High-Voltage, Current-Mode PWM Controller

Features

- 10 to 450 V input voltage range
- $<1.3 \mathrm{~mA}$ supply current
- $>1.0 \mathrm{MHz}$ clock
- >20:1 dynamic range @ 500 KHz
- 49\% Maximum duty cycle version
- Low internal noise

Applications

- Off-line high frequency power supplies
- Universal input power supplies
- High density power supplies
- Very high efficiency power supplies
- Extra wide load range power supplies

General Description

The Supertex HV9120 is a Switch Mode Power Supply (SMPS) controller subsystem that can start and run directly from almost any DC input, from a 12 V battery to a rectified and filtered 240 V AC line. It contains all the elements required to build a single-switch converter except for the switch, magnetic assembly, output rectifier(s) and filter(s).

A unique input circuit allows the 9120 to self-start directly from a high voltage input, and subsequently take the power to operate from one of the outputs of the converter it is controlling, allowing very efficient operation while maintaining input-to-output galvanic isolation limited in voltage only by the insulation system of the associated magnetic assembly. A $\pm 2 \%$ internal bandgap reference, internal operational amplifier, very high speed comparator, and output buffer allow production of rugged, high performance, high efficiency power supplies of 50 W or more, which can still be over 80% efficient at outputs of 1.0 W or less. The wide dynamic range of the controller system allows designs with extremely wide line and load variations with much less difficulty and much higher efficiency than usual. The exceptionally wide input voltage range also allows better usage of energy stored in input dropout capacitors than with other PWM ICs. Remote on/off controls allow either latching or nonlatching remote shutdown. During shutdown, the power required is under 6.0 mW .

For detailed circuit and application information, please refer to application notes AN-H13 and AN-H21 to ANH24.

Functional Block Diagram

Pin numbers in parentheses are for PLCC package.

Ordering Information

Device	Package Options		
	16-Lead SOIC $9.90 x 3.90 \mathrm{~mm}$ body 1.75mm height (max) 1.27 mm pitch	16-Lead PDIP .790x.250in body .210in height (max) .100in pitch	20-Lead PLCC .353x.353in body .180in height (max) .050in pitch
HV9120	HV9120NG-G	HV9120P-G	HV9120PJ-G

-G indicates package is RoHS compliant ('Green')

Absolute Maximum Ratings

Parameter	Value
Input voltage, $+\mathrm{V}_{\mathrm{IN}}$	450 V
Device supply voltage, V_{DD}	15.5 V
Logic input voltage	-0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Linear input voltage	-0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Pre regulator input current (continuous), I	
Operating junction temperature, T_{J}	2.5 mA
Storage temperature	-65 to $+150^{\circ} \mathrm{C}$

Power dissipation:	
16-Lead SOIC	900 mW
16-Lead PDIP	1000 mW
20-Lead PLCC	1400 mW

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Voltages are referenced to $-V_{\mathbf{I N}^{*}}$

Pin Configurations

16-Lead PDIP (P)

Product Marking

16-Lead PDIP (P)

20-Lead PLCC (PJ)

Electrical Characteristics

(Unless otherwise specified, $V_{D D}=10 \mathrm{~V},+V_{I N}=48 \mathrm{~V}, R_{\text {BIAS }}=390 \mathrm{~K} \Omega, R_{\mathrm{OSC}}=330 \mathrm{~K} \Omega, T_{A}=25^{\circ} \mathrm{C}$.)

\section*{| Sym | Parameter | $\#$ | Min | Typ | Max | Units | Conditions |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |}

Reference

$\mathrm{V}_{\text {REF }}$	Output voltage	-	3.92	4.00	4.08	V	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{M} \Omega$
			3.84	4.00	4.16		$R_{L}=10 \mathrm{M} \Omega, T_{A}=-55$ to $125^{\circ} \mathrm{C}$
$\mathrm{Z}_{\text {out }}$	Output impedance	\#	15	30	45	K Ω	---
$\mathrm{I}_{\text {SHORT }}$	Short circuit current	-	-	125	250	$\mu \mathrm{A}$	$\mathrm{V}_{\text {REF }}=-\mathrm{V}_{\text {IN }}$
$\Delta \mathrm{V}_{\text {REF }}$	Change in $\mathrm{V}_{\text {REF }}$ with temperature	\#	-	0.25	-	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	$\mathrm{T}_{\mathrm{A}}=-55$ to $125^{\circ} \mathrm{C}$

Oscillator

$\mathrm{f}_{\text {MAX }}$	Oscillator frequency	-	1.0	3.0	-	MHz	$\mathrm{R}_{\text {osc }}=0 \Omega$
$\mathrm{f}_{\text {osc }}$	Initial accuracy ${ }^{1}$	-	80	100	120	KHz	$\mathrm{R}_{\text {osc }}=330 \mathrm{~K} \Omega$
		-	160	200	240		$\mathrm{R}_{\text {OSC }}=150 \mathrm{~K} \Omega$
$\Delta \mathrm{V}_{\text {osc }}$	Voltage stability	-	-	-	15	\%	$9.5 \mathrm{~V}<\mathrm{V}_{\mathrm{DD}}<13.5 \mathrm{~V}$
TC osc	Temperature coefficient	\#	-	170	-	ppm/ ${ }^{\circ} \mathrm{C}$	$\mathrm{T}_{\mathrm{A}}=-55$ to $125^{\circ} \mathrm{C}$

PWM

$\mathrm{D}_{\text {MAX }}$	Maximum duty cycle	$\#$	49.0	49.4	49.6	$\%$	---
$\mathrm{D}_{\text {MIN }}$	Minimum duty cycle	Maximum pulse width before pulse drops out	-	-	-	0	$\%$

Current Limit

$\mathrm{V}_{\mathrm{LIM}}$	Maximum input signal	-	1.0	1.2	1.4	V	$\mathrm{~V}_{\text {FB }}=0 \mathrm{~V}$
t_{D}	Delay to output	$\#$	-	80	120	ns	$\mathrm{~V}_{\text {SENSE }}=1.5 \mathrm{~V}, \mathrm{~V}_{\text {COMP }} \leq 2.0 \mathrm{~V}$

Error Amplifier

$V_{\text {FB }}$	Feedback voltage	-	3.92	4.00	4.08	V	V_{FB} shorted to COMP
$\mathrm{I}_{\text {IN }}$	Input bias current	-	-	25	500	nA	$\mathrm{V}_{\mathrm{FB}}=4.0 \mathrm{~V}$
$\mathrm{V}_{\text {os }}$	Input offset voltage	-	nulled during trim			-	---
Avol	Open loop voltage gain	\#	60	80	-	dB	---
GB	Unity gain bandwidth	\#	1.0	1.3	-	MHz	---
$\mathrm{Z}_{\text {OUT }}$	Out impedance	\#	see Fig. 1			Ω	---
$I_{\text {SOURCE }}$	Output source current	-	-1.4	-2.0	-	mA	$\mathrm{V}_{\mathrm{FB}}=3.4 \mathrm{~V}$
$\mathrm{I}_{\text {SINK }}$	Output sink current	-	0.12	0.15	-	mA	$\mathrm{V}_{\mathrm{FB}}=4.5 \mathrm{~V}$
PSRR	Power supply rejection	\#	see Fig. 2			dB	---

Notes:

\# Guaranteed by design.

1. Stray capacitance on OSC In pin must be $\leq 5 p F$.

Electrical Characteristics (cont.)

(Unless otherwise specified, $V_{D D}=10 \mathrm{~V},+V_{I N}=48 \mathrm{~V}, R_{B A A S}=390 \mathrm{~K} \Omega, R_{O S C}=330 \mathrm{~K} \Omega, T_{A}=25^{\circ} \mathrm{C}$.)

Sym	Parameter

Min
Typ \quad Max \quad Units \quad Conditions

Pre-Regulator/Startup

$+\mathrm{V}_{\mathbb{I}}$	Input voltage	-	10	-	450	V	$\mathrm{I}_{\mathbb{N}}<10 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{CC}}>9.4 \mathrm{~V}$
$+\mathrm{I}_{\mathbb{I}}$	Input leakage current	-	-	-	10	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{DD}}>9.4 \mathrm{~V}$
$\mathrm{~V}_{T H}$	V_{DD} pre-regulator turn-off threshold voltage	-	8.0	8.7	9.4	V	$\mathrm{I}_{\text {PREREG }}=10 \mu \mathrm{~A}$
$\mathrm{~V}_{\text {LOCK }}$	Undervoltage lockout	-	7.0	8.1	8.9	V	---

Supply

I_{DD}	Supply current	-	-	0.75	1.3	mA	$\mathrm{C}_{\mathrm{L}}<75 \mathrm{pF}$
I_{Q}	Quiescent supply current	-	-	0.55	-	mA	$\overline{\mathrm{SHUTDOWN}}=-\mathrm{V}_{\mathbb{I}}$
$\mathrm{I}_{\text {BIAS }}$	Nominal bias current	-	-	20	-	$\mu \mathrm{A}$	---
V_{DD}	Operating range	-	9.0	-	13.5	V	---

Shutdown Logic

$\mathrm{t}_{\text {sb }}$	$\overline{\text { SHUTDOWN }}$ delay	\#	-	50	100	ns	$C_{L}=500 \mathrm{pF}, \mathrm{V}_{\text {SENSE }}=-\mathrm{V}_{\text {IN }}$
$\mathrm{t}_{\text {sw }}$	$\overline{\text { SHUTDOWN }}$ pulse width	\#	50	-	-	ns	
$\mathrm{t}_{\text {Rw }}$	RESET pulse width	\#	50	-	-	ns	---
t_{Lw}	Latching pulse width	\#	25	-	-	ns	SHUTDOWN and RESET low
$\mathrm{V}_{\text {IL }}$	Input low voltage	-	-	-	2.0	V	---
$\mathrm{V}_{\text {IH }}$	Input high voltage	-	7.0	-	-	V	---
I_{H}	Input current, input high voltage	-	-	1.0	5.0	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {D }}$
I_{1}	Input current, input low voltage	-	-	-25	-35	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$

Output

$\mathrm{V}_{\text {OH }}$	Output high voltage		-	$\mathrm{V}_{\mathrm{DD}}-0.25$	-	-	V	$\mathrm{l}_{\text {OUT }}=10 \mathrm{~mA}$
			-	$\mathrm{V}_{\mathrm{DD}}-0.3$	-	-	V	$\begin{aligned} & \mathrm{I}_{\text {OUT }}=10 \mathrm{~mA}, \\ & \mathrm{~T}_{\mathrm{A}}=-55 \text { to } 125^{\circ} \mathrm{C} \end{aligned}$
$\mathrm{V}_{\text {oL }}$	Output low voltage		-	-	-	0.2	V	$\mathrm{I}_{\text {OUT }}=-10 \mathrm{~mA}$
			-	-	-	0.3	V	$\begin{aligned} & \mathrm{I}_{\text {OUT }}=-10 \mathrm{~mA}, \\ & \mathrm{~T}_{\mathrm{A}}=-55 \text { to } 125^{\circ} \mathrm{C} \end{aligned}$
$\mathrm{R}_{\text {oUt }}$	Output resistance	Pull up	-	-	15	25	Ω	$\mathrm{I}_{\text {OUT }}= \pm 10 \mathrm{~mA}$
		Pull down	-	-	8.0	20	Ω	
		Pull up	-	-	20	30	Ω	$\begin{aligned} & \mathrm{I}_{\text {OUT }}= \pm 10 \mathrm{~mA}, \\ & \mathrm{~T}_{\mathrm{A}}=-55 \text { to } 125^{\circ} \mathrm{C} \end{aligned}$
		Pull down	-	-	10	30	Ω	
t_{R}	Rise time		\#	-	30	75	ns	$C_{L}=500 \mathrm{pF}$
t_{F}	Fall time		\#	-	20	75	ns	$\mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}$

Note:

\# Guaranteed by design.

Test Circuits

Note:

Set feedback voltage so that $V_{\text {COMP }}=V_{\text {DIVIDE }} \pm 1.0 \mathrm{mV}$ before connecting transformer.

Detailed Description
 Pre regulator

The pre regulator/startup circuit for the HV9120 consists of a high-voltage n-channel depletion-mode DMOS transistor driven by an error amplifier to form a variable current path between the VIN terminal and the VDD terminal. Maximum current (about 20 mA) occurs when $\mathrm{V}_{\mathrm{DD}}=0$, with current reducing as $V_{D D}$ rises. This path shuts off altogether when $V_{D D}$ rises to somewhere between 7.8 and 9.4 V , so that if V_{DD} is held at 10 or 12 V by an external source (generally the supply the chip is controlling), no current other than leakage is drawn through the high voltage transistor. This minimizes dissipation.

An external capacitor between VDD and VSS is generally required to store energy used by the chip in the time between shutoff of the high voltage path and the VDD supply's output rising enough to take over powering the chip. This capacitor should have a value of 100X or more the effective gate capacitance of the MOSFET being driven, i.e.,
$\mathrm{C}_{\text {storage }} \geq 100 \times$ (gate charge of FET at 10 V)
as well as very good high frequency characteristics. Stacked polyester or ceramic caps work well. Electrolytic capacitors are generally not suitable. A common resistor divider string is used to monitor V_{DD} for both the undervoltage lockout circuit and the shutoff circuit of the high voltage FET. Setting the undervoltage sense point about 0.6 V lower on the string than the FET shutoff point guarantees that the undervoltage lockout always releases before the FET shuts off.

Bias Circuit

An external bias resistor, connected between the bias pin and VSS is required by the HV9120 to set currents in a series of current mirrors used by the analog sections of the chip. Nominal external bias current requirement is 15 to $20 \mu \mathrm{~A}$, which can be set by a 390 to $510 \mathrm{~K} \Omega$ resistor if a 10 V
$V_{D D}$ is used, or a 510 to $680 \mathrm{~K} \Omega$ resistor if $V_{D D}$ will be 12 V . A precision resistor is not required; $\pm 5 \%$ is fine.

Clock Oscillator

The clock oscillator of the HV9120 consists of a ring of CMOS inverters, timing capacitors, a capacitor discharge FET, and a frequency dividing flip-flop. A single external resistor between the OSC IN and OSC OUT pins is required to set oscillator frequency (see graph).

One difference exists between the Supertex HV9120 and competitive 9120s: The oscillator is shut off when a shutoff command is received. This saves about $150 \mu \mathrm{~A}$ of quiescent current, which aids in the construction of power supplies to meet CCITT specification I-430, and in other situations where an absolute minimum of quiescent power dissipation is required.

Reference

The Reference of the HV9120 consists of a stable bandgap reference followed by a buffer amplifier which scales the voltage up to approximately 4.0 V . The scaling resistors of the reference buffer amplifier are trimmed during manufacture so that the output of the error amplifier, when connected in a gain of -1 configuration, is as close to 4.0 V as possible. This nulls out any input offset of the error amplifier. As a consequence, even though the observed reference voltage of a specific part may not be exactly 4.0 V , the feedback voltage required for proper regulation will be.
$A \approx 50 \mathrm{~K} \Omega$ resistor is placed internally between the output of the reference buffer amplifier and the circuitry it feeds (reference output pin and non-inverting input to the error amplifier). This allows overriding the internal reference with a low-impedance voltage source $\leq 6.0 \mathrm{~V}$. Using an external reference reinstates the input offset voltage of the error am-
plifier, and its effect of the exact value of feedback voltage required. In general, because the reference voltage of the Supertex HV9120 is not noisy, as some previous examples have been, overriding the reference should seldom be necessary.

Because the reference of the HV9120 is a high impedance node, and usually there will be significant electrical noise near it, a bypass capacitor between the reference pin and VSS is strongly recommended. The reference buffer amplifier is intentionally compensated to be stable with a capacitive load of 0.01 to $0.1 \mu \mathrm{~F}$.

Error Amplifier

The error amplifier in the HV9120 is a true low-power differential input operational amplifier intended for around-theamplifier compensation. It is of mixed CMOS-bipolar construction: A PMOS input stage is used so the common-mode range includes ground and the input impedance is very high. This is followed by bipolar gain stages which provide high gain without the electrical noise of all-MOS amplifiers. The amplifier is unity-gain stable.

Current Sense Comparators

The HV9120 uses a true dual-comparator system with independent comparators for modulation and current limiting. This allows the designer greater latitude in compensation design, as there are no clamps (except ESD protection) on the compensation pin. Like the error amplifier, the comparators are of low-noise BiCMOS construction.

Remote Shutdown

The shutdown and reset pins of the HV9120 can be used to perform either latching or non-latching shutdown of a converter as required. These pins have internal current source pull-ups so they can be driven from open-drain logic. When not used, they should be left open, or connected to VDD.

Output Buffer

The output buffer of the HV9120 is of standard CMOS con-struc-tion (P-channel pull-up, N-channel pull-down). Thus the body-drain diodes of the output stage can be used for spike clipping if necessary, and external Schottky diode clamping of the output is not required.

Truth Table

$\overline{\text { SHUTDOWN }}$	RESET	Output
H	H	Normal operation
H	$H \rightarrow L$	Normal operation, no change
L	H	Off, not latched
L	L	Off, latched
$L \rightarrow H$	L	Off, latched, no change

Shutdown Timing Waveforms

Supertex inc. - 1235 Bordeaux Drive, Sunnyvale, CA 94089 - Tel: 408-222-8888 • www.supertex.com

Typical Performance Curves

Bias Resistance (Ω)

Pin Descriptions

16-Lead SOIC (NG)

Pin \#	Description
1	+ VIN
2	-
3	-
4	SENSE
5	OUTPUT
6	-VIN
7	VDD
8	OSC OUT

Pin \#	Description
9	OSC IN
10	NC
11	VREF
12	$\overline{\text { SHUTDOWN }}$
13	RESET
14	COMP
15	FB
16	BIAS

16-Lead PDIP (P)

Pin \#	Description
1	+ VIN
2	NC
3	NC
4	SENSE
5	OUTPUT
6	-VIN
7	VDD
8	OSC OUT

Pin \#	Description
9	OSC IN
10	NC
11	VREF
12	SHUTDOWN
13	RESET
14	COMP
15	FB
16	BIAS

20-Lead PLCC (PJ)

Pin \#	Description	Pin \#	Description
1	NC	11	OSC IN
2	NC	12	NC
3	+VIN	13	NC
4	NC	14	VREF
5	SENSE	15	NC
6	OUTPUT	16	SHUTDOWN
7	NC	17	RESET
8	-VIN	18	COMP
9	VDD	19	FB
10	OSC OUT	20	BIAS

16-Lead SOIC (Narrow Body) Package Outline (NG)
 $9.90 \times 3.90 \mathrm{~mm}$ body, 1.75 mm height (max), 1.27 mm pitch

Note:

1. This chamfer feature is optional. If it is not present, then a Pin 1 identifier must be located in the index area indicated. The Pin 1 identifier can be: a molded mark/identifier; an embedded metal marker; or a printed indicator.

Symbol		A	A1	A2	b	D	E	E1	e	h	L	L1	L2	θ	01
Dimension (mm)	MIN	1.35*	0.10	1.25	0.31	9.80*	5.80*	3.80*	$\begin{aligned} & 1.27 \\ & \text { BSC } \end{aligned}$	0.25	0.40	$\begin{aligned} & 1.04 \\ & \text { REF } \end{aligned}$	$\begin{aligned} & 0.25 \\ & \text { BSC } \end{aligned}$	0°	5°
	NOM	-	-	-	-	9.90	6.00	3.90		-	-			-	-
	MAX	1.75	0.25	1.65*	0.51	10.00*	6.20*	4.00*		0.50	1.27			8°	15°

[^0]
16-Lead PDIP (.300in Row Spacing) Package Outline (P)

 .790x.250in body, .210in height (max), .100in pitch

Side View

View B

View A - A

Note:

1. A Pin 1 identifier must be located in the index area indicated. The Pin 1 identifier can be: a molded mark/identifier; an embedded metal marker; or a printed indicator.

Symbol		A	A1	A2	b	b1	D	D1	E	E1	e	eA	eB	L
Dimension (inches)	MIN	.130*	. 015	. 115	. 014	. 045	. 780	. 005	. $290{ }^{+}$. 240	$\begin{aligned} & .100 \\ & \text { BSC } \end{aligned}$	$\begin{aligned} & .300 \\ & \text { BSC } \end{aligned}$. 300 *	. 115
	NOM	-	-	. 130	. 018	. 060	. 790	-	. 310	. 250			-	. 130
	MAX	. 210	.035*	. 195	.023 ${ }^{+}$. 070	. 810^{+}	.050*	. 325	. 280			. 430	. 150

[^1]
20-Lead PLCC Package Outline (PJ)

 .353x.353in body, .180in height (max), .050in pitch

Vertical Side View

Horizontal Side View

View B

Notes:

1. A Pin 1 identifier must be located in the index area indicated. The Pin 1 identifier can be: a molded mark/identifier; an embedded metal marker; or a printed indicator.
2. Actual shape of this feature may vary.

Symbol		A	A1	A2	b	b1	D	D1	E	E1	e
Dimension (inches)	MIN	. 165	. 090	. 062	. 013	. 026	. 385	. 350	. 385	. 350	$\begin{aligned} & .050 \\ & \text { BSC } \end{aligned}$
	NOM	. 172	. 105	-	-	-	. 390	. 353	. 390	. 353	
	MAX	. 180	. 120	. 083	. 021	. 032	. 395	. 356	. 395	. 356	

JEDEC Registration MS-018, Variation AA, Issue A, June, 1993.

Drawings not to scale.

Supertex Doc. \#: DSPD-20PLCCPJ, Version B092408
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to http://www.supertex.com/packaging.html.)

Supertex inc. does not recommend the use of its products in life support applications, and will not knowingly sell them for use in such applications unless it receives an
adequate "product liability indemnification insurance agreement." Supertex inc. does not assume responsibility for use of devices described, and limits its liability to the
replacement of the devices determined defective due to workmanship. No responsibility is assumed for possible omissions and inaccuracies. Circuitry and specifications
are subject to change without notice. For the latest product specifications refer to the Supertex inc. website: http//www.supertex.com.

[^0]: JEDEC Registration MS-012, Variation AC, Issue E, Sept. 2005.

 * This dimension is not specified in the original JEDEC drawing. The value listed is for reference only.

 Drawings are not to scale.
 Supertex Doc. \#: DSPD-16SONG, Version F101708.

[^1]: JEDEC Registration MS-001, Variation AB, Issue D, June, 1993.

 * This dimension is not specified in the original JEDEC drawing. The value listed is for reference only.
 \dagger This dimension is a non-JEDEC dimension.
 Drawings not to scale.
 Supertex Doc. \#: DSPD-16DIPP, Version A120108.

