_{\text {S(off) }}$	$\begin{gathered} V_{S}=0 V, V_{i N}=5 V \\ f=1 \mathrm{MHz} \end{gathered}$	Room		8		pF
Drain Off Capacitance	$\mathrm{C}_{\mathrm{D} \text { (off) }}$		Room		8		
Channel On Capacitance	$\mathrm{C}_{\mathrm{D} \text { (on) }}$	$\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}$	Room		30		
Off Isolation	OIRR	$\begin{aligned} & C_{L}= 10 \mathrm{pF}, R_{\mathrm{L}}=1 \mathrm{k} \Omega \\ & \mathrm{f}=100 \mathrm{kHz} \end{aligned}$ See Figures 4 and 5	Room		85		dB
Crosstalk	$\mathrm{X}_{\text {TALK }}$		Room		100		
Supply							
Positive Supply Current	$1+$	All Channels On or Off $\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}$ or 0 V	Room Full		5.5	$\begin{gathered} 7.5 \\ 9 \end{gathered}$	mA
Negative Supply Current	I-		$\begin{gathered} \hline \text { Room } \\ \text { Full } \end{gathered}$	$\begin{aligned} & \hline-6 \\ & -8 \end{aligned}$	-3.4		

Notes:

a. Refer to PROCESS OPTION FLOWCHART.
b. Room $=25^{\circ} \mathrm{C}$, Full $=$ as determined by the operating temperature suffix.
c. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.
d. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet
e. Guaranteed by design, not subject to production test.
f. $\quad \mathrm{V}_{\mathrm{IN}}=$ input voltage to perform proper function.

DG271B
Vishay Siliconix

TYPICAL CHARACTERISTICS ($25^{\circ} \mathrm{C}$ UNLESS NOTED)

FIGURE 1.

TEST CIRCUITS

FIGURE 2. Switching Time

[^0]
Disclaimer

All product specifications and data are subject to change without notice.
Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.

[^0]: Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see http://www.vishay.com/ppg?70966.

