## FOD3184

## 3A Output Current, High Speed MOSFET/IGBT Gate Driver Optocoupler

## Features

■ High noise immunity characterized by $50 \mathrm{kV} / \mu \mathrm{s}$ (Typ.) common mode rejection @ $\mathrm{V}_{\mathrm{CM}}=2,000 \mathrm{~V}$

- Guaranteed operating temperature range of $-40^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$
- 3A peak output current for medium power MOSFET/IGBT
■ Fast switching speed
- 210ns max. propagation delay
- 65ns max pulse width distortion

■ Fast output rise/fall time

- Offers lower dynamic power dissipation
- 250kHz maximum switching speed

■ Wide $\mathrm{V}_{\mathrm{DD}}$ operating range from 15 V to 30 V
■ Use of P-Channel MOSFETs at output stage enables output voltage swing close to the supply rail (rail-to-rail output)

- Under voltage lockout protection (UVLO) with hysteresis - optimized for driving IGBTs
■ Safety and regulatory approvals
- UL1577, 5,000 VAC $_{\text {RMS }}$ for 1 min .
- DIN EN/IEC 60747-5-2, 1,414 peak working insulation voltage
- Minimum creepage distance of 8.0 mm
- Minimum clearance distance of 8 mm to 16 mm (option TV or TSV)
- Minimum insulation thickness of 0.5 mm


## Functional Block Diagram



## Note:

A $0.1 \mu \mathrm{~F}$ bypass capacitor must be connected between pins 5 and 8 .

## Applications

- Plasma Display Panel
- High performance DC/DC convertor

■ High performance switch mode power supply
■ High performance uninterruptible power supply

- Isolated Power MOSFET/IGBT gate drive


## Description

The FOD3184 is a 3A Output Current, High Speed MOSFET/IGBT Gate Drive Optocoupler. It consists of a aluminium gallium arsenide (AIGaAs) light emitting diode optically coupled to a CMOS detector with PMOS and NMOS output power transistors integrated circuit power stage. It is ideally suited for high frequency driving of power MOSFETS/IGBT used in Plasma Display Panels (PDPs), motor control inverter applications and high performance DC/DC converters.

The device is packaged in an 8-pin dual in-line housing compatible with $260^{\circ} \mathrm{C}$ reflow processes for lead free solder compliance.

## Package Outlines




## Truth Table

| LED | $\mathbf{V}_{\mathbf{D D}}-\mathbf{V}_{\mathbf{S S}}$ "Positive Going" <br> (Turn-on) | $\mathbf{V}_{\mathbf{D D}}-\mathbf{V}_{\mathbf{S S}}$ "Negative Going" <br> (Turn-off) | $\mathbf{V}_{\mathbf{O}}$ |
| :---: | :---: | :---: | :---: |
| Off | 0 V to 30 V | 0 V to 30 V | Low |
| On | 0 V to 11.5 V | 0 V to 10 V | Low |
| On | 11.5 V to 13.5 V | 10 V to 12 V | Transition |
| On | 13.5 V to 30 V | 12 V to 30 V | High |

## Safety and Insulation Ratings

As per DIN EN/IEC 60747-5-2. This optocoupler is suitable for "safe electrical insulation" only within the safety limit data. Compliance with the safety ratings shall be ensured by means of protective circuits.

| Symbol | Parameter | Min. | Typ. | Max. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Installation Classifications per DIN VDE 0110/1.89 Table 1 <br> For Rated Mains Voltage < 150Vrms |  | I-IV |  |  |
|  | For Rated Mains Voltage < 300Vrms |  | I-IV |  |  |
|  | For Rated Mains Voltage < 450Vrms |  | I-III |  |  |
|  | For Rated Mains Voltage < 600Vrms |  | I-III |  |  |
|  | For Rated Mains Voltage < 1000Vrms (Option T, TS) |  | I-III |  |  |
|  | Climatic Classification |  | 40/100/21 |  |  |
|  | Pollution Degree (DIN VDE 0110/1.89) |  | 2 |  |  |
| CTI | Comparative Tracking Index | 175 |  |  |  |
| $\mathrm{V}_{\mathrm{PR}}$ | Input to Output Test Voltage, Method b, $\mathrm{V}_{\text {IORM }} \times 1.875=\mathrm{V}_{\mathrm{PR}}, 100 \%$ Production Test with $\mathrm{tm}=1$ sec., Partial Discharge < 5pC | 2651 |  |  |  |
|  | Input to Output Test Voltage, Method a, $\mathrm{V}_{\text {IORM }} \times 1.5=\mathrm{V}_{\mathrm{PR}}$, Type and Sample Test with $\mathrm{tm}=60 \mathrm{sec}$.,Partial Discharge $<5 \mathrm{pC}$ | 2121 |  |  |  |
| $V_{\text {IORM }}$ | Max Working Insulation Voltage | 1,414 |  |  | $V_{\text {peak }}$ |
| $\mathrm{V}_{\text {IOTM }}$ | Highest Allowable Over Voltage | 6000 |  |  | $V_{\text {peak }}$ |
|  | External Creepage | 8 |  |  | mm |
|  | External Clearance | 7.4 |  |  | mm |
|  | External Clearance (for Option T or TS - 0.4" Lead Spacing) | 10.16 |  |  | mm |
|  | Insulation Thickness | 0.5 |  |  | mm |
| $\mathrm{T}_{\text {Case }}$ | Safety Limit Values - Maximum Values Allowed in the Event of a Failure <br> Case Temperature | 150 |  |  | ${ }^{\circ} \mathrm{C}$ |
| IS,INPUT | Input Current | 25 |  |  | mA |
| $\mathrm{P}_{\text {S, OUTPUT }}$ | Output Power | 250 |  |  | mW |
| $\mathrm{R}_{\mathrm{IO}}$ | Insulation Resistance at $\mathrm{T}_{\mathrm{S}}, \mathrm{V}_{1 \mathrm{O}}=500 \mathrm{~V}$ | $10^{9}$ |  |  | $\Omega$ |

Absolute Maximum Ratings ( $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified)
Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

| Symbol | Parameter | Value | Units |
| :---: | :--- | :---: | :---: |
| $\mathrm{T}_{\text {STG }}$ | Storage Temperature | -40 to +125 | ${ }^{\circ} \mathrm{C}$ |
| $\mathrm{T}_{\text {OPR }}$ | Operating Temperature | -40 to +100 | ${ }^{\circ} \mathrm{C}$ |
| $\mathrm{T}_{\mathrm{J}}$ | Junction Temperature | -40 to +125 | ${ }^{\circ} \mathrm{C}$ |
| $\mathrm{T}_{\text {SOL }}$ | Lead Solder Temperature - Wave solder <br> (Refer to Reflow Temperature Profile, pg. 22) | 260 for 10 sec. | ${ }^{\circ} \mathrm{C}$ |
| $\mathrm{I}_{\text {F(AVG) }}$ | Average Input Current ${ }^{(1)}$ |  |  |
| $\mathrm{I}_{\text {F(tr, tf) }}$ | LED Current Minimum Rate of Rise/Fall | 25 | mA |
| $\mathrm{~V}_{\mathrm{R}}$ | Reverse Input Voltage | 250 | ns |
| $\mathrm{I}_{\mathrm{OH}(\text { PEAK })}$ | "High" Peak Output Current ${ }^{(2)}$ | 5 | V |
| $\mathrm{I}_{\mathrm{OL}(\text { PEAK }}$ | "Low" Peak Output Current ${ }^{(2)}$ | 3 | A |
| $\mathrm{~V}_{\mathrm{DD}}-\mathrm{V}_{\text {SS }}$ | Supply Voltage | -0.5 to 35 | C |
| $\mathrm{V}_{\mathrm{O}(\text { PEAK })}$ | Output Voltage | 0 to $\mathrm{V}_{\mathrm{DD}}$ | V |
| $\mathrm{P}_{\mathrm{O}}$ | Output Power Dissipation ${ }^{(3)}$ | 250 | V |
| $\mathrm{P}_{\mathrm{D}}$ | Total Power Dissipation ${ }^{(3)}$ | 295 | mW |

## Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to absolute maximum ratings.

| Symbol | Parameter | Value | Units |
| :---: | :--- | :---: | :---: |
| $\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}$ | Power Supply | 15 to 30 | V |
| $\mathrm{I}_{\mathrm{F}(\mathrm{ON})}$ | Input Current (ON) | 10 to 16 | mA |
| $\mathrm{~V}_{\mathrm{F}(\mathrm{OFF})}$ | Input Voltage (OFF) | -3.0 to 0.8 | V |

## Electrical-Optical Characteristics (DC)

Apply over all recommended conditions, typical value is measured at $\mathrm{V}_{\mathrm{DD}}=30 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified.

| Symbol | Parameter | Test Conditions | Min. | Typ. | Max. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{I}_{\mathrm{OH}}$ | High Level Output Current | $\mathrm{V}_{\mathrm{OH}}=\left(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{S S}-1 \mathrm{~V}\right)$ |  | -0.9 | -0.5 | A |
|  |  | $\mathrm{V}_{\mathrm{OH}}=\left(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}-6 \mathrm{~V}\right)$ |  |  | -2.5 |  |
| $\mathrm{I}_{\mathrm{OL}}$ | Low Level Output Current | $\mathrm{V}_{\mathrm{OL}}=\left(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}+1 \mathrm{~V}\right)$ | 0.5 | 1 |  | A |
|  |  | $\mathrm{V}_{\mathrm{OL}}=\left(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}+6 \mathrm{~V}\right)$ | 2.5 |  |  |  |
| $\mathrm{V}_{\mathrm{OH}}$ | High Level Output Voltage ${ }^{(4)(5)}$ | $\mathrm{I}_{\mathrm{O}}=-100 \mathrm{~mA}, \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$ | $V_{D D}-0.5$ |  |  | V |
|  |  | $\mathrm{I}_{\mathrm{O}}=-2.5 \mathrm{~A}, \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$ | $\mathrm{V}_{\mathrm{DD}}-7$ |  |  |  |
| $\mathrm{V}_{\mathrm{OL}}$ | Low Level Output Voltage ${ }^{(4)(5)}$ | $\mathrm{I}_{\mathrm{O}}=100 \mathrm{~mA}, \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}$ |  |  | $\mathrm{V}_{\text {SS }}+0.5$ | V |
|  |  | $\mathrm{I}_{\mathrm{O}}=2.5 \mathrm{~A}, \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}$ |  |  | $\mathrm{V}_{\mathrm{SS}}+7$ |  |
| $\mathrm{I}_{\text {DDH }}$ | High Level Supply Current | Output Open, $\mathrm{I}_{\mathrm{F}}=10$ to 16 mA |  | 2.6 | 3.5 | mA |
| $\mathrm{I}_{\text {DDL }}$ | Low Level Supply Current | Output Open, $V_{F}=-3.0$ to 0.8 V |  | 2.5 | 3.5 | mA |
| $\mathrm{I}_{\mathrm{FLH}}$ | Threshold Input Current Low to High | $\mathrm{l}_{\mathrm{O}}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}>5 \mathrm{~V}$ |  | 3.0 | 7.5 | mA |
| $\mathrm{V}_{\mathrm{FHL}}$ | Threshold Input Voltage High to Low | $\mathrm{l}_{\mathrm{O}}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}<5 \mathrm{~V}$ | 0.8 |  |  | V |
| $\mathrm{V}_{\mathrm{F}}$ | Input Forward Voltage | $\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$ | 1.1 | 1.43 | 1.8 | V |
| $\Delta \mathrm{V}_{\mathrm{F}} / \mathrm{T}_{\mathrm{A}}$ | Temperature Coefficient of Forward Voltage | $\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$ |  | -1.5 |  | $\mathrm{mV} /{ }^{\circ} \mathrm{C}$ |
| $\mathrm{V}_{\text {UVLO+ }}$ | UVLO Threshold | $\mathrm{V}_{\mathrm{O}}>5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$ | 11.5 | 13.0 | 13.5 | V |
| V UVLO- |  | $\mathrm{V}_{\mathrm{O}}<5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$ | 10.0 | 11.5 | 12.0 | V |
| UVLO ${ }_{\text {HYST }}$ | UVLO Hysteresis |  |  | 1.5 |  | V |
| $\mathrm{BV}_{\mathrm{R}}$ | Input Reverse Breakdown Voltage | $\mathrm{I}_{\mathrm{R}}=10 \mu \mathrm{~A}$ | 5 |  |  | V |
| $\mathrm{C}_{\text {IN }}$ | Input Capacitance | $\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{F}}=0 \mathrm{~V}$ |  | 25 |  | pF |

## Switching Characteristics

Apply over all recommended conditions, typical value is measured at $\mathrm{V}_{\mathrm{DD}}=30 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified.

| Symbol | Parameter | Test Conditions | Min. | Typ.* | Max. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $t_{\text {PLH }}$ | Propagation Delay Time to High Output Level ${ }^{(6)}$ | $\begin{aligned} & \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \\ & \mathrm{R}_{\mathrm{g}}=10 \Omega, \\ & \mathrm{f}=250 \mathrm{kHz}, \\ & \text { Duty Cycle }=50 \%, \\ & \mathrm{C}_{\mathrm{g}}=10 \mathrm{nF} \end{aligned}$ | 50 | 120 | 210 | ns |
| $t_{\text {PHL }}$ | Propagation Delay Time to Low Output Level ${ }^{(6)}$ |  | 50 | 145 | 210 | ns |
| $\mathrm{P}_{\text {WD }}$ | Pulse Width Distortion ${ }^{(7)}$ |  |  | 35 | 65 | ns |
| $\begin{gathered} \mathrm{P}_{\mathrm{DD}} \\ \left(\mathrm{t}_{\mathrm{PHL}}-\mathrm{t}_{\mathrm{PLH}}\right) \end{gathered}$ | Propagation Delay Difference Between Any Two Parts ${ }^{(8)}$ |  | -90 |  | 90 | ns |
| $\mathrm{t}_{\mathrm{r}}$ | Rise Time | $\begin{aligned} & \mathrm{C}_{\mathrm{L}}=10 \mathrm{nF}, \\ & \mathrm{R}_{\mathrm{g}}=10 \Omega \end{aligned}$ |  | 38 |  | ns |
| $\mathrm{t}_{\mathrm{f}}$ | Fall Time |  |  | 24 |  | ns |
| tuvLO ON | UVLO Turn On Delay |  |  | 2.0 |  | $\mu \mathrm{s}$ |
| tuvLO OFF | UVLO Turn Off Delay |  |  | 0.3 |  | $\mu \mathrm{s}$ |
| \| $\mathrm{CM}_{\mathrm{H}}$ \| | Output High Level Common Mode Transient Immunity ${ }^{(9)}$ (10) | $\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \\ & \mathrm{I}_{\mathrm{f}}=10 \mathrm{~mA} \text { to } 16 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{CM}}=2 \mathrm{kV}, \\ & \mathrm{~V}_{\mathrm{DD}}=30 \mathrm{~V} \end{aligned}$ | 35 | 50 |  | $\mathrm{kV} / \mu \mathrm{s}$ |
| \| CM ${ }_{\text {L }}$ \| | Output Low Level Common Mode Transient Immunity ${ }^{(9)}$ (11) | $\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \\ & \mathrm{~V}_{\mathrm{f}}=0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CM}}=2 \mathrm{kV}, \\ & \mathrm{~V}_{\mathrm{DD}}=30 \mathrm{~V} \end{aligned}$ | 35 | 50 |  | kV/us |

*Typical values at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Isolation Characteristics

| Symbol | Parameter | Test Conditions | Min. | Typ.* | Max. | Unit |
| :---: | :--- | :--- | :--- | :---: | :---: | :---: |
| $\mathrm{V}_{\text {ISO }}$ | Withstand Isolation Voltage ${ }^{(12)(13)}$ | $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, <br> $\mathrm{R.H}<.50 \%, \mathrm{t}=1$ min., <br> $\mathrm{I}_{\mathrm{I}-\mathrm{O}} \leq 10 \mu \mathrm{~A}$ | 5000 |  |  | $\mathrm{~V}_{\text {rms }}$ |
| $\mathrm{R}_{\mathrm{I}-\mathrm{O}}$ | Resistance (input to output) ${ }^{(13)}$ | $\mathrm{V}_{\mathrm{I}-\mathrm{O}}=500 \mathrm{~V}$ |  | $10^{11}$ |  | $\Omega$ |
| $\mathrm{C}_{\mathrm{I}-\mathrm{O}}$ | Capacitance (input to output) | Freq. $=1 \mathrm{MHz}$ |  | 1 |  | pF |

${ }^{*}$ Typical values at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

## Notes:

1. Derate linearly above $+79^{\circ} \mathrm{C}$ free air temperature at a rate of $0.37 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
2. Maximum pulse width $=10 \mu \mathrm{~s}$.

3 Derate linearly above $+79^{\circ} \mathrm{C}$, free air temperature at the rate of $5.73 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
4. In this test, $\mathrm{V}_{\mathrm{OH}}$ is measured with a dc load current of 100 mA . When driving capacitive load $\mathrm{V}_{\mathrm{OH}}$ will approach $\mathrm{V}_{\mathrm{DD}}$ as $\mathrm{I}_{\mathrm{OH}}$ approaches zero amps.
5. Maximum pulse width $=1 \mathrm{~ms}$, maximum duty cycle $=20 \%$.
6. $t_{\text {PHL }}$ propagation delay is measured from the $50 \%$ level on the falling edge of the input pulse to the $50 \%$ level of the falling edge of the $\mathrm{V}_{\mathrm{O}}$ signal. $\mathrm{t}_{\text {PLH }}$ propagation delay is measured from the $50 \%$ level on the rising edge of the input pulse to the $50 \%$ level of the rising edge of the $\mathrm{V}_{\mathrm{O}}$ signal.
7. PWD is defined as $I t_{\text {PHL }}-t_{\text {PLH }} \mid$ for any given device.
8. The difference between $t_{\text {PHL }}$ and $t_{\text {PLH }}$ between any two FOD3184 parts under same operating conditions, with equal loads.
9. Pin 1 and 4 need to be connected to LED common.
10. Common mode transient immunity in the high state is the maximum tolerable $\mathrm{dV}_{\mathrm{CM}} / \mathrm{dt}$ of the common mode pulse $\mathrm{V}_{\mathrm{CM}}$ to assure that the output will remain in the high state (i.e. $\mathrm{V}_{\mathrm{O}}>15 \mathrm{~V}$ ).
11. Common mode transient immunity in a low state is the maximum tolerable $\mathrm{dV}_{\mathrm{CM}} / \mathrm{dt}$ of the common mode pulse, $\mathrm{V}_{\mathrm{CM}}$, to assure that the output will remain in a low state (i.e. $\mathrm{V}_{\mathrm{O}}<1.0 \mathrm{~V}$ ).
12. In accordance with UL 1577, each optocoupler is proof tested by applying an insulation test voltage $>6000 \mathrm{Vrms}$, 60 Hz for 1 second (leakage detection current limit $\mathrm{I}_{-\mathrm{O}}<10 \mu \mathrm{~A}$ ).
13. Device considered a two-terminal device: pins on input side shorted together and pins on output side shorted together.

## Typical Performance Curves

Fig. 1 Output High Voltage Drop vs. Output High Current


Fig. 3 Output High Current vs. Ambient Temperature


Fig. 5 Output Low Voltage vs. Output High Current


Fig. 2 Output High Voltage Drop vs. Ambient Temperature


Fig. 4 Output High Current vs. Ambient Temperature


Fig. 6 Output Low Voltage vs. Ambient Temperature


Typical Performance Curves (Continued)

Fig. 7 Output Low Current vs. Ambient Temperature


Fig. 9 Supply Current vs. Ambient Temperature


Fig. 11 Low-to-High Input Current Threshold


Fig. 8 Output Low Current vs. Ambient Temperature


Fig. 10 Supply Current vs. Supply Voltage


Fig. 12 Propagation Delay vs. Supply Voltage


## Typical Performance Curves (Continued)

Fig. 13 Propagation Delay vs. LED Forward Current


Fig. 15 Propagation Delay vs. Series Load Resistance


Fig. 17 Transfer Characteristics


Fig. 14 Propagation Delay vs. Ambient Temperature


Fig. 16 Propagation Delay vs. Series Load Capacitance


Fig. 18 Input Forward Current vs. Forward Voltage


## Typical Performance Curves (Continued)

Fig. 19 Under Voltage Lockout


## Test Circuit



Figure 20. IOL Test Circuit


Figure 21. $\mathrm{I}_{\mathrm{OH}}$ Test Circuit

## Test Circuit (Continued)



Figure 22. $\mathrm{V}_{\mathrm{OH}}$ Test Circuit


Figure 23. $\mathrm{V}_{\mathrm{OL}}$ Test Circuit

## Test Circuit (Continued)



Figure 24. $\mathrm{I}_{\mathrm{DDH}}$ Test Circuit


Figure 25. $\mathrm{I}_{\mathrm{DDL}}$ Test Circuit

## Test Circuit (Continued)



Figure 26. $\mathrm{I}_{\mathrm{FLH}}$ Test Circuit


Figure 27. $\mathrm{V}_{\mathrm{FHL}}$ Test Circuit


Figure 28. UVLO Test Circuit

## Test Circuit (Continued)



Figure 29. $\mathrm{t}_{\mathrm{PHL}}, \mathrm{t}_{\text {PLH }}, \mathrm{t}_{\mathrm{r}}$ and $\mathrm{t}_{\mathrm{f}}$ Test Circuit and Waveforms


Figure 30. CMR Test Circuit and Waveforms

## Package Dimensions

## Through Hole



## Surface Mount - 0.3" Lead Spacing (Option S)



## Note:

1. All dimensions are in millimeters.
2. Dimensions are exclusive of burrs, mold fash, and tie bar extrusion.

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings:
http://www.fairchildsemi.com/packaging/

## Package Dimensions (Continued)

## Surface Mount - 0.4" Lead Spacing (Option TS)



Recommended Land Pattern (Option S)


Note:

1. All dimensions are in millimeters.
2. Dimensions are exclusive of burrs, mold fash, and tie bar extrusion.

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision andlor date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings:
http://www.fairchildsemi.com/packaging/

Ordering Information

| Part Number | Package | Packing Method |
| :--- | :--- | :--- |
| FOD3184 | DIP 8-Pin | Tube (50 units per tube) |
| FOD3184S | SMT 8-Pin (Lead Bend) | Tube (50 units per tube) |
| FOD3184SD | SMT 8-Pin (Lead Bend) | Tape and Reel (1,000 units per reel) |
| FOD3184V | DIP 8-Pin, DIN EN/IEC 60747-5-2 option | Tube (50 units per tube) |
| FOD3184SV | SMT 8-Pin (Lead Bend), DIN EN/IEC 60747-5-2 option | Tube (50 units per tube) |
| FOD3184SDV | SMT 8-Pin (Lead Bend), DIN EN/IEC 60747-5-2 option | Tape and Reel (1,000 units per reel) |
| FOD3184TV | DIP 8-Pin, 0.4" Lead Spacing, DIN EN/IEC 60747-5-2 option | Tube (50 units per tube) |
| FOD3184TSV | SMT 8-Pin, 0.4" Lead Spacing, DIN EN/IEC 60747-5-2 option | Tube (50 units per tube) |
| FOD3184TSR2V | SMT 8-Pin, 0.4" Lead Spacing, DIN EN/IEC 60747-5-2 option | Tape and Reel (700 units per reel) |

## Carrier Tape Specifications - Option S



| Symbol | Description | Dimension in mm |
| :---: | :--- | :---: |
| W | Tape Width | $16.0 \pm 0.3$ |
| t | Tape Thickness | $0.30 \pm 0.05$ |
| $\mathrm{P}_{0}$ | Sprocket Hole Pitch | $4.0 \pm 0.1$ |
| $\mathrm{D}_{0}$ | Sprocket Hole Diameter | $1.55 \pm 0.05$ |
| E | Sprocket Hole Location | $1.75 \pm 0.10$ |
| F | Pocket Location | $7.5 \pm 0.1$ |
| $\mathrm{P}_{2}$ |  | $2.0 \pm 0.1$ |
| P | Pocket Pitch | $12.0 \pm 0.1$ |
| $\mathrm{~A}_{0}$ | Pocket Dimensions | $10.30 \pm 0.20$ |
| $\mathrm{~B}_{0}$ |  | $10.30 \pm 0.20$ |
| $\mathrm{~K}_{0}$ |  | $4.90 \pm 0.20$ |
| $\mathrm{~W}_{1}$ | Cover Tape Width | $13.2 \pm 0.2$ |
| d | Cover Tape Thickness | 0.1 max |
|  | Max. Component Rotation or Tilt | $10^{\circ}$ |
| R | Min. Bending Radius | 30 |

## Carrier Tape Specifications - Option TS



| Symbol | Description | Dimension in mm |
| :---: | :--- | :---: |
| W | Tape Width | $24.0 \pm 0.3$ |
| t | Tape Thickness | $0.40 \pm 0.1$ |
| $\mathrm{P}_{0}$ | Sprocket Hole Pitch | $4.0 \pm 0.1$ |
| $\mathrm{D}_{0}$ | Sprocket Hole Diameter | $1.55 \pm 0.05$ |
| E | Sprocket Hole Location | $1.75 \pm 0.10$ |
| F | Pocket Location | $11.5 \pm 0.1$ |
| $\mathrm{P}_{2}$ |  | $2.0 \pm 0.1$ |
| P | Pocket Pitch | $16.0 \pm 0.1$ |
| $\mathrm{~A}_{0}$ | Pocket Dimensions | $12.80 \pm 0.1$ |
| $\mathrm{~B}_{0}$ |  | $10.35 \pm 0.1$ |
| $\mathrm{~K}_{0}$ |  | $5.7 \pm 0.1$ |
| $\mathrm{~W}_{1}$ | Cover Tape Width | $21.0 \pm 0.1$ |
| d | Cover Tape Thickness | 0.1 max |
|  | Max. Component Rotation or Tilt | $10^{\circ}$ |
| R | Min. Bending Radius | 30 |

## Reflow Profile



| Profile Freature | Pb-Free Assembly Profile |
| :--- | :---: |
| Temperature Min. (Tsmin) | $150^{\circ} \mathrm{C}$ |
| Temperature Max. (Tsmax) | $200^{\circ} \mathrm{C}$ |
| Time ( $\mathrm{t}_{\mathrm{S}}$ ) from (Tsmin to Tsmax) | $60-120$ seconds |
| Ramp-up Rate ( $\mathrm{t}_{\mathrm{L}}$ to $\mathrm{t}_{\mathrm{P}}$ ) | $3^{\circ} \mathrm{C} /$ second max. |
| Liquidous Temperature ( $\mathrm{T}_{\mathrm{L}}$ ) | $217^{\circ} \mathrm{C}$ |
| Time ( $\mathrm{t}_{\mathrm{L}}$ ) Maintained Above ( $\mathrm{T}_{\mathrm{L}}$ ) | $60-150$ seconds |
| Peak Body Package Temperature | $260^{\circ} \mathrm{C}+0^{\circ} \mathrm{C} /-5^{\circ} \mathrm{C}$ |
| Time ( $\mathrm{t}_{\mathrm{P}}$ ) within $5^{\circ} \mathrm{C}$ of $260^{\circ} \mathrm{C}$ | 30 seconds |
| Ramp-down Rate $\left(\mathrm{T}_{\mathrm{P}}\right.$ to $\mathrm{T}_{\mathrm{L}}$ ) | $6^{\circ} \mathrm{C} /$ second max. |
| Time $25^{\circ} \mathrm{C}$ to Peak Temperature | 8 minutes max. |

## TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

| AccuPower ${ }^{\text {TM }}$ | F-PFS ${ }^{\text {TM }}$ | PowerTrench ${ }^{\text {® }}$ | The Power Franchise ${ }^{\text {® }}$ |
| :---: | :---: | :---: | :---: |
| Auto-SPM ${ }^{\text {TM }}$ | FRFET ${ }^{\text {® }}$ | PowerXS ${ }^{\text {TM }}$ | The Right Technology for Your Success ${ }^{\text {TM }}$ |
| Build it Now $^{\text {™ }}$ | Global Power Resource ${ }^{\text {SM }}$ | Programmable Active Droop ${ }^{\text {TM }}$ |  |
| CorePLUS ${ }^{\text {T }}$ | Green FPS ${ }^{\text {™ }}$ | QFET ${ }^{\text {® }}$ |  |
| CorePOWERTM | Green FPSS ${ }^{\text {TM }}$ e-Series ${ }^{\text {TM }}$ | QSTM | TinyBoost ${ }^{\text {TM }}$ |
| CROSSVOLT ${ }^{\text {m }}$ | Gmax ${ }^{\text {™ }}$ | Quiet Series ${ }^{\text {™ }}$ | TinyBuck ${ }^{\text {™ }}$ |
| CTL'M | GTOTM | RapidConfigure ${ }^{\text {TM }}$ | TinyCalc ${ }^{\text {TM }}$ |
| Current Transfer Logic ${ }^{\text {TM }}$ | IntelliMAX ${ }^{\text {TM }}$ | $\bigcirc^{\text {M }}$ | TinyLogic ${ }^{\text {® }}$ |
| DEUXPEED ${ }^{\text {® }}$ | ISOPLANAR ${ }^{\text {™ }}$ | Saving our world, $1 \mathrm{~mW} / \mathrm{W} / \mathrm{kW}$ at a time ${ }^{\text {TM }}$ | TINYOPTOTM |
| Dual Cool ${ }^{\text {™ }}$ | MegaBuck ${ }^{\text {™ }}$ | SignalWise ${ }^{\text {TM }}$ | TinyPower ${ }^{\text {TM }}$ |
| EfficientMax ${ }^{\text {™ }}$ | MICROCOUPLER ${ }^{\text {™ }}$ MicroFET | SmartMax ${ }^{\text {TM }}$ | TinyPWM ${ }^{\text {™ }}$ |
| ESBC™ | MicroPak ${ }^{\text {™ }}$ | SMART START ${ }^{\text {TM }}$ | TinyWire ${ }^{\text {TM }}$ |
| $5^{\circledR}$ | MicroPak2 ${ }^{\text {TM }}$ | SPM ${ }^{\text {® }}$ | TriFault Detect ${ }^{\text {TM }}$ |
|  | MillerDrive ${ }^{\text {TM }}$ | STEALTH ${ }^{\text {TM }}$ | TRUECURRENT ${ }^{\text {Tm* }}$ |
| Fairchild Semiconductor ${ }^{\text {® }}$ | MotionMax ${ }^{\text {TM }}$ | SuperSOT ${ }^{\text {Tm-3 }}$ | ${ }^{\mu}{ }^{\text {SerDes }}$ |
| FACT Quiet Series ${ }^{\text {™ }}$ | Motion-SPM ${ }^{\text {TM }}$ | SuperSOT ${ }^{\text {TM }}$-6 | SerDes* |
| FACT ${ }^{\text {® }}$ | OptoHiT ${ }^{\text {TM }}$ OPTOLOGIC ${ }^{\text {® }}$ | SuperSOT ${ }^{\text {TM }}$-8 | UHC ${ }^{\text {® }}$ |
| FAST ${ }^{\text {® }}$ | OPTOLOGIC <br> OPTOPLANAR ${ }^{\circledR}$ | SupreMOS ${ }^{\text {® }}$ | Ultra FRFET ${ }^{\text {TM }}$ |
| FastvCore ${ }^{\text {TM }}$ | OPT®ANAR | SyncFET ${ }^{\text {TM }}$ | UniFET ${ }^{\text {TM }}$ |
| FETBench ${ }^{\text {™ }}$ |  | Sync-Lock ${ }^{\text {TM }}$ | VCX ${ }^{\text {TM }}$ |
| FlashWriter ${ }^{\text {®* }}$ | PDP SPM ${ }^{\text {™ }}$ | $\square \mathrm{FGENSRMAL}^{\text {® }}$ | VisualMax ${ }^{\text {TM }}$ |
| FPS ${ }^{\text {TM }}$ | Power-SPM ${ }^{\text {™ }}$ |  | XS ${ }^{\text {™ }}$ |

* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.


## DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILDíS WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

## LIFE SUPPORT POLICY

FAIRCHILDÍS PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

## ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS
Definition of Terms

| Datasheet Identification | Product Status | $\quad$ Definition |
| :--- | :--- | :--- |
| Advance Information | Formative / In Design | Datasheet contains the design specifications for product development. Specifications may change in <br> any manner without notice. |
| Preliminary | First Production | Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild <br> Semiconductor reserves the right to make changes at any time without notice to improve design. |
| No Identification Needed | Full Production | Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes <br> at any time without notice to improve the design. |
| Obsolete | Not In Production | Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. <br> The datasheet is for reference information only. |

