SiGe, High-Linearity, 2300 MHz to 4000 MHz Upconversion/Downconversion Mixer with LO Buffer

Abstract

General Description The MAX2044 single, high-linearity upconversion/downconversion mixer provides +32.5 dBm input IP3, 8.5 dB noise figure, and 7.7 dB conversion loss for 2300 MHz to 4000 MHz LTE, WiMAX™, and MMDS wireless infrastructure applications. With an ultra-wide 2600 MHz to 4300 MHz LO frequency range, the MAX2044 can be used in either low-side or high-side LO injection architectures for virtually all 2.5 GHz and 3.5 GHz applications. In addition to offering excellent linearity and noise performance, the MAX2044 also yields a high level of component integration. This device includes a doublebalanced passive mixer core, an LO buffer, and on-chip baluns that allow for single-ended RF and LO inputs. The MAX2044 requires a nominal LO drive of OdBm, and supply current is typically 138 mA at $\mathrm{VCC}=5.0 \mathrm{~V}$ or 121 mA at $\mathrm{VCC}=3.3 \mathrm{~V}$. The MAX2044 is pin similar with the MAX2029/MAX2031 650MHz to 1000MHz mixers and the MAX2039/MAX2041/ MAX2042 1700 MHz to 3000 MHz mixers, making this entire family of up/downconverters ideal for applications where a common PCB layout is used for multiple frequency bands. The MAX2044 is available in a compact 20-pin thin QFN ($5 \mathrm{~mm} \times 5 \mathrm{~mm}$) package with an exposed pad. Electrical performance is guaranteed over the extended $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range.

Applications

2.5GHz WiMAX and LTE Base Stations
2.7GHz MMDS Base Stations
3.5GHz WiMAX and LTE Base Stations

Fixed Broadband Wireless Access
Wireless Local Loop
Private Mobile Radios
Military Systems
Features
2300MHz to 4000MHz RF Frequency Range
2600MHz to 4300MHz LO Frequency Range
50MHz to 500MHz IF Frequency Range
7.7dB Conversion Loss
+32.5dB Noise Figure
21dBm Typical Input 1dB Compression Point
P8dBc Typical 2RF - 2LO Spurious Rejection at
Integrated LO Buffer
Integrated RF and LO Baluns for Single-Ended
Low -3dBm to +3dBm LO Drive
Pin Similar with the MAX2029/MAX2031 Series
of 650MHz to 1000MHz Mixers and the MAX2039/
MAX2041/MAX2042 Series of 1700MHz to
3000MHz Mixers
Single 5.0V or 3.3V Supply
External Current-Setting Resistor Provides Option
for Operating Device in Reduced-Power/Reduced-
Performance Mode

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX2044ETP+	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 Thin QFN-EP*
MAX2044ETP +T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 Thin QFN-EP ${ }^{*}$

+Denotes a lead(Pb)-free/RoHS-compliant package.
*EP = Exposed pad.
T = Tape and reel.

SiGe, High-Linearity, 2300MHz to 4000 MHz Upconversion/Downconversion Mixer with LO Buffer

ABSOLUTE MAXIMUM RATINGS

VCC to GND \qquad -0.3 V to +5.5 V
IF+, IF-, LOBIAS to GND -0.3V to (VCC + 0.3V)
RF, LO Input Power.. +20 dBm
RF, LO Current (RF and LO is DC shorted
to GND through a balun). \qquad 50 mA
Continuous Power Dissipation (Note 1) 5W
$\theta_{\mathrm{JA}}\left(\right.$ Notes 2, 3)... $+38^{\circ} \mathrm{C} / \mathrm{W}$

C (Notes 1, 3)................................... $+13^{\circ} \mathrm{C} / \mathrm{W}$ Operating Case Temperature
Range (Note 4) TC $=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Junction Temperature .. $+150^{\circ} \mathrm{C}$

Lead Temperature (soldering, 10s) $+300^{\circ} \mathrm{C}$

Note 1: Based on junction temperature $T J=T C+(\theta J C \times V C C \times I C C)$. This formula can be used when the temperature of the exposed pad is known while the device is soldered down to a PCB. See the Applications Information section for details. The junction temperature must not exceed $+150^{\circ} \mathrm{C}$.
Note 2: Junction temperature $T J=T A+(\theta J A \times V C C \times I C C)$. This formula can be used when the ambient temperature of the PCB is known. The junction temperature must not exceed $+150^{\circ} \mathrm{C}$.
Note 3: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a fourlayer board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial.
Note 4: T_{C} is the temperature on the exposed pad of the package. T_{A} is the ambient temperature of the device and $P C B$.
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

5.0V SUPPLY DC ELECTRICAL CHARACTERISTICS

(Typical Application Circuit, VCC $=4.75 \mathrm{~V}$ to 5.25 V , no input RF or LO signals. $\mathrm{TC}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{VCC}=5.0 \mathrm{~V}$, $\mathrm{T} \mathrm{C}=+25^{\circ} \mathrm{C}$, all parameters are production tested.)

| PARAMETER | SYMBOL | CONDITIONS | MIN | TYP | MAX |
| :--- | :---: | :---: | :---: | :---: | :---: | UNITS 1

3.3V SUPPLY DC ELECTRICAL CHARACTERISTICS

(Typical Application Circuit, VCC $=3.0 \mathrm{~V}$ to 3.6 V , no input RF or LO signals. $\mathrm{T} \mathrm{C}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$, parameters are guaranteed by design, unless otherwise noted.)

| PARAMETER | SYMBOL | CONDITIONS | MIN | TYP | MAX |
| :--- | :---: | :---: | :---: | :---: | :---: | UNITS 1

RECOMMENDED AC OPERATING CONDITIONS

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
RF Frequency Range	fRF	Typical Application Circuit with $\mathrm{C} 1=3.3 \mathrm{nH}$ and C12 $=0.3 \mathrm{pF}$, see Table 1 for details (Note 5)	2300		3000	MHz
		Typical Application Circuit with $\mathrm{C} 1=8.2 \mathrm{pF}$ and C12 not installed, see Table 1 for details (Note 5)	3000		4000	
LO Frequency	flo	(Note 5)	2600		4300	MHz
IF Frequency	$f \mathrm{~F}$	Using an M/A-Com MABAES0029 1:1 transformer as defined in the Typical Application Circuit, IF matching components affect the IF frequency range (Note 5)	50		500	MHz
LO Drive	PLO	(Note 5)	-3	0	+3	dBm

SiGe, High-Linearity, 2300MHz to 4000 MHz Upconversion/Downconversion Mixer with LO Buffer

5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS (DOWNCONVERTER MODE, fRF $=3100 \mathrm{MHz}$ to 3900 MHz , LOW-SIDE LO INJECTION)

(Typical Application Circuit with tuning elements outlined in Table 1, $\mathrm{V}_{C C}=4.75 \mathrm{~V}$ to 5.25 V , RF and LO ports are driven from 50Ω sources, PLO $=-3 \mathrm{dBm}$ to $+3 \mathrm{dBm}, \mathrm{P}_{\mathrm{RF}}=0 \mathrm{dBm}, \mathrm{fRF}=3100 \mathrm{MHz}$ to $3900 \mathrm{MHz}, \mathrm{f}_{\mathrm{LO}}=2800 \mathrm{MHz}$ to $3600 \mathrm{MHz}, \mathrm{f}_{\mathrm{IF}}=300 \mathrm{MHz}$, fRF $>\mathrm{fLO}$, $\mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Typical values are at $\mathrm{V}_{\mathrm{C}}=5.0 \mathrm{~V}, \mathrm{P}_{\mathrm{RF}}=0 \mathrm{dBm}, \mathrm{PLO}=0 \mathrm{dBm}, \mathrm{f}_{\mathrm{RF}}=3500 \mathrm{MHz}, \mathrm{fLO}=3200 \mathrm{MHz}, \mathrm{f}_{\mathrm{f}}=300 \mathrm{MHz}$, $\mathrm{T} \mathrm{C}=+25^{\circ} \mathrm{C}$. All parameters are guaranteed by design, unless otherwise noted.) (Note 6)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Conversion Loss	LC	TC $=+25^{\circ} \mathrm{C}($ Notes 7, 8)		7.2	7.7	8.5	dB
Loss Variation vs. Frequency	$\Delta \mathrm{LC}$	fRF $=3100 \mathrm{MHz}$ to 3900 MHz , over any 100MHz band		0.15			dB
		fRF $=3100 \mathrm{MHz}$ to 3900 MHz , over any 200MHz band		0.25			
Conversion Loss Temperature Coefficient	TCCL	$\begin{aligned} & \text { fRF }=3100 \mathrm{MHz} \text { to } 3900 \mathrm{MHz}, \\ & \mathrm{TC}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{aligned}$		0.01			$\mathrm{dB} /{ }^{\circ} \mathrm{C}$
Input Compression Point	$1 \mathrm{P}_{1} \mathrm{~dB}$	(Note 9)		21			dBm
Third-Order Input Intercept Point	IIP3	fRF1-fRF2 $=1 \mathrm{MHz}$, PRF $=0 d B m$ per tone (Note 7, 8)		28.3	32.5		dBm
		fRF $=3500 \mathrm{MHz}$, fRF1 $-\mathrm{fRF} 2=1 \mathrm{MHz}$, PRF $=0 \mathrm{dBm}$ per tone. $\mathrm{TC}=+25^{\circ} \mathrm{C}$ (Notes 7, 8)		30.0	32.5		
Third-Order Input Intercept Point Variation Over Temperature		$\begin{aligned} & \mathrm{fRF}=3100 \mathrm{MHz} \text { to } 3900 \mathrm{MHz}, \mathrm{fIF}=300 \mathrm{MHz}, \\ & \mathrm{fRF}_{\mathrm{RF}}-\mathrm{fRF}_{\mathrm{R} 2}=1 \mathrm{MHz}, \mathrm{PRF}=0 \mathrm{dBm} \text { per tone, } \\ & \mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{aligned}$			± 0.5		dBm
Noise Figure	NFSSB	Single sideband, no blockers present (Notes 7, 10)			8.5	10	dB
		Single sideband, no blockers present, TC $=+25^{\circ} \mathrm{C}$ (Notes 7, 10)			8.5	9.2	
Noise Figure Temperature Coefficient	TCNF	Single sideband, no blockers present,$\mathrm{TC}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}$			0.018	20	$\mathrm{dB} /{ }^{\circ} \mathrm{C}$
Noise Figure Under Blocking Conditions	NFB	+8 dBm blocker tone applied to RF port, fBLOCKER $=3750 \mathrm{MHz}$, fRF $=3500 \mathrm{MHz}$, $\mathrm{fLO}=3200 \mathrm{MHz}, \mathrm{PLO}=0 \mathrm{dBm}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$, TC $=+25^{\circ} \mathrm{C}$ (Notes 7, 10, 11)			17.5		dB
2RF - 2LO Spurious Rejection	2×2	$\begin{aligned} & \text { fSPUR }=\mathrm{fLO}+ \\ & 150 \mathrm{MHz}, \\ & \mathrm{~T}_{\mathrm{C}}=+25^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \text { PRF }=-10 \mathrm{dBm} \\ & (\text { Notes } 7,10) \end{aligned}$	62	68		dBc
			PrF $=0 \mathrm{dBm}$ (Notes 7, 8)	52	58		
		$\begin{aligned} & \text { fSPUR }=f L O+ \\ & 150 \mathrm{MHz} \end{aligned}$	PRF $=-10 \mathrm{dBm}$ (Notes 7, 10)	60	68		
			PRF $=0 \mathrm{dBm}$ (Notes 7, 8)	50	58		

SiGe, High-Linearity, 2300 MHz to 4000 MHz Upconversion/Downconversion Mixer with LO Buffer

5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS (DOWNCONVERTER MODE, fRF $=3100 \mathrm{MHz}$ to 3900 MHz , LOW-SIDE LO INJECTION) (continued)

(Typical Application Circuit with tuning elements outlined in Table 1, VCC $=4.75 \mathrm{~V}$ to 5.25 V , RF and LO ports are driven from 50Ω sources, PLO $=-3 \mathrm{dBm}$ to $+3 \mathrm{dBm}, \mathrm{P}_{\mathrm{RF}}=0 \mathrm{dBm}, \mathrm{fRF}=3100 \mathrm{MHz}$ to $3900 \mathrm{MHz}, \mathrm{f}_{\mathrm{LO}}=2800 \mathrm{MHz}$ to $3600 \mathrm{MHz}, \mathrm{f}_{\mathrm{IF}}=300 \mathrm{MHz}$, fRF $>\mathrm{fLO}$, $\mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{PRF}=0 \mathrm{dBm}, \mathrm{PLO}=0 \mathrm{dBm}, \mathrm{fRF}=3500 \mathrm{MHz}, \mathrm{fLO}=3200 \mathrm{MHz}, \mathrm{fIF}=300 \mathrm{MHz}$, TC $=+25^{\circ} \mathrm{C}$. All parameters are guaranteed by design, unless otherwise noted.) (Note 6)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
3RF - 3LO Spurious Rejection	3×3	$\begin{aligned} & \text { fSPUR = fLO + } \\ & 100 \mathrm{MHz}, \end{aligned}$	$\operatorname{PRF}=-10 \mathrm{dBm}$ (Notes 7, 10)	82	89		dBc
		TC $=+25^{\circ} \mathrm{C}$	PrF $=0 \mathrm{dBm}($ Notes 7, 8)	62	69		
		$\begin{aligned} & \text { fSPUR }=\text { fLO }+ \\ & 100 \mathrm{MHz} \end{aligned}$	$\text { PRF }=-10 \mathrm{dBm}$ (Notes 7, 10)	81	89		
			PrF $=0 \mathrm{dBm}$ (Notes 7, 8)	61	69		
RF Input Return Loss	RLRF	LO on and IF terminated into a matched impedance			16		dB
LO Input Return Loss	RLLO	RF and IF terminated into a matched impedance			14		dB
IF Output Impedance	ZIF	Nominal differential impedance at the IC's IF outputs			50		Ω
IF Output Return Loss	RLIF	RF terminated into 50Ω, LO driven by a 50Ω source, IF transformed to 50Ω using external components shown in the Typical Application Circuit			16		dB
RF-to-IF Isolation		fRF $=3500 \mathrm{MHz}$, PLO $=+3 \mathrm{dBm}$ (Note 8)		33	42		dB
LO Leakage at RF Port		$\mathrm{fLO}=2500 \mathrm{MHz}$ to 4000 MHz, PLO $=+3 \mathrm{dBm}$ (Notes 7, 8)			-31		dBm
2LO Leakage at RF Port		$\mathrm{PLO}=+3 \mathrm{dBm}$			-35		dBm
LO Leakage at IF Port		PLO $=+3 \mathrm{dBm}$ (Note 8)			-28		dBm

SiGe, High-Linearity, 2300MHz to 4000MHz Upconversion/Downconversion Mixer with LO Buffer

3.3V SUPPLY AC ELECTRICAL CHARACTERISTICS (DOWNCONVERTER MODE, fRF $=3100 \mathrm{MHz}$ to 3900 MHz , LOW-SIDE LO INJECTION)

(Typical Application Circuit with tuning elements outlined in Table 1, RF and LO ports are driven from 50Ω sources. Typical values are at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{P}_{\mathrm{RF}}=0 \mathrm{dBm}, \mathrm{P}_{\mathrm{LO}}=0 \mathrm{dBm}, \mathrm{f}_{\mathrm{RF}}=3500 \mathrm{MHz}, \mathrm{fLO}_{\mathrm{LO}}=3200 \mathrm{MHz}, \mathrm{fIF}_{\mathrm{IF}}=300 \mathrm{MHz}, \mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 6)

PARAMETER	SYMBOL	CONDITIONS		MIN TYP	MAX	UNITS
Conversion Loss	LC			7.7		dB
Loss Variation vs. Frequency	$\Delta \mathrm{LC}$	fRF $=3100 \mathrm{MHz}$ to 3900 MHz , over any 100 MHz band		0.1		dB
Conversion Loss Temperature Coefficient	TCCL	$\begin{aligned} & \text { fRF }=3100 \mathrm{MHz} \text { to } 3900 \mathrm{MHz}, \\ & \mathrm{~T}_{\mathrm{C}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{aligned}$		0.009		$\mathrm{dB} /{ }^{\circ} \mathrm{C}$
Input Compression Point	$1 \mathrm{P}_{1 \mathrm{~dB}}$	(Note 9)		19.5		dBm
Third-Order Input Intercept Point	IIP3	fRF1 - frF2 $=1 \mathrm{MHz}, \mathrm{PRF}=0 \mathrm{dBm}$ per tone		29.5		dBm
Third-Order Input Intercept Variation Over Temperature		$\begin{aligned} & \text { fRF1 }- \text { fRF2 }=1 \mathrm{MHz}, \text { PRF }=0 \mathrm{dBm} \text { per tone, } \\ & \mathrm{TC}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{aligned}$		± 0.2		dB
Noise Figure	NFSSB	Single sideband, no blockers present		8.5		dB
Noise Figure Temperature Coefficient	TCNF	Single sideband, no blockers present,$\mathrm{T}^{\mathrm{C}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}$		0.018		$\mathrm{dB} /{ }^{\circ} \mathrm{C}$
2RF - 2LO Spurious Rejection	2×2	$\begin{aligned} & \text { fSPUR }=\text { fLO }+ \\ & 150 \mathrm{MHz} \end{aligned}$	$\mathrm{P}_{\text {RF }}=-10 \mathrm{dBm}$	69		dBc
			PRF $=0 \mathrm{dBm}$	64		
3RF - 3LO Spurious Rejection	3×3	$\begin{aligned} & \text { fSPUR = fLO + } \\ & 100 \mathrm{MHz} \end{aligned}$	PRF $=-10 \mathrm{dBm}$	73.3		dBc
			PRF $=0 \mathrm{dBm}$	63.3		
RF Input Return Loss	RLRF	LO on and IF terminated into a matched impedance		18		dB
LO Input Return Loss	RLLO	RF and IF terminated into a matched impedance		19		dB
IF Output Impedance	ZIF	Nominal differential impedance at the IC's IF outputs		50		Ω
IF Output Return Loss	RLIF	RF terminated into 50Ω, LO driven by a 50Ω source, IF transformed to 50Ω using external components shown in the Typical Application Circuit		14.5		dB
RF-to-IF Isolation		$\begin{aligned} & \mathrm{fRF}=3100 \mathrm{MHz} \text { to } 3900 \mathrm{MHz} \text {, } \\ & \mathrm{PLO}=+3 \mathrm{dBm} \end{aligned}$		41		dB
LO Leakage at RF Port		$\begin{aligned} & \mathrm{fLO}=2800 \mathrm{MHz} \text { to } 3600 \mathrm{MHz}, \\ & \mathrm{PLO}=+3 \mathrm{dBm} \end{aligned}$		-30		dBm
2LO Leakage at RF Port		$\begin{aligned} & \mathrm{fLO}=2800 \mathrm{MHz} \text { to } 3600 \mathrm{MHz}, \\ & \text { PLO }=+3 \mathrm{dBm} \end{aligned}$		-25.6		dBm
LO Leakage at IF Port		$\begin{aligned} & \mathrm{fLO}=2800 \mathrm{MHz} \text { to } 3600 \mathrm{MHz}, \\ & \mathrm{PLO}=+3 \mathrm{dBm} \end{aligned}$		-27		dBm

SiGe, High-Linearity, 2300MHz to 4000MHz Upconversion/Downconversion Mixer with LO Buffer

5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS (DOWNCONVERTER MODE, fRF $=\mathbf{2 3 0 0 M H z}$ to 2900 MHz , HIGH-SIDE LO INJECTION)

(Typical Application Circuit with tuning elements outlined in Table 1, RF and LO ports are driven from 50Ω sources. Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{P}_{\mathrm{RF}}=0 \mathrm{dBm}, \mathrm{P}_{\mathrm{LO}}=0 \mathrm{dBm}, \mathrm{f}_{\mathrm{RF}}=2600 \mathrm{MHz}, \mathrm{f}_{\mathrm{LO}}=2900 \mathrm{MHz}, \mathrm{fIF}_{\mathrm{IF}}=300 \mathrm{MHz}, \mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 6)

PARAMETER	SYMBOL	CONDITIONS		MIN TYP	MAX	UNITS
Conversion Loss	LC			8.1		dB
Loss Variation vs. Frequency	$\Delta \mathrm{LC}$	fRF $=2300 \mathrm{MHz}$ to 2900 MHz , over any 100 MHz band		0.15		dB
Conversion Loss Temperature Coefficient	TCCL	$\begin{aligned} & \mathrm{fRF}=2300 \mathrm{MHz} \text { to } 2900 \mathrm{MHz}, \\ & \mathrm{TC}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{aligned}$		0.008		$\mathrm{dB} /{ }^{\circ} \mathrm{C}$
Third-Order Input Intercept Point	IIP3	$\mathrm{fr}_{\text {RF1 }}-\mathrm{fr}_{\text {RF2 }}=1 \mathrm{MHz}, \mathrm{PRF}=0 \mathrm{dBm}$ per tone		34		dBm
Third-Order Input Intercept Variation Over Temperature		$\mathrm{f}_{\mathrm{RF}} 1-\mathrm{f}_{\mathrm{RF}}=1 \mathrm{MHz}, \mathrm{PRF}=0 \mathrm{dBm}$ per tone, TC $=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		± 0.2		dB
2LO-2RF Spurious Rejection	2×2	fSPUR $=$ fLO -150 MHz	PRF $=-10 \mathrm{dBm}$	67		dBc
			$\mathrm{PRF}^{\text {a }}=0 \mathrm{dBm}$	62		
3LO-3RF Spurious Rejection	3×3	fSPUR $=$ fLO - 100MHz	PRF $=-10 \mathrm{dBm}$	79		dBc
			PRF $=0 \mathrm{dBm}$	69		
RF Input Return Loss	RLRF	LO on and IF terminated into a matched impedance		23		dB
LO Input Return Loss	RLLO	RF and IF terminated into a matched impedance		17		dB
IF Output Impedance	ZIF	Nominal differential impedance at the IC's IF outputs		50		Ω
IF Output Return Loss	RLIF	RF terminated into 50Ω, LO driven by a 50Ω source, IF transformed to 50Ω using external components shown in the Typical Application Circuit		13.6		dB
RF-to-IF Isolation		$\begin{aligned} & \mathrm{fRF}=2300 \mathrm{MHz} \text { to } 2900 \mathrm{MHz}, \\ & \mathrm{PLO}=+3 \mathrm{dBm} \end{aligned}$		39		dB
LO Leakage at RF Port		$\begin{aligned} & \mathrm{fLO}=2600 \mathrm{MHz} \text { to } 3200 \mathrm{MHz}, \\ & \mathrm{PLO}=+3 \mathrm{dBm} \end{aligned}$		-29.5		dBm
2LO Leakage at RF Port		$\begin{aligned} & \text { fLO }=2600 \mathrm{MHz} \text { to } 3200 \mathrm{MHz}, \\ & \text { PLO }=+3 \mathrm{dBm} \\ & \hline \end{aligned}$		-43		dBm
LO Leakage at IF Port		$\begin{aligned} & \mathrm{fLO}=2600 \mathrm{MHz} \text { to } 3200 \mathrm{MHz}, \\ & \mathrm{PLO}=+3 \mathrm{dBm} \end{aligned}$		-28.6		dBm

SiGe, High-Linearity, 2300MHz to 4000 MHz Upconversion/Downconversion Mixer with LO Buffer

5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS (DOWNCONVERTER MODE, fRF $=3100 \mathrm{MHz}$ to 3900 MHz , HIGH-SIDE LO INJECTION)

(Typical Application Circuit with tuning elements outlined in Table 1, RF and LO ports are driven from 50Ω sources. Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{P}_{\mathrm{RF}}=0 \mathrm{dBm}, \mathrm{P}_{\mathrm{LO}}=0 \mathrm{dBm}, \mathrm{f}_{\mathrm{RF}}=3500 \mathrm{MHz}, \mathrm{fLO}_{\mathrm{LO}}=3800 \mathrm{MHz}, \mathrm{fIF}_{\mathrm{IF}}=300 \mathrm{MHz}, \mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 6)

SiGe, High-Linearity, 2300 MHz to 4000 MHz Upconversion/Downconversion Mixer with LO Buffer

5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS (UPCONVERTER OPERATION, fRF $=3100 \mathrm{MHz}$ to 3900 MHz , LOW-SIDE LO INJECTION)

(Typical Application Circuit with tuning elements outlined in Table 2, RF and LO ports are driven from 50Ω sources. Typical values are for $\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{PIF}_{\mathrm{IF}}=0 \mathrm{dBm}, \mathrm{PLO}=0 \mathrm{dBm}, \mathrm{f}_{\mathrm{RF}}=3500 \mathrm{MHz}, \mathrm{fLO}_{\mathrm{LO}}=3300 \mathrm{MHz}, \mathrm{f}_{\mathrm{IF}}=200 \mathrm{MHz}$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Conversion Loss	LC			7.7		dB
Conversion Loss Variation vs. Frequency	$\Delta \mathrm{LC}$	fRF $=3100 \mathrm{MHz}$ to 3900 MHz , over any 100MHz band		0.2		dB
		$\mathrm{f}_{\mathrm{RF}}=3100 \mathrm{MHz}$ to 3900 MHz , over any 200 MHz band		0.25		
Conversion Loss Temperature Coefficient	TCCL	TC $=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		0.01		$\mathrm{dB} /{ }^{\circ} \mathrm{C}$
Input Third-Order Intercept Point	IIP3	$\begin{aligned} & \mathrm{f}_{\mathrm{IF} 1}=200 \mathrm{MHz}, \mathrm{f}_{\mathrm{IF}}=201 \mathrm{MHz}, \\ & \mathrm{PIF}=0 \mathrm{dBm} / \text { tone } \end{aligned}$		33.5		dBm
IIP3 Variation with TC		$\begin{aligned} & \text { fIF1 }=200 \mathrm{MHz}, \mathrm{f} \mid \mathrm{F} 2=201 \mathrm{MHz}, \\ & \mathrm{PIF}=0 \mathrm{dBm} / \text { tone }, \mathrm{TC}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{aligned}$		± 0.2		dB
LO $\pm 2 \mathrm{IF}$ Spur	1×2	LO-2IF		61.6		dBc
		LO + 2IF		60.2		
$\mathrm{LO} \pm 3 \mathrm{IF}$ Spur	1×3	LO - 3IF		78.2		dBc
		LO + 3IF		80.3		
Output Noise Floor		Pout $=0 \mathrm{dBm}$ (Note 11)		-165		$\mathrm{dBm} / \mathrm{Hz}$

3.3V SUPPLY AC ELECTRICAL CHARACTERISTICS (UPCONVERTER OPERATION, fRF $=3100 \mathrm{MHz}$ to 3900 MHz , LOW-SIDE LO INJECTION)

(Typical Application Circuit with tuning elements outlined in Table 2, RF and LO ports are driven from 50Ω sources. Typical values are for $\mathrm{TC}=+25^{\circ} \mathrm{C}, \mathrm{VCC}=3.3 \mathrm{~V}, \mathrm{PIF}=0 \mathrm{dBm}, \mathrm{PLO}=0 \mathrm{dBm}, \mathrm{fRF}=3500 \mathrm{MHz}, \mathrm{fLO}=3200 \mathrm{MHz}, \mathrm{fIF}=200 \mathrm{MHz}$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Conversion Loss	LC			8		dB
Conversion Loss Variation vs. Frequency	$\Delta \mathrm{LC}$	$f_{R F}=3100 \mathrm{MHz}$ to 3900 MHz , over any 100MHz band		0.2		dB
		fRF $=3100 \mathrm{MHz}$ to 3900 MHz , over any 200MHz band		0.25		
Conversion Loss Temperature Coefficient	TCCL	TC $=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		0.01		$\mathrm{dB} /{ }^{\circ} \mathrm{C}$
Input Third-Order Intercept Point	IIP3	$\begin{aligned} & \text { fiF }=200 \mathrm{MHz}, \text { fiF2 }=201 \mathrm{MHz}, \\ & \text { PIF }=0 \mathrm{dBm} / \text { tone } \end{aligned}$		29.5		dBm
IIP3 Variation with TC		$\begin{aligned} & \mathrm{fIF}_{\mathrm{IF} 1}=200 \mathrm{MHz}, \mathrm{f} \mathrm{~F} 2=201 \mathrm{MHz}, \\ & \mathrm{PIF}=0 \mathrm{dBm} / \text { tone }, \mathrm{TC}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{aligned}$		± 0.2		dB

SiGe, High-Linearity, 2300MHz to 4000 MHz Upconversion/Downconversion Mixer with LO Buffer

3.3V SUPPLY AC ELECTRICAL CHARACTERISTICS (UPCONVERTER OPERATION, fRF $=3100 \mathrm{MHz}$ to 3900 MHz , LOW-SIDE LO INJECTION) (continued)

(Typical Application Circuit with tuning elements outlined in Table 2, RF and LO ports are driven from 50Ω sources. Typical values are for $\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{PIF}_{\mathrm{IF}}=0 \mathrm{dBm}, \mathrm{PLO}=0 \mathrm{dBm}, \mathrm{f}_{\mathrm{RF}}=3500 \mathrm{MHz}, \mathrm{fLO}_{\mathrm{LO}}=3200 \mathrm{MHz}, \mathrm{f}_{\mathrm{IF}}=200 \mathrm{MHz}$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN TYP	MAX	UNITS
$L O \pm 2 \mathrm{~F}$ Spur	1×2	LO-2IF	58.9		dBc
		LO + 2IF	57.8		
LO \pm 3IF Spur	1×3	LO-3IF	69.4		dBc
		LO + 3IF	69.5		
Output Noise Floor		Pout $=0 \mathrm{dBm}$ (Note 11)	-165		dBm/Hz

Note 5: Operation outside this range is possible, but with degraded performance of some parameters. See the Typical Operating Characteristics.
Note 6: All limits reflect losses of external components, including a 0.5 dB loss at $\mathrm{f} \mathrm{F}=300 \mathrm{MHz}$ due to the $1: 1$ impedance transformer. Output measurements were taken at IF outputs of the Typical Application Circuit.
Note 7: Guaranteed by design and characterization.
Note 8: 100% production tested for functional performance.
Note 9: Maximum reliable continuous input power applied to the RF or IF port of this device is +20 dBm from a 50Ω source.
Note 10: Not production tested.
Note 11: Measured with external LO source noise filtered so the noise floor is $-174 \mathrm{dBm} / \mathrm{Hz}$. This specification reflects the effects of all SNR degradations in the mixer, including the LO noise as defined in Application Note 2021: Specifications and Measurement of Local Oscillator Noise in Integrated Circuit Base Station Mixers.

Typical Operating Characteristics

(Typical Application Circuit with tuning elements outlined in Table 1, Downconverter Mode, Vcc $=5.0 \mathrm{~V}, \mathrm{fRF}=\mathbf{3 0 0 0 M H z}$ to 4000 MHz , LO is low-side injected for a 300 MHz IF, PRF $=0 \mathrm{dBm}, \mathrm{PLO}=0 \mathrm{dBm}, \mathrm{TC}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

SiGe, High-Linearity, 2300MHz to 4000MHz Upconversion/Downconversion Mixer with LO Buffer

Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, Downconverter Mode, $\mathrm{V}_{\mathrm{Cc}}=5.0 \mathrm{~V}, \mathrm{f}_{\mathrm{RF}}=\mathbf{3 0 0 0} \mathbf{M H z}$ to 4000 MHz , LO is low-side injected for a 300 MHz IF, PRF $=0 \mathrm{dBm}, \mathrm{PLO}=0 \mathrm{dBm}, \mathrm{TC}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

2RF - 2LO RESPONSE vs. RF FREQUENCY

3RF - 3 LO RESPONSE vs. RF FREQUENCY

SiGe, High-Linearity, 2300MHz to 4000MHz Upconversion/Downconversion Mixer with LO Buffer

Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, Downconverter Mode, $\mathrm{V}_{\mathbf{c c}}=5.0 \mathrm{~V}$, $\mathrm{fRF}=3000 \mathrm{MHz}$ to 4000 MHz , LO is low-side injected for a 300 MHz IF, $\mathrm{PRF}=0 \mathrm{dBm}, \mathrm{PLO}=0 \mathrm{dBm}, \mathrm{TC}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

SiGe, High-Linearity, 2300MHz to 4000MHz Upconversion/Downconversion Mixer with LO Buffer

Typical Operating Characteristics (continued)

(Typical Application Circuit with tuning elements outlined in Table 1, Downconverter Mode, $\mathrm{V}_{\mathrm{cc}}=\mathbf{5 . 0 V}, \mathbf{f R F}=\mathbf{3 0 0 0} \mathbf{M H z}$ to 4000 MHz , LO is low-side injected for a $300 \mathrm{MHz} \mathrm{IF}, \mathrm{PRF}=0 \mathrm{dBm}, \mathrm{PLO}=0 \mathrm{dBm}, \mathrm{TC}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

SiGe, High-Linearity, 2300MHz to 4000MHz Upconversion/Downconversion Mixer with LO Buffer

Typical Operating Characteristics (continued)

(Typical Application Circuit with tuning elements outlined in Table 1, Downconverter Mode, $\mathrm{Vcc}=5.0 \mathrm{~V}, \mathrm{f}_{\mathrm{RF}}=\mathbf{3 0 0 0} \mathbf{M H z}$ to 4000 MHz , LO is low-side injected for a 300 MHz IF, PRF $=0 \mathrm{dBm}, \mathrm{PLO}=0 \mathrm{dBm}, \mathrm{TC}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

SUPPLY CURRENT vs. TEMPERATURE (TC)

SiGe, High-Linearity, 2300MHz to 4000MHz Upconversion/Downconversion Mixer with LO Buffer

_Typical Operating Characteristics (continued)

(Typical Application Circuit with tuning elements outlined in Table 1, Downconverter Mode, Vcc $=\mathbf{3 . 3 V}, \mathrm{f}_{\mathrm{RF}}=\mathbf{3 0 0 0} \mathbf{M H z}$ to 4000 MHz , LO is low-side injected for a 300 MHz IF, $\mathrm{PRF}=0 \mathrm{dBm}, \mathrm{PLO}=0 \mathrm{dBm}, \mathrm{TC}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

SiGe, High-Linearity, 2300MHz to 4000MHz Upconversion/Downconversion Mixer with LO Buffer

Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, Downconverter Mode, $\mathrm{V}_{\mathrm{Cc}}=\mathbf{3 . 3 V}, \mathrm{f}_{\mathrm{RF}}=\mathbf{3 0 0 0} \mathbf{M H z}$ to 4000 MHz , LO is low-side injected for a 300 MHz IF, PRF $=0 \mathrm{dBm}, \mathrm{PLO}=0 \mathrm{dBm}, \mathrm{TC}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

SiGe, High-Linearity, 2300MHz to 4000MHz Upconversion/Downconversion Mixer with LO Buffer

Typical Operating Characteristics (continued)

(Typical Application Circuit with tuning elements outlined in Table 1, Downconverter Mode, $\mathrm{V}_{\mathrm{Cc}}=\mathbf{3 . 3 V}, \mathrm{f}_{\mathrm{RF}}=\mathbf{3 0 0 0} \mathbf{M H z}$ to 4000 MHz , LO is low-side injected for a $300 \mathrm{MHz} \mathrm{IF}, \mathrm{PRF}=0 \mathrm{dBm}, \mathrm{PLO}=0 \mathrm{dBm}, \mathrm{TC}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

RF-TO-IF ISOLATION vs. RF FREQUENCY

LO LEAKAGE AT RF PORT vs. LO FREQUENCY

LO LEAKAGE AT IF PORT
vs. LO FREQUENCY

RF-TO-IF ISOLATION vs. RF FREQUENCY

LO LEAKAGE AT RF PORT vs. LO FREQUENCY

SiGe, High-Linearity, 2300MHz to 4000MHz Upconversion/Downconversion Mixer with LO Buffer

Typical Operating Characteristics (continued)

(Typical Application Circuit with tuning elements outlined in Table 1, Downconverter Mode, $\mathrm{Vcc}=\mathbf{3 . 3 V}, \mathrm{f}_{\mathrm{RF}}=\mathbf{3 0 0 0} \mathbf{M H z}$ to 4000 MHz , LO is low-side injected for a 300 MHz IF, PRF $=0 \mathrm{dBm}, \mathrm{PLO}=0 \mathrm{dBm}, \mathrm{TC}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

SiGe, High-Linearity, 2300 MHz to 4000 MHz Upconversion/Downconversion Mixer with LO Buffer

Typical Operating Characteristics (continued)

(Typical Application Circuit with tuning elements outlined in Table 1, Downconverter Mode, Vcc $=\mathbf{5 . 0 V}, \mathbf{f}_{\mathrm{RF}}=\mathbf{2 3 0 0} \mathbf{M H z}$ to $\mathbf{2 9 0 0 M H z}$, LO is high-side injected for a $300 \mathrm{MHz} \mathrm{IF}, \mathrm{PRF}=0 \mathrm{dBm}, \mathrm{PLO}=0 \mathrm{dBm}, \mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

SiGe, High-Linearity, 2300MHz to 4000MHz Upconversion/Downconversion Mixer with LO Buffer

Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, Downconverter Mode, Vcc $=\mathbf{5 . 0 V}, \mathbf{f}_{\mathrm{RF}}=\mathbf{2 3 0 0 M H z}$ to $\mathbf{2 9 0 0 M H z}$, LO is high-side injected for a $300 \mathrm{MHz} \mathrm{IF}, \mathrm{PRF}=0 \mathrm{dBm}, \mathrm{PLO}=0 \mathrm{dBm}, \mathrm{TC}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

LO LEAKAGE AT IF PORT
vs. LO FREQUENCY

RF-TO-IF ISOLATION vs. RF FREQUENCY

LO LEAKAGE AT IF PORT vs. LO FREQUENCY

RF-TO-IF ISOLATION vs. RF FREQUENCY

SiGe, High-Linearity, 2300MHz to 4000MHz Upconversion/Downconversion Mixer with LO Buffer

Typical Operating Characteristics (continued)

(Typical Application Circuit with tuning elements outlined in Table 1, Downconverter Mode, $\mathrm{V}_{\mathrm{cc}}=\mathbf{5 . 0 V}, \mathrm{f}_{\mathrm{RF}}=\mathbf{2 3 0 0} \mathbf{M H z}$ to 2900MHz, LO is high-side injected for a $300 \mathrm{MHz} \mathrm{IF}, \mathrm{PRF}=0 \mathrm{dBm}, \mathrm{PLO}=0 \mathrm{dBm}, \mathrm{TC}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

SiGe, High-Linearity, 2300MHz to 4000MHz Upconversion/Downconversion Mixer with LO Buffer

Typical Operating Characteristics (continued)

(Typical Application Circuit with tuning elements outlined in Table 1, Downconverter Mode, $\mathrm{Vcc}=\mathbf{5 . 0 V}, \mathrm{f}_{\mathrm{RF}}=\mathbf{2 3 0 0} \mathbf{M H z}$ to $\mathbf{2 9 0 0 M H z}$, LO is high-side injected for a $300 \mathrm{MHz} \mathrm{IF}, \mathrm{PRF}=0 \mathrm{dBm}, \mathrm{PLO}=0 \mathrm{dBm}, \mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

SiGe, High-Linearity, 2300MHz to 4000MHz Upconversion/Downconversion Mixer with LO Buffer

\qquad Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, Downconverter Mode, $\mathrm{V}_{\mathrm{Cc}}=\mathbf{5 . 0 V}, \mathrm{f}_{\mathrm{RF}}=\mathbf{3 0 0 0} \mathbf{M H z}$ to 4000 MHz , LO is high-side injected for a $300 \mathrm{MHz} \mathrm{IF}, \mathrm{PRF}=0 \mathrm{dBm}, \mathrm{PLO}=0 \mathrm{dBm}, \mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

SiGe, High-Linearity, 3000MHz to 4000MHz Upconversion/Downconversion Mixer with LO Buffer

(Typical Application Circuit with tuning elements outlined in Table 1, Downconverter Mode, VCc $=5.0 \mathrm{~V}, \mathrm{f}_{\mathrm{RF}}=\mathbf{3 0 0 0 \mathrm { MHz }}$ to 4000 MHz , LO is high-side injected for a $300 \mathrm{MHz} \mathrm{IF}, \mathrm{PRF}=0 \mathrm{dBm}, \mathrm{PLO}=0 \mathrm{dBm}, \mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

SiGe, High-Linearity, 2300MHz to 4000MHz Upconversion/Downconversion Mixer with LO Buffer

 4000 MHz , LO is high-side injected for a $300 \mathrm{MHz} \mathrm{IF}, \mathrm{PRF}=0 \mathrm{dBm}, \mathrm{PLO}=0 \mathrm{dBm}, \mathrm{TC}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

SiGe, High-Linearity, 2300MHz to 4000MHz Upconversion/Downconversion Mixer with LO Buffer

Typical Operating Characteristics (continued)

(Typical Application Circuit with tuning elements outlined in Table 1, Downconverter Mode, $\mathrm{Vcc}=5.0 \mathrm{~V}, \mathrm{f}_{\mathrm{RF}}=\mathbf{3 0 0 0} \mathbf{M H z}$ to 4000 MHz , LO is high-side injected for a $300 \mathrm{MHz} \mathrm{IF}, \mathrm{PRF}=0 \mathrm{dBm}, \mathrm{PLO}=0 \mathrm{dBm}, \mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

LO PORT RETURN LOSS vs. LO FREQUENCY

SUPPLY CURRENT vs. TEMPERATURE (Tc)

SiGe, High-Linearity, 2300MHz to 4000MHz Upconversion/Downconversion Mixer with LO Buffer

Typical Operating Characteristics (continued)

(Typical Application Circuit with tuning elements outlined in Table 2, Upconverter Mode, Vcc = 5.0V, fRF $=\mathbf{3 0 0 0} \mathbf{M H z}$ to 4000MHz, LO is low-side injected, $\mathrm{fIF}=200 \mathrm{MHz}, \mathrm{PIF}=0 \mathrm{dBm}, \mathrm{PLO}=0 \mathrm{dBm}, \mathrm{TC}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

SiGe, High-Linearity, 2300MHz to 4000 MHz Upconversion/Downconversion Mixer with LO Buffer

Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 2, Upconverter Mode, VCc $=5.0 \mathrm{~V}, \mathrm{f}_{\mathrm{RF}}=3000 \mathrm{MHz}$ to 4000MHz, LO is low-side injected, $\mathrm{f} \mathrm{IF}=200 \mathrm{MHz}, \mathrm{PIF}=0 \mathrm{dBm}, \mathrm{PLO}=0 \mathrm{dBm}, \mathrm{T} \mathrm{C}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

SiGe, High-Linearity, 2300MHz to 4000 MHz Upconversion/Downconversion Mixer with LO Buffer

Typical Operating Characteristics (continued)

(Typical Application Circuit with tuning elements outlined in Table 2, Upconverter Mode, Vcc $=5.0 \mathrm{~V}, \mathrm{fRF}=3000 \mathrm{MHz}$ to 4000MHz, LO is low-side injected, $\mathrm{fIF}=200 \mathrm{MHz}, \mathrm{PIF}=0 \mathrm{dBm}, \mathrm{PLO}=0 \mathrm{dBm}, \mathrm{TC}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

IF LEAKAGE AT RF PORT vs. LO FREQUENCY

LO LEAKAGE AT RF PORT
vs. LO FREQUENCY

IF LEAKAGE AT RF PORT
vs. LO FREQUENCY

LO LEAKAGE AT RF PORT vs. LO FREQUENCY

IF LEAKAGE AT RF PORT vs. LO FREQUENCY

SiGe, High-Linearity, 2300MHz to 4000MHz Upconversion/Downconversion Mixer with LO Buffer

Typical Operating Characteristics (continued)

(Typical Application Circuit with tuning elements outlined in Table 2, Upconverter Mode, VCc $=5.0 \mathrm{~V}, \mathrm{f}_{\mathrm{RF}}=3000 \mathrm{MHz}$ to 4000MHz, LO is low-side injected, $\mathrm{f} \mid \mathrm{F}=200 \mathrm{MHz}, \mathrm{PIF}=0 \mathrm{dBm}, \mathrm{PLO}=0 \mathrm{dBm}, \mathrm{T} \mathrm{C}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

LO PORT RETURN LOSS

SUPPLY CURRENT
vs. TEMPERATURE (Tc)

SiGe, High-Linearity, 2300MHz to 4000MHz Upconversion/Downconversion Mixer with LO Buffer

Typical Operating Characteristics (continued)

(Typical Application Circuit with tuning elements outlined in Table 2, Upconverter Mode, Vcc = 3.3V, fRF $=\mathbf{3 0 0 0} \mathbf{M H z}$ to 4000MHz, LO is low-side injected, $\mathrm{fIF}=200 \mathrm{MHz}, \mathrm{PIF}=0 \mathrm{dBm}, \mathrm{PLO}=0 \mathrm{dBm}, \mathrm{TC}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

SiGe, High-Linearity, 2300MHz to 4000 MHz Upconversion/Downconversion Mixer with LO Buffer

Typical Operating Characteristics (continued)

(Typical Application Circuit with tuning elements outlined in Table 2, Upconverter Mode, Vcc $=3.3 \mathrm{~V}, \mathrm{f}_{\mathrm{RF}}=3000 \mathrm{MHz}$ to 4000MHz, LO is low-side injected, $\mathrm{f} \mathrm{IF}=200 \mathrm{MHz}, \mathrm{PIF}=0 \mathrm{dBm}, \mathrm{PLO}=0 \mathrm{dBm}, \mathrm{T} \mathrm{C}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

SiGe, High-Linearity, 2300MHz to 4000 MHz Upconversion/Downconversion Mixer with LO Buffer

\qquad Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 2, Upconverter Mode, Vcc = 3.3V, fRF $=\mathbf{3 0 0 0} \mathbf{M H z}$ to 4000MHz, LO is low-side injected, $\mathrm{fIF}=200 \mathrm{MHz}, \mathrm{PIF}=0 \mathrm{dBm}, \mathrm{PLO}=0 \mathrm{dBm}, \mathrm{TC}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

IF LEAKAGE AT RF PORT vs. LO FREQUENCY

LO LEAKAGE AT RF PORT
vs. LO FREQUENCY

IF LEAKAGE AT RF PORT
vs. 10 FREQUENCY

LO LEAKAGE AT RF PORT vs. LO FREQUENCY

IF LEAKAGE AT RF PORT vs. LO FREQUENCY

SiGe, High-Linearity, 2300MHz to 4000MHz Upconversion/Downconversion Mixer with LO Buffer

Typical Operating Characteristics (continued)

(Typical Application Circuit with tuning elements outlined in Table 2, Upconverter Mode, VCC $=3.3 \mathrm{~V}, \mathrm{f}_{\mathrm{RF}}=\mathbf{3 0 0 0} \mathbf{M H z}$ to 4000MHz, LO is low-side injected, $\mathrm{f} \mid \mathrm{F}=200 \mathrm{MHz}, \mathrm{PIF}=0 \mathrm{dBm}, \mathrm{PLO}=0 \mathrm{dBm}, \mathrm{T} \mathrm{C}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

SiGe, High-Linearity, 2300 MHz to 4000 MHz Upconversion/Downconversion Mixer with LO Buffer

Pin Configuration/Functional Diagram

*EXPOSED PAD

Pin Description

PIN	NAME	FUNCTION		
$1,6,8,14$	VCC	Power Supply. Bypass to GND with 0.01 μ F capacitors as close as possible to the pin.		
2	RF	Single-Ended 50Ω RF Input/Output. Internally matched and DC shorted to GND through a balun. Provide an input DC-blocking capacitor if required.		
$3,9,13,15$	GND	Ground. Not internally connected. Pins can be grounded.		
$4,5,10$,	GND	Ground. Internally connected to the exposed pad (EP). Connect all ground pins and the exposed pad together.		
12,17			\quad LOBIAS	LO Output Bias Resistor for LO Buffer. Connect a $698 \Omega 1 \%$ resistor (138mA bias condition) from
:---				
LOBIAS to ground.	.			

SiGe, High-Linearity, 2300MHz to 4000MHz Upconversion/Downconversion Mixer with LO Buffer

Detailed Description

The MAX2044 is a high-linearity passive mixer targeting 2.5 GHz and 3.5 GHz wireless infrastructure applications. With an ultra-wide 2600 MHz to 4300 MHz LO frequency range, the MAX2044 can be used in either low-side or high-side LO injection architectures for virtually all WiMAX, LTE, and MMDS receive and transmit applications.
When used as a low-side LO injection downconverting mixer in the 3000 MHz to 4000 MHz band, the MAX2044 provides +32.5 dBm of input IP3, with typical conversion loss and noise figure values of only 7.7 dB and 8.5 dB , respectively. The integrated baluns and matching circuitry allow for 50Ω single-ended interfaces to the RF and the LO port. The integrated LO buffer provides a high drive level to the mixer core, reducing the LO drive required at the MAX2044's input to a -3 dBm to +3 dBm range. The IF port incorporates a differential output, which is ideal for providing enhanced 2RF - 2LO or 2LO-2RF performance.
Specifications are guaranteed over broad frequency ranges to allow for use in WiMAX, LTE, and MMDS base stations. The MAX2044 is specified to operate over a 2300 MHz to 4000 MHz RF input range, a 2600 MHz to 4300 MHz LO range, and a 50 MHz to 500 MHz IF range. Operation beyond these ranges is possible (see the Typical Operating Characteristics for additional information).

RF Input and Balun

The MAX2044 RF input provides a 50Ω match when combined with a series DC-blocking capacitor. This DC-blocking capacitor is required as the input is internally DC shorted to ground through the on-chip balun. When using an 8.2pF DC-blocking capacitor, the RF port input return loss is typically better than 13dB over the 3300 MHz to 3900 MHz RF frequency range. A return loss of 15 dB over the 2400 MHz to 2700 MHz range is achievable by changing the input matching components per Tables 1 and 2. Other combinations of C1 and C12 can be used to optimize RF return loss in the 2300 MHz to 4000 MHz band.

LO Inputs, Buffer, and Balun

With a broadband LO drive circuit spanning 2600 MHz to 4300 MHz , the MAX2044 can be used in either low-side or high-side LO injection architectures for virtually all 2.5 GHz and 3.5 GHz applications. The LO input is internally matched to 50Ω, requiring only a 2 pF DC-blocking
capacitor. A two-stage internal LO buffer allows for a -3 dBm to +3 dBm LO input power range. The on-chip low-loss balun, along with an LO buffer, drives the double-balanced mixer. All interfacing and matching components from the LO inputs to the IF outputs are integrated on-chip.

High-Linearity Mixer

The core of the MAX2044 is a double-balanced, highperformance passive mixer. Exceptional linearity is provided by the large LO swing from the on-chip LO buffer. IIP3, 2RF - 2LO rejection, and noise figure performance are typically $+32.5 \mathrm{dBm}, 68 \mathrm{dBc}$, and 8.5 dB , respectively.

Differential IF Output
The MAX2044 has a 50 MHz to 500 MHz IF frequency range, where the low-end frequency depends on the frequency response of the external IF components.
The MAX2044's differential ports are ideal for providing enhanced 2RF - 2LO and 2LO - 2RF performance. Single-ended IF applications require a 1:1 (impedance ratio) balun to transform the 50Ω differential IF impedance to a 50Ω single-ended system. An MABAES0029 $1: 1$ transformer is used to characterize the part and its loss is included in the data presented in this data sheet. The user can connect a differential IF amplifier or SAW filter to the mixer IF port, but a DC block is required on both IF+/IF- ports to keep external DC from entering the IF ports of the mixer. Capacitors C 4 and C 7 are required DC blocks since the IF+ and IF- terminals are internally biased to VCC/2.

Applications Information

Input and Output Matching
The RF input provides a 50Ω match when combined with a series DC-blocking capacitor. Use an $8.2 p F$ capacitor value for RF frequencies ranging from 3000 MHz to 4000 MHz . See Tables 1 and 2 for alternative components that provide an excellent match over the 2300MHz to 3000 MHz band. The LO input is internally matched to 50Ω; use a 2 pF DC-blocking capacitor to cover operations spanning the 2600 MHz to 4300 MHz range. The IF output impedance is 50Ω (differential). For evaluation, an external low-loss 1:1 (impedance ratio) balun transforms this impedance down to a 50Ω single-ended output (see the Typical Application Circuit).

SiGe, High-Linearity, 2300MHz to 4000MHz Upconversion/Downconversion Mixer with LO Buffer

Reduced-Power Mode

The MAX2044 has one pin (LOBIAS) that allows an external resistor to set the internal bias current. Nominal values for this resistor are shown in Tables 1 and 2. Larger value resistors can be used to reduce power dissipation at the expense of some performance loss. If $\pm 1 \%$ resistors are not readily available, substitute with $\pm 5 \%$ resistors.
Significant reductions in power consumption can also be realized by operating the mixer at a supply voltage of 3.3 V . Doing so reduces the overall power consumption by typically 42%. See the 3.3V Supply AC Electrical Characteristics table and the relevant 3.3 V curves in the Typical Operating Characteristics section to evaluate the power vs. performance trade-offs.

Layout Considerations

A properly designed PCB is an essential part of any RF/ microwave circuit. Keep RF signal lines as short as possible to reduce losses, radiation, and inductance. The load impedance presented to the mixer must be such that any capacitance from both IF- and IF+ to ground does not exceed several picofarads. For the best performance, route the ground pin traces directly to the exposed pad under the package. The PCB exposed pad MUST be connected to the ground plane of the PCB. It is suggested that multiple vias be used to connect this pad to the lower level ground planes. This method provides a good RF/thermal-conduction path for the device. Solder the exposed pad on the bottom of the device package to the PCB.

Power-Supply Bypassing

Proper voltage supply bypassing is essential for highfrequency circuit stability. Bypass each Vcc pin with the capacitors shown in the Typical Application Circuit and see Table 1.

Table 1. Downconverter Mode Component Values

DESIGNATION	QTY	DESCRIPTION	COMPONENT SUPPLIER
C1	1	3.3nH microwave inductor (0402). Use for RF frequencies ranging from $\mathbf{2 3 0 0 M H z}$ to $\mathbf{3 0 0 0 M H z}$.	Coilcraft, Inc.
		8.2pF microwave capacitor (0402). Use for RF frequencies ranging from $\mathbf{3 0 0 0} \mathbf{M H z}$ to $\mathbf{4 0 0 0} \mathbf{M H z}$.	Murata Electronics North America, Inc.
C2, C6, C8, C11	4	$0.01 \mu \mathrm{~F}$ microwave capacitors (0402)	Murata Electronics North America, Inc.
C3, C9	0	Not installed, microwave capacitors (0402)	-
C4, C7	2	470pF microwave capacitors (0402)	Murata Electronics North America, Inc.
C5	0	Not installed, microwave capacitor (0402)	-
C10	1	2pF microwave capacitor (0402)	Murata Electronics North America, Inc.
C12	1	0.3 pF microwave capacitor (0402). Use for RF frequencies ranging from $\mathbf{2 3 0 0} \mathbf{M H z}$ to $\mathbf{3 0 0 0} \mathbf{M H z}$.	Murata Electronics North America, Inc.
	0	Microwave capacitor (0402) not installed for RF frequencies ranging from $\mathbf{3 0 0 0} \mathrm{MHz}$ to $\mathbf{4 0 0 0 M H z}$.	-
R1	1	$698 \Omega \pm 1 \%$ resistor (0402). Use for $\mathbf{V} \mathbf{C C}=+5.0 \mathbf{V}$ applications.	Digi-Key Corp.
		$698 \Omega \pm 1 \%$ resistor (0402). Use for $\mathbf{V C c}=+\mathbf{3 . 3 V}$ applications.	Digi-Key Corp.
T1	1	1:1 IF balun MABAES0029	M/A-Com
U1	1	MAX2044 IC (20 TQFN)	Maxim Integrated Products, Inc.

SiGe, High-Linearity, 2300MHz to 4000MHz Upconversion/Downconversion Mixer with LO Buffer

Exposed Pad RF/Thermal Considerations
The exposed pad (EP) of the MAX2044's 20-pin thin QFN package provides a low thermal-resistance path to the die. It is important that the PCB on which the MAX2044 is mounted be designed to conduct heat from
the EP. In addition, provide the EP with a low-inductance path to electrical ground. The EP MUST be soldered to a ground plane on the PCB, either directly or through an array of plated via holes.

Table 2. Upconverter Mode Component Values

DESIGNATION	QTY	DESCRIPTION	COMPONENT SUPPLIER
C1	1	3.3nH microwave inductor (0402). Use for RF frequencies ranging from $\mathbf{2 3 0 0} \mathbf{M H z}$ to $\mathbf{3 0 0 0 M H z}$.	Coilcraft, Inc.
		8.2pF microwave capacitor (0402). Use for RF frequencies ranging from $\mathbf{3 0 0 0} \mathbf{M H z}$ to $\mathbf{4 0 0 0} \mathbf{M H z}$.	Murata Electronics North America, Inc.
C2, C6, C8, C11	4	$0.01 \mu \mathrm{~F}$ microwave capacitors (0402)	Murata Electronics North America, Inc.
C3, C9	0	Not installed, microwave capacitors (0402)	-
C4, C7	2	470pF microwave capacitors (0402)	Murata Electronics North America, Inc.
C5	0	Not installed, microwave capacitor (0402)	-
C10	1	2pF microwave capacitor (0402)	Murata Electronics North America, Inc.
C12	1	0.3 pF microwave capacitor (0402). Use for RF frequencies ranging from $\mathbf{2 3 0 0} \mathbf{M H z}$ to $\mathbf{3 0 0 0} \mathbf{M H z}$.	Murata Electronics North America, Inc.
	0	Microwave capacitor (0402) not installed for RF frequencies ranging from $\mathbf{3 0 0 0 M H z}$ to $\mathbf{4 0 0 0} \mathrm{MHz}$.	-
R1	1	$698 \Omega \pm 1 \%$ resistor (0402). Use for $\mathbf{V c c}=+\mathbf{5 . 0 V}$ applications.	Digi-Key Corp.
		$698 \Omega \pm 1 \%$ resistor (0402). Use for $\mathbf{V} \mathbf{C C}=+\mathbf{3 . 3 V}$ applications.	Digi-Key Corp.
T1	1	1:1 IF balun MABAES0029	M/A-Com
U1	1	MAX2044 IC (20 TQFN)	Maxim Integrated Products, Inc.

SiGe, High-Linearity, 2300 MHz to 4000 MHz Upconversion/Downconversion Mixer with LO Buffer

SiGe, High-Linearity, 2300MHz to 4000MHz Upconversion/Downconversion Mixer with LO Buffer

Chip Information
PROCESS: SiGe BiCMOS

Package Information
For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. Note that a "+", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	DOCUMENT NO.
20 TQFN-EP	$T 2055+3$	$\underline{\mathbf{2 1 - 0 1 4 0}}$

[^0]Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 39

[^0]: Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

