0.1 GHz to 3GHz, 75dB Logarithmic Detector/Controller

Abstract

General Description The MAX2015 complete multistage logarithmic amplifier is designed to accurately convert radio-frequency (RF) signal power in the 0.1 GHz to 3 GHz frequency range to an equivalent DC voltage. The outstanding dynamic range and precision over temperature of this log amplifier make it particularly useful for a variety of base station and other wireless applications, including automatic gain control (AGC), transmitter power measurements, and received signal strength indication (RSSI) for terminal devices. The MAX2015 can also be operated in a controller mode where it measures, compares, and controls the output power of a variable-gain amplifier as part of a fully integrated AGC loop. This logarithmic amplifier provides much wider measurement range and superior accuracy compared to controllers based on diode detectors, while achieving excellent temperature stability over the full $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ operating range.

Applications

AGC Measurement and Control
RF Transmitter Power Measurement
RSSI Measurements
Cellular Base Station, WLAN, Microwave Link, Radar, and other Military Applications

Features

- Complete RF Detector/Controller
- 0.1 GHz to 3 GHz Frequency Range
- Exceptional Accuracy Over Temperature
- High Dynamic Range
- 2.7 V to 5.25 V Supply Voltage Range*
- Scaling Stable Over Supply and Temperature Variations
- Controller Mode with Error Output
- Shutdown Mode with Typically 1 $\mu \mathrm{A}$ of Supply Current
- Available in 8-Pin $\mu \mathrm{MAX}^{\circledR}$ and TDFN Packages
*See Power-Supply Connections section. $\mu M A X$ is a registered trademark of Maxim Integrated Products, Inc.

Ordering Information

PART	TEMP RANGE	PIN- PACKAGE	PKG CODE
MAX2015EUA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$8 \mu \mathrm{MAX}$	U8-1
MAX2015EUA-T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$8 \mu \mathrm{MAX}$	U8-1

$T=$ Tape-and-reel.
+Denotes lead-free and RoHS compliance.
*EP = Exposed paddle.
Ordering Information continued at end of data sheet.
Functional Diagram

Pin Configuration appears at end of data sheet.

0.1GHz to 3GHz, 75dB Logarithmic Detector/Controller

ABSOLUTE MAXIMUM RATINGS

Operating Temperature Range ... $60^{\circ} \mathrm{C}$
Junction Temperature.................................... $+300^{\circ} \mathrm{C}$
Storage Temperature Range

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

(MAX2015 typical application circuit (Figure 1), $\mathrm{V}_{S}=+3.3 \mathrm{~V}, \mathrm{f}_{\mathrm{RF}}=100 \mathrm{MHz}$ to $3000 \mathrm{MHz}, \mathrm{R} 1=0 \Omega, R 4=0 \Omega, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
POWER SUPPLY						
Supply Voltage	VS	R4 $=75 \Omega \pm 1 \%$, PWDN must be connected to GND	4.75		5.25	V
		R4 $=0 \Omega$	2.7		3.6	
Supply Current	IcC	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{S}}=5.25 \mathrm{~V}, \\ & \mathrm{R} 4=75 \Omega \end{aligned}$		17.3		mA
		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		17.3	20.5	
Supply Current Variation with Temp	IcC	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		0.05		$\mathrm{mA} /{ }^{\circ} \mathrm{C}$
Shutdown Current	ICC	$\mathrm{V}_{\text {PWDN }}=\mathrm{V}_{\text {CC }}$		1		$\mu \mathrm{A}$
CONTROLLER REFERENCE (SET)						
SET Input Voltage Range				0.5 to 1.8		V
SET Input Impedance				40		$\mathrm{k} \Omega$
DETECTOR OUTPUT (OUT)						
Source Current				4		mA
Sink Current				450		$\mu \mathrm{A}$
Minimum Output Voltage	VOUT(MIN)			0.5		V
Maximum Output Voltage	Vout(max)			1.8		V

0.1GHz to 3GHz, 75dB Logarithmic Detector/Controller

AC ELECTRICAL CHARACTERISTICS

(MAX2015 typical application circuit (Figure 1), $\mathrm{V}_{\mathrm{S}}=+3.3 \mathrm{~V}, \mathrm{f}_{\mathrm{RF}}=100 \mathrm{MHz}$ to $3000 \mathrm{MHz}, \mathrm{R} 1=0 \Omega, R 4=0 \Omega, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN TYP	MAX	UNITS
RF Input Frequency Range	f_{RF}		0.1 to 3		GHz
Return Loss	S_{11}		-15		dB
Large-Signal Response Time		PIN $=$ no signal to 0 dBm , $\pm 0.5 \mathrm{~dB}$ settling accuracy	150		ns
RSSI MODE-0.1GHz					
RF Input Power Range		(Note 2)	-65 to +5		dBm
$\pm 3 \mathrm{~dB}$ Dynamic Range		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)	70		dB
Range Center			-30		dBm
Temp Sensitivity when $\mathrm{T}_{\mathrm{A}}>+25^{\circ} \mathrm{C}$		$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}, \\ & \mathrm{PIN}=-25 \mathrm{dBm} \end{aligned}$	+0.0083		dB/ ${ }^{\circ} \mathrm{C}$
Temp Sensitivity when $\mathrm{T}_{\mathrm{A}}<+25^{\circ} \mathrm{C}$		$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+25^{\circ} \mathrm{C}, \\ & \text { PIN }=-25 \mathrm{dBm} \end{aligned}$	-0.0154		dB/ ${ }^{\circ} \mathrm{C}$
Slope		(Note 4)	19		$\mathrm{mV} / \mathrm{dB}$
Typical Slope Variation		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	-4		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Intercept		(Note 5)	-100		dBm
Typical Intercept Variation		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	0.03		$\mathrm{dBm} /{ }^{\circ} \mathrm{C}$
RSSI MODE-0.9GHz					
RF Input Power Range		(Note 2)	-65 to +5		dBm
$\pm 3 \mathrm{~dB}$ Dynamic Range		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)	70		dB
Range Center			-30		dBm
Temp Sensitivity when $\mathrm{T}_{\mathrm{A}}>+25^{\circ} \mathrm{C}$		$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}, \\ & \mathrm{PIN}=-25 \mathrm{dBm} \end{aligned}$	± 0.0083		dB/ ${ }^{\circ} \mathrm{C}$
Temp Sensitivity when $\mathrm{T}_{\mathrm{A}}<+25^{\circ} \mathrm{C}$		$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+25^{\circ} \mathrm{C}, \\ & \text { PIN }=-25 \mathrm{dBm} \end{aligned}$	-0.0154		dB/ ${ }^{\circ} \mathrm{C}$
Slope		(Note 4)	18.1		mV/dB
Typical Slope Variation		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	-4		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Intercept		(Note 5)	-97		dBm
Typical Intercept Variation		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	0.02		$\mathrm{dBm} /{ }^{\circ} \mathrm{C}$
RSSI MODE-1.9GHz					
RF Input Power Range		(Note 2)	-55 to +5		dBm
$\pm 3 \mathrm{~dB}$ Dynamic Range		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)	60		dB
Range Center			-25		dBm
Temp Sensitivity when $\mathrm{T}_{\mathrm{A}}>+25^{\circ} \mathrm{C}$		$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}, \\ & \mathrm{PIN}=-25 \mathrm{dBm} \end{aligned}$	± 0.0033		$\mathrm{dB} /{ }^{\circ} \mathrm{C}$
Temp Sensitivity when $\mathrm{T}_{\mathrm{A}}<+25^{\circ} \mathrm{C}$		$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+25^{\circ} \mathrm{C}, \\ & \mathrm{PIN}=-25 \mathrm{dBm} \end{aligned}$	-0.0138		dB/ ${ }^{\circ} \mathrm{C}$
Slope		(Note 4)	18		$\mathrm{mV} / \mathrm{dB}$
Typical Slope Variation		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	-4.8		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$

0.1GHz to 3GHz, 75dB Logarithmic Detector/Controller

AC ELECTRICAL CHARACTERISTICS (continued)

(MAX2015 typical application circuit (Figure 1), $V_{S}=+3.3 \mathrm{~V}, f_{R F}=100 \mathrm{MHz}$ to $3000 \mathrm{MHz}, R 1=0 \Omega, R 4=0 \Omega, R_{L}=10 \mathrm{k} \Omega, T_{A}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN TYP	MAX	UNITS
Intercept		(Note 5)	-83		dBm
Typical Intercept Variation		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	0.03		$\mathrm{dBm} /{ }^{\circ} \mathrm{C}$
RSSI MODE-2.5GHz					
RF Input Power Range		(Note 2)	-45 to -5		dBm
$\pm 3 \mathrm{~dB}$ Dynamic Range		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)	40		dB
Range Center			-25		dBm
Temp Sensitivity when $\mathrm{T}_{\mathrm{A}}>+25^{\circ} \mathrm{C}$		$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}, \\ & \mathrm{PIN}=-25 \mathrm{dBm} \end{aligned}$	-0.0083		dB/ ${ }^{\circ} \mathrm{C}$
Temp Sensitivity when $\mathrm{T}_{\mathrm{A}}<+25^{\circ} \mathrm{C}$		$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+25^{\circ} \mathrm{C}, \\ & \text { PIN }=-25 \mathrm{dBm} \end{aligned}$	-0.0083		dB/ ${ }^{\circ} \mathrm{C}$
Slope		(Note 4)	16.8		$\mathrm{mV} / \mathrm{dB}$
Typical Slope Variation		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	-8		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Intercept		(Note 5)	-81		dBm
Typical Intercept Variation		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	0.03		$\mathrm{dBm} /{ }^{\circ} \mathrm{C}$

Note 1: The MAX2015 is guaranteed by design for $T_{A}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, as specified.
Note 2: Typical minimum and maximum range of the detector at the stated frequency.
Note 3: Dynamic range refers to the range over which the error remains within the stated bounds. The error is calculated at $-40^{\circ} \mathrm{C}$ and $+85^{\circ} \mathrm{C}$, relative to the curve at $+25^{\circ} \mathrm{C}$.
Note 4: The slope is the variation of the output voltage per change in input power. It is calculated by fitting a root-mean-square (RMS) straight line to the data indicated by RF input power range.
Note 5: The intercept is an extrapolated value that corresponds to the output power for which the output voltage is zero. It is calculated by fitting an RMS straight line to the data.

0.1GHz to 3GHz, 75dB Logarithmic Detector/Controller

Typical Operating Characteristics
(MAX2015 typical application circuit (Figure 1), $\mathrm{V}_{S}=\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{P}_{\mathrm{IN}}=-10 \mathrm{dBm}, \mathrm{f}_{\mathrm{IN}}=100 \mathrm{MHz}, \mathrm{R} 1=0 \Omega, R 4=0 \Omega, R_{L}=10 \mathrm{k} \Omega, \mathrm{VPWDN}=$ OV, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

0.1GHz to 3GHz, 75dB Logarithmic Detector/Controller

(MAX2015 typical application circuit (Figure 1), $\mathrm{V}_{S}=\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{P}_{\mathrm{IN}}=-10 \mathrm{dBm}, \mathrm{f}_{\mathrm{I}} \mathrm{N}=100 \mathrm{MHz}, \mathrm{R} 1=0 \Omega, R 4=0 \Omega, R_{L}=10 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{PW}} \mathrm{FDN}=$ OV, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

0.1GHz to 3GHz, 75dB Logarithmic Detector/Controller

Typical Operating Characteristics (continued)
(MAX2015 typical application circuit (Figure 1), $\mathrm{V}_{S}=\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{PIN}=-10 \mathrm{dBm}, \mathrm{fin}_{\mathrm{IN}}=100 \mathrm{MHz}, \mathrm{R} 1=0 \Omega, \mathrm{R} 4=0 \Omega, \mathrm{RL}=10 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{PW}} \mathrm{LN}=$ $0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Pin Description

PIN	NAME	FUNCTION
1,4	VCC	Supply Voltage. Bypass with capacitors as specified in the application drawing. Place capacitors as close to the pin as possible (see the Power-Supply Connections section).
2,3	INHI, INLO	Differential RF Inputs
5	PWDN	Power-Down Input. Drive PWDN with a logic-high to power down the IC. PWDN must be connected to GND for VS between 4.75V and 5.25V with R4 = 75.
6	GND	Ground. Connect to the PCB ground plane.
7	SET	Set-Point Input. To operate in detector mode, connect SET to OUT. To operate in controller mode, connect a precision voltage source to control the power level of a power amplifier.
8	OUT	Detector Output. In detector mode, this output provides a voltage proportional to the log of the input power. In controller mode, this output is connected to a power-control input on a power amplifier (PA).
-	EP	Exposed Paddle (TDFN package only). Connect EP to GND using multiple vias, or the EP can also be left unconnected.

0.1GHz to 3GHz, 75dB Logarithmic Detector/Controller

___Detailed Description
The MAX2015 is a successive detection logarithmic amplifier designed for use in RF power measurement and AGC applications with a 0.1 GHz to 3 GHz frequency range from a single 2.7 V to 3.6 V power supply. It is pin compatible with other leading logarithmic amplifiers.
The MAX2015 provides for improved performance with a high 75 dB dynamic range at 100 MHz , and exceptional accuracy over the extended temperature range and supply voltage range.

RF Input
The MAX2015 differential RF input (INHI, INLO) allows for broadband signals between 100 MHz and 3 GHz . For single-ended signals, AC-couple INLO to ground. The RF inputs are internally biased and need to be AC-coupled using 680pF capacitors as shown in Figure 1 and Figure 2. An internal 50Ω resistor between INHI and INLO provides a good 50 MHz to 3.0 GHz match.

SET Input
The SET input is used for loop control when in controller mode or to set the slope of the output signal ($\mathrm{mV} / \mathrm{dB}$) when in detector mode. The internal input structure of SET is two series $20 \mathrm{k} \Omega$ resistors connected to ground. The center node of the resistors is fed to the negative input of the internal output op amp.

Power-Supply Connections

The MAX2015 requires power-supply bypass capacitors connected close to each Vcc pin. At each Vcc pin, connect a $0.1 \mu \mathrm{~F}$ capacitor (C4, C6) and a 100pF capacitor (C3, C5) with the 100pF capacitor being closest to the pin.
For power-supply voltages (Vs) between 2.7 V and 3.6 V , set R4 $=0 \Omega$ (see the typical applications circuits).
For power-supply voltages (V s) between 4.75 V and 5.25 V , set R4 $=75 \Omega \pm 1 \%$ ($100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ max) and PWDN must be connected to GND.

Power-Down Mode

The MAX2015 can be powered down by driving PWDN with logic high (logic high = VCC). In power-down mode, the supply current is reduced to a typical value of $1 \mu \mathrm{~A}$. For normal operation, drive PWDN with a logic low. It is recommended when using power-down that an RF signal not be applied before the power-down signal is low.

Applications Information

Detector (RSSI) Mode

In detector mode, the MAX2015 acts like an RSSI, which provides an output voltage proportional to the input power. This is accomplished by providing a feedback path from OUT to SET (R1 = 0Ω; see Figure 1).
By connecting SET directly to OUT, the op amp gain is set to $2 \mathrm{~V} / \mathrm{V}$ due to two internal $20 \mathrm{k} \Omega$ feedback resistors. This provides a detector slope of approximately $18 \mathrm{mV} / \mathrm{dB}$ with a 0.5 V to 1.8 V output range.

Controller Mode

The MAX2015 can also be used as a detector/controller within an AGC loop. Figure 3 depicts one scenario where the MAX2015 is employed as the controller for a variable-gain PA. As shown in the figure, the MAX2015 monitors the output of the PA through a directional coupler. An internal integrator (Figure 2) compares the

Figure 1. Detector-Mode (RSSI) Typical Application Circuit
Table 1. Suggested Components of Typical Applications Circuits

DESIGNATION	VALUE	TYPE
$\mathrm{C} 1, \mathrm{C} 2$	680 pF	0603 ceramic capacitors
$\mathrm{C} 3, \mathrm{C} 5$	100 pF	0603 ceramic capacitors
$\mathrm{C} 4, \mathrm{C} 6$	$0.1 \mu \mathrm{~F}$	0603 ceramic capacitors
R1	0Ω	0603 resistor
R4**	0Ω	0603 resistor

*RSSI mode only.
${ }^{* *} V_{S}=2.7 \mathrm{~V}$ to 3.6 V .

0.1GHz to 3GHz, 75dB Logarithmic Detector/Controller

Figure 2. Controller-Mode Typical Application Circuit
detected signal with a reference voltage determined by VSET. The integrator, acting like a comparator, increases or decreases the voltage at OUT, according to how closely the detected signal level matches the VSET reference. The MAX2015 adjusts the power of the PA to a level determined by the voltage applied to SET. With R1 = 0Ω, the controller mode slope is approximately $19 \mathrm{mV} / \mathrm{dB}(\mathrm{RF}=100 \mathrm{MHz})$.

Figure 3. System Diagram for Automatic Gain-Control Loop

Layout Considerations

As with any RF circuit, the layout of the MAX2015 circuit affects the device's performance. Use an abundant number of ground vias to minimize RF coupling. Place the input capacitors (C1, C2) and the bypass capacitors (C3-C6) as close to the IC as possible. Connect the bypass capacitors to the ground plane with multiple vias.

0.1GHz to 3GHz, 75dB Logarithmic Detector/Controller

PART	TEMP RANGE	PINPACKAGE	PKG CODE
MAX2015EUA+	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$8 \mu \mathrm{MAX}$	U8-1
MAX2015EUA+T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$8 \mu \mathrm{MAX}$	U8-1
MAX2015ETA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\begin{gathered} 8 \text { TDFN-EP* } \\ (3 \mathrm{~mm} \times 3 \mathrm{~mm}) \end{gathered}$	T833-2
MAX2015ETA-T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 TDFN-EP* ($3 \mathrm{~mm} \times 3 \mathrm{~mm}$)	T833-2
MAX2015ETA+	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 TDFN-EP* ($3 \mathrm{~mm} \times 3 \mathrm{~mm}$)	T833-2
MAX2015ETA+T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 TDFN-EP* (3mm x 3mm)	T833-2

T = Tape-and-reel.
+Denotes lead-free and RoHS compliance.
*EP = Exposed paddle.

Chip Information

TRANSISTOR COUNT: 3157
PROCESS: BiCMOS

0.1GHz to 3GHz, 75dB Logarithmic Detector/Controller

Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

NOTES:

1. D\&E DO NOT INCLUDE MOLD FLASH.
2. MOLD FLASH OR PROTRUSIONS NOT TO EXCEED 0.15 MM (.006").
3. CONTROLLING DIMENSION: MILLIMETERS.
4. MEETS JEDEC MO-187C-AA.

PACKAGE OUTLINE, 8L uMAX/USOP

APPROVALL	DOCCMENT CONTROL NO.		
	$21-0036$	J	$1 / 1$

0.1GHz to 3GHz, 75dB Logarithmic Detector/Controller

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

0.1GHz to 3GHz, 75dB Logarithmic Detector/Controller

Package Information (continued)
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

Revision History

Pages changed at Rev 2: 1-10, 12, 13

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

