Supertex inc.

P-Channel Enhancement Mode **Vertical DMOS FETs**

Features

- High input impedance and high gain
- Low power drive requirement
- Ease of paralleling ►
- Low C_{iss} and fast switching speeds
- Excellent thermal stability
- Integral source-drain diode
- Free from secondary breakdown

Applications

- Logic level interfaces ideal for TTL and CMOS
- Solid state relays
- Analog switches
- Power management
- **Telecom switches**

General Description

This low threshold enhancement-mode (normally-off) transistor utilizes a vertical DMOS structure and Supertex's well-proven silicon-gate manufacturing process. This combination produces a device with the power handling capabilities of bipolar transistors and with the high input impedance and positive temperature coefficient inherent in MOS devices. Characteristic of all MOS structures. this device is free from thermal runaway and thermallyinduced secondary breakdown.

Supertex's vertical DMOS FETs are ideally suited to a wide range of switching and amplifying applications where very low threshold voltage, high breakdown voltage, high input impedance, low input capacitance, and fast switching speeds are desired.

Ordering Information

Devie	Package O	ptions	BV_{DSS}/BV_{DGS}	$R_{DS(ON)}$	V _{GS(th)} (max) (V)				
Device	TO-236AB (SOT-23)	TO-92	(V)	(max) (Ω)					
TP2104	TP2104K1-G	TP2104N3-G	-40	6.0	-2.0				
indicates package is	RoHS compliant ('Green')								
	en Initiax.	Pin	on						

Absolute Maximum Ratings

Parameter	Value
Drain-to-source voltage	BV _{DSS}
Drain-to-gate voltage	BV_{DGS}
Gate-to-source voltage	±20V
Operating and storage temperature	-55°C to +150°C
Soldering temperature*	+300°C

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied. Continuous operation of the device at the absolute rating level may affect device reliability. All voltages are referenced to device ground.

Distance of 1.6mm from case for 10 seconds.

DRAIN

TO-236AB (SOT-23) (K1)

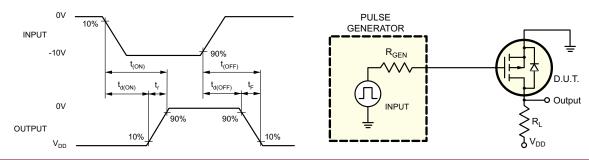
DRAIN

Thermal Characteristics

Package	I _D (continuous) [†] (mA)	l _D (pulsed) (A)	Power Dissipation @ T _A = 25°C (W)	<i>θ_{jc}</i> ∘C/W	θ _{ja} °C/W	l _{DR} † (mA)	I _{DRM} (A)
TO-236AB (SOT-23)	-160	-0.8	0.36	200	350	-160	-0.8
TO-92	-250	-1.0	0.74	125	170	-250	-1.0

† I_{D} (continuous) is limited by max rated T_{i} .

Electrical Characteristics (*T_A* = 25°C unless otherwise specified)


$ \begin{array}{c c c c c c } I_{DSS} & Zero gate voltage drain current & - & - & -1.0 & mA & V_{DS}^{DS} = 0.8 Max Rating, \\ V_{QS}^{DS} = 0V, T_A = 125^{\circ}C \\ \hline I_{D(ON)} & On-state drain current & -0.6 & - & - & A & V_{GS} = -10V, V_{DS} = -25V \\ \hline R_{DS(ON)} & Static drain-to-source on-state resistance & - & 10 & - & 0.5 \\ \hline R_{DS(ON)} & Change in R_{DS(ON)} with temperature & - & 0.55 & 1.0 & 96^{\circ}C & V_{GS} = -10V, I_D = -500mA \\ \hline \Delta R_{DS(ON)} & Change in R_{DS(ON)} with temperature & - & 0.55 & 1.0 & 96^{\circ}C & V_{GS} = -10V, I_D = -500mA \\ \hline G_{FS} & Forward transconductance & 150 & 200 & - & mmho & V_{DS} = -25V, I_D = -500mA \\ \hline G_{ISS} & Input capacitance & - & 35 & 600 \\ \hline C_{ISS} & Input capacitance & - & 35 & 600 \\ \hline C_{RSS} & Reverse transfer capacitance & - & 22 & 300 \\ \hline C_{RSS} & Reverse transfer capacitance & - & 8.0 & 100 \\ \hline t_{d(ON)} & Turn-on delay time & - & 4.0 & 6.0 \\ \hline t_{I} & Rise time & - & 4.0 & 6.0 \\ \hline t_{I} & Rise time & - & 5.0 & 9.0 \\ \hline t_{I} & Rise time & - & 5.0 & 8.0 \\ \hline V_{SD} & Diode forward voltage drop & - & -1.2 & -2.0 & V & V_{GS} = 0V, I_{SD} = -500mA \\ \hline \end{array}$	Sym	Parameter	Min	Тур	Мах	Units	Conditions
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	BV_{DSS}	Drain-to-source breakdown voltage	-40	-	-	V	V _{GS} = 0V, I _D = -1.0mA
$ \begin{array}{c c c c c c } \hline I_{\text{DSS}} & \text{Gate body leakage} & - & -1.0 & -100 & nA & V_{\text{GS}} = \pm 20V, V_{\text{DS}} = 0V \\ \hline I_{\text{DSS}} & Zero gate voltage drain current & - & - & -10 & \muA & V_{\text{GS}} = 0V, V_{\text{DS}} = \text{Max Rating}, \\ \hline V_{\text{GS}} = 0.8 & \text{Max Rating}, \\ \hline V_{\text{GS}} = 0.8 & \text{Max Rating}, \\ \hline V_{\text{GS}} = 0.7 & \text{A} & V_{\text{GS}} = 0.8 & \text{Max Rating}, \\ \hline V_{\text{GS}} = 0.7 & \text{A} & V_{\text{GS}} = -10V, V_{\text{DS}} = -25V \\ \hline I_{\text{D}(\text{ON})} & \text{Static drain-to-source on-state} & - & - & 0.6 & - & - & A & V_{\text{GS}} = -10V, V_{\text{DS}} = -25V \\ \hline R_{\text{DS}(\text{ON})} & \text{Static drain-to-source on-state} & - & 0.55 & 1.0 & 90 \\ \hline C_{\text{GS}} & \text{Forward transconductance} & 150 & 200 & - & mmho & V_{\text{GS}} = -10V, I_{\text{D}} = -500mA \\ \hline G_{\text{FS}} & \text{Forward transconductance} & 150 & 200 & - & mmho & V_{\text{DS}} = -25V, I_{\text{D}} = -500mA \\ \hline C_{\text{GS}} & \text{Common source output capacitance} & - & 35 & 60 \\ \hline C_{\text{GS}} & \text{Common source output capacitance} & - & 8.0 & 10 \\ \hline I_{d(\text{ON})} & \text{Turn-on delay time} & - & 4.0 & 8.0 \\ \hline I_{\text{UN}-\text{F}} & \text{Turn-off delay time} & - & 4.0 & 8.0 \\ \hline I_{\text{G}(\text{OFF})} & \text{Turn-off delay time} & - & 5.0 & 9.0 \\ \hline I_{\text{M}} & \text{Fall time} & - & 5.0 & 8.0 \\ \hline V_{\text{SD}} & \text{Diode forward voltage drop} & - & -1.2 & -2.0 & V & V_{\text{GS}} = 0V, I_{\text{SD}} = -500mA \\ \hline \end{array}$	$V_{GS(th)}$	Gate threshold voltage	-1.0	-	-2.0	V	$V_{GS} = V_{DS}, I_{D} = -1.0 \text{mA}$
$ \begin{array}{c c c c c c } \hline I_{GSS} & Gate body leakage & - & -1.0 & -100 & nA & V_{GS} = \pm 20V, V_{DS} = 0V \\ \hline I_{DSS} & Zero gate voltage drain current & - & - & -10 & \muA & V_{GS} = 0V, V_{DS} = Max Rating \\ \hline V_{GS} = 0.8 Max Rating, \\ V_{GS} = 0.8 Max Rating, \\ V_{GS} = 0.8 Max Rating, \\ V_{GS} = 0.7 & A & V_{GS} = -10V, V_{DS} = -25V \\ \hline I_{D(ON)} & On-state drain current & -0.6 & - & - & A & V_{GS} = -10V, V_{DS} = -25V \\ \hline R_{DS(ON)} & Static drain-to-source on-state \\ resistance & - & 0.6 & - & - & 0.5 \\ \hline R_{DS(ON)} & Change in R_{DS(ON)} with temperature & - & 0.55 & 1.0 & 90''C & V_{GS} = -10V, I_{D} = -500mA \\ \hline \Delta R_{DS(ON)} & Change in R_{DS(ON)} with temperature & - & 0.55 & 1.0 & 90''C & V_{GS} = -10V, I_{D} = -500mA \\ \hline G_{FS} & Forward transconductance & 150 & 200 & - & mmho & V_{DS} = -25V, I_{D} = -500mA \\ \hline G_{SS} & Common source output capacitance & - & 35 & 60 \\ \hline C_{CSS} & Common source output capacitance & - & 8.0 & 10 \\ \hline I_{d(ON)} & Turn-on delay time & - & 4.0 & 8.0 \\ \hline I_{(OFF)} & Turm-off delay time & - & 4.0 & 8.0 \\ \hline I_{(OFF)} & Turn-off delay time & - & 5.0 & 9.0 \\ \hline I_{V} & Fall time & - & 5.0 & 8.0 \\ \hline V_{SD} & Diode forward voltage drop & - & -1.2 & -2.0 & V & V_{GS} = 0V, I_{SD} = -500mA \\ \hline \end{array}$	$\Delta V_{\rm GS(th)}$	Change in $V_{_{GS(th)}}$ with temperature	-	5.8	6.5	mV/ºC	$V_{GS} = V_{DS}, I_{D} = -1.0 \text{mA}$
$ \begin{array}{c c c c c c c } I_{\text{DSS}} & Zero gate voltage drain current & - & - & - & - & - & - & - & - & - & $		Gate body leakage	-	-1.0	-100	nA	$V_{GS} = \pm 20V, V_{DS} = 0V$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				-	-10	μA	V_{GS} = 0V, V_{DS} = Max Rating
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	I _{DSS}	Zero gate voltage drain current	-	-	-1.0	mA	$V_{DS} = 0.8$ Max Rating, $V_{GS} = 0V$, $T_A = 125^{\circ}C$
$ \begin{array}{c c c c c c c } \hline R_{\text{DS(ON)}} & \begin{array}{c} \text{Static drain-to-source on-state} \\ \text{resistance} & - & 10 \\ \hline & & 6.0 \end{array} & \begin{array}{c} V_{\text{GS}} = -4.5 \text{V}, \text{I}_{\text{D}} = -50\text{mA} \\ \hline & V_{\text{GS}} = -10 \text{V}, \text{I}_{\text{D}} = -500\text{mA} \\ \hline & V_{\text{GS}} = -10 \text{V}, \text{I}_{\text{D}} = -500\text{mA} \\ \hline & V_{\text{GS}} = -10 \text{V}, \text{I}_{\text{D}} = -500\text{mA} \\ \hline & V_{\text{GS}} = -10 \text{V}, \text{I}_{\text{D}} = -500\text{mA} \\ \hline & V_{\text{GS}} = -10 \text{V}, \text{I}_{\text{D}} = -500\text{mA} \\ \hline & V_{\text{GS}} = -10 \text{V}, \text{I}_{\text{D}} = -500\text{mA} \\ \hline & V_{\text{GS}} = -10 \text{V}, \text{I}_{\text{D}} = -500\text{mA} \\ \hline & V_{\text{GS}} = -10 \text{V}, \text{I}_{\text{D}} = -500\text{mA} \\ \hline & V_{\text{GS}} = -10 \text{V}, \text{I}_{\text{D}} = -500\text{mA} \\ \hline & V_{\text{GS}} = -25 \text{V}, \text{I}_{\text{D}} = -500\text{mA} \\ \hline & V_{\text{GS}} = -25 \text{V}, \text{I}_{\text{D}} = -500\text{mA} \\ \hline & V_{\text{GS}} = 0 \text{V}, \text{V}_{\text{S}} = -25 \text{V}, \text{I}_{\text{D}} = -500\text{mA} \\ \hline & V_{\text{GS}} = 0 \text{V}, \text{V}_{\text{S}} = -25 \text{V}, \text{I}_{\text{D}} = -500\text{mA} \\ \hline & V_{\text{GS}} = 0 \text{V}, \text{V}_{\text{S}} = -25 \text{V}, \text{I}_{\text{D}} = -500\text{mA} \\ \hline & V_{\text{GS}} = 0 \text{V}, \text{V}_{\text{S}} = -25 \text{V}, \text{I}_{\text{D}} = -500\text{mA} \\ \hline & V_{\text{GS}} = 0 \text{V}, \text{V}_{\text{S}} = -25 \text{V}, \text{I}_{\text{D}} = -500\text{mA} \\ \hline & V_{\text{GS}} = 0 \text{V}, \text{V}_{\text{S}} = -25 \text{V}, \text{I}_{\text{D}} = -500\text{mA} \\ \hline & V_{\text{GS}} = 0 \text{V}, \text{V}_{\text{S}} = -25 \text{V}, \text{I}_{\text{D}} = -500\text{mA} \\ \hline & V_{\text{GS}} = 0 \text{V}, \text{V}_{\text{S}} = -25 \text{V}, \text{I}_{\text{D}} = -500\text{mA} \\ \hline & V_{\text{GS}} = 0 \text{V}, \text{V}_{\text{S}} = -25 \text{V}, \text{I}_{\text{D}} = -500\text{mA} \\ \hline & V_{\text{GS}} = -25 \text{V}, \text{I}_{\text{D}} = -500\text{mA}, \\ \hline & V_{\text{GS}} = -500\text{mA}, \text{R}_{\text{GEN}} = 25 \Omega \\ \hline & V_{\text{SD}} = -500\text{mA}, \text{R}_{\text{S}} = 25 \Omega \\ \hline & V_{\text{SD}} = -500\text{mA}, \text{R}_{\text{S}} = 25 \Omega \\ \hline & V_{\text{SD}} = -500\text{mA}, \text{R}_{\text{S}} = -500\text{mA} \\ \hline & V_{\text{SD}} = 0 \text{V}, \text{I}_{\text{SD}} = -500\text{mA} \\ \hline & V_{\text{SD}} = -500\text{mA} \\ \hline & V_{\text{SD}} = -500\text{mA} \\ \hline & V_{\text{SD}} = 0 \text{V}, \text{I}_{\text{SD}} = -500\text{mA} \\ \hline & V_{\text{SD}} = 0 \text{V}, \text{I}_{\text{SD}} = -500\text{mA} \\ \hline & V_{\text{SD}} = 0 \text{V}, \text{I}_{\text{SD}} = -500\text{mA} \\ \hline & V_{\text{SD}} = 0 \text{V}, \text{I}_{\text{SD}} = -500\text{mA} \\ \hline & V_{\text{SD}} = 0 \text{V}, \text{I}_{\text{SD}} = -500\text{mA} \\ \hline & V_{\text{SD}} = 0 V$	I _{D(ON)}	On-state drain current	-0.6	-	-	А	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		Static drain-to-source on-state	-	-	10	0	V _{GS} = -4.5V, I _D = -50mA
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	DS(ON)	resistance		-	6.0		V _{GS} = -10V, I _D = -500mA
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\Delta R_{DS(ON)}$	Change in $R_{DS(ON)}$ with temperature	-	0.55	1.0	%/°C	V _{GS} = -10V, I _D = -500mA
		Forward transconductance	150	200	-	mmho	V _{DS} = -25V, I _D = -500mA
	C _{ISS}	Input capacitance	-	35	60		$V_{00} = 0V.$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	C _{oss}	Common source output capacitance	-	22	30	pF	$V_{DS}^{0} = -25V,$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	C _{RSS}	Reverse transfer capacitance	-	8.0	10		f = 1.0 MHz
		Turn-on delay time	-	4.0	6.0		
$t_{d(OFF)}$ Turn-off delay time-5.09.0Ins I_D^{-} = -500 mA, R_{GEN} = 25Ω t_f Fall time-5.08.0- V_{SD} Diode forward voltage drop1.2-2.0V V_{GS} = 0V, I_{SD} = -500 mA		Rise time	-	4.0	8.0		$V_{DD} = -25V,$
$t_{\rm f}$ Fall time-5.08.0GEN $V_{\rm SD}$ Diode forward voltage drop1.2-2.0V $V_{\rm GS}$ = 0V, $I_{\rm SD}$ = -500mA		Turn-off delay time	-	5.0	9.0	ns	$R_{D} = -500 \text{ mA},$ R = 25Ω
		Fall time	-	5.0	8.0		GEN
	V _{SD}	Diode forward voltage drop	-	-1.2	-2.0	V	V _{GS} = 0V, I _{SD} = -500mA
$I_{\rm m}$ reverse recovery time - 400 - 115 $V_{\rm GS}$ - 00, $I_{\rm SD}$ - 50011A	t _{rr}	Reverse recovery time	-	400	-	ns	V _{GS} = 0V, I _{SD} = -500mA

Notes:

1. All D.C. parameters 100% tested at 25°C unless otherwise stated. (Pulse test: 300µs pulse, 2% duty cycle.)

2. All A.C. parameters sample tested.

Switching Waveforms and Test Circuit

Supertex inc. • 1235 Bordeaux Drive, Sunnyvale, CA 94089 • Tel: 408-222-8888 • www.supertex.com

TP2104

 $V_{GS} = -10V$

-8V

-6V

4\

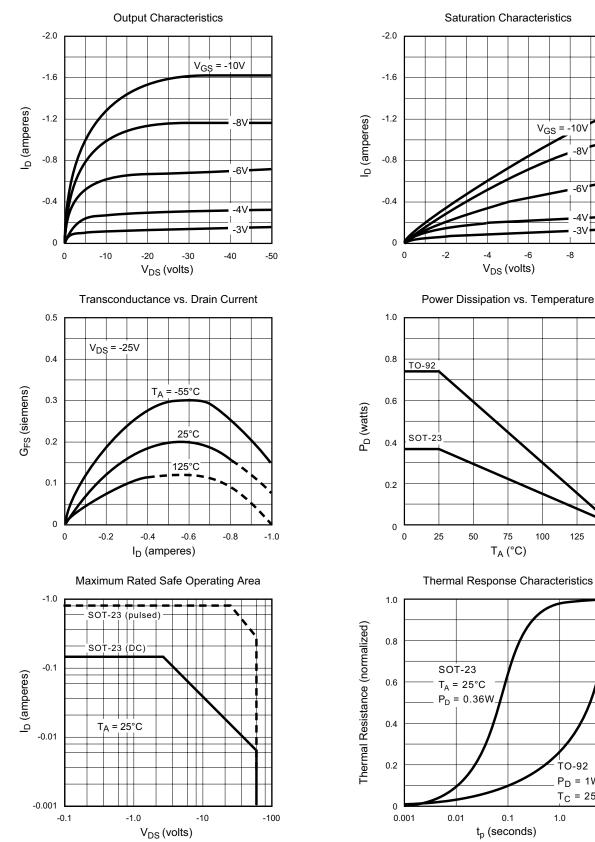
-3\

-10

-8

100

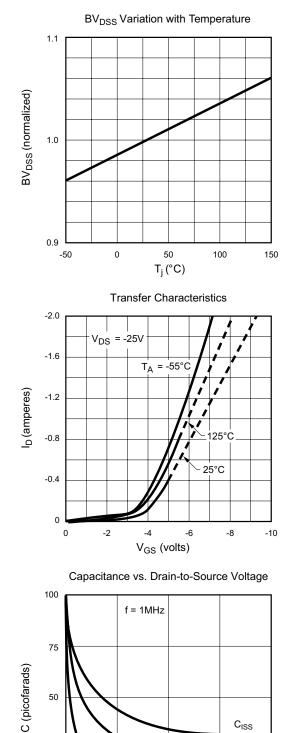
125

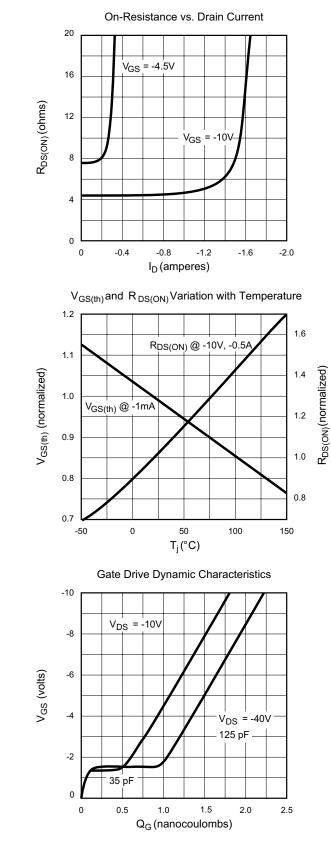

TO-92 $P_D = 1W$ T_C = 25°C

10

1.0

150


Typical Performance Curves


Supertex inc. • 1235 Bordeaux Drive, Sunnyvale, CA 94089 • Tel: 408-222-8888 • www.supertex.com

3

TP2104

Typical Performance Curves (cont.)

Supertex inc. • 1235 Bordeaux Drive, Sunnyvale, CA 94089 • Tel: 408-222-8888 • www.supertex.com

 C_{ISS}

-40

Coss

-30

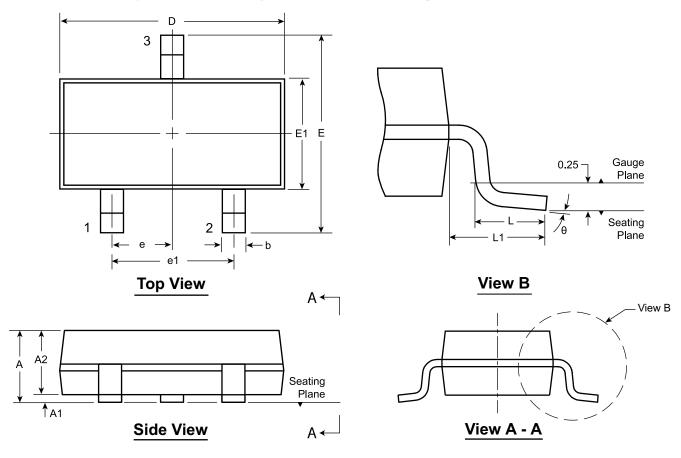
 C_{RSS}

-20

V_{DS} (volts)

-10

50


25

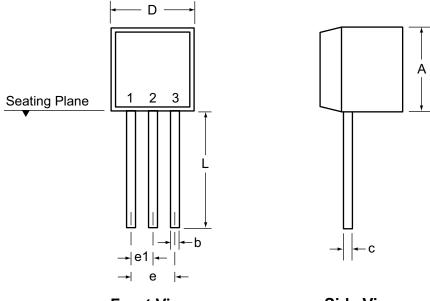
0

0

4

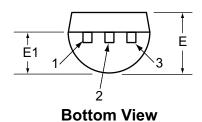
3-Lead TO-236AB (SOT-23) Package Outline (K1) 2.90x1.30mm body, 1.12mm height (max), 1.90mm pitch

Symb	ol	Α	A1	A2	b	D	E	E1	е	e1	L	L1	θ			
(mm) –	MIN	0.89	0.01	0.88	0.30	2.80	2.10	1.20	0.05	1.90 BSC	5 1.90 C BSC 0.5			0.20†	0.54	0 0
	NOM	-	-	0.95	-	2.90	-	1.30	0.95 BSC			0.50	0.54 REF	-		
	MAX	1.12	0.10	1.02	0.50	3.04	2.64	1.40	000			BSC	0.60		8 0	


JEDEC Registration TO-236, Variation AB, Issue H, Jan. 1999.

† This dimension is a non-JEDEC dimension.

Drawings not to scale.


Supertex Doc.#: DSPD-3TO236ABK1, Version B072208.

3-Lead TO-92 Package Outline (N3)

Front View

Side View

Symbol		Α	b	С	D	E	E1	е	e1	L
Dimensions (inches)	MIN	.170	.014 [†]	.014†	.175	.125	.080	.095	.045	.500
	NOM	-	-	-	-	-	-	-	-	-
	MAX	.210	.022†	.022†	.205	.165	.105	.105	.055	.610*

JEDEC Registration TO-92.

* This dimension is not specified in the original JEDEC drawing. The value listed is for reference only.

† This dimension is a non-JEDEC dimension.

Drawings not to scale.

Supertex Doc.#: DSPD-3TO92N3, Version D080408.

Supertex inc. does not recommend the use of its products in life support applications, and will not knowingly sell them for use in such applications unless it receives an adequate "product liability indemnification insurance agreement." Supertex inc. does not assume responsibility for use of devices described, and limits its liability to the replacement of the devices determined defective due to workmanship. No responsibility is assumed for possible omissions and inaccuracies. Circuitry and specifications are subject to change without notice. For the latest product specifications refer to the Supertex inc. website: http://www.supertex.com.

©2009 Supertex inc. All rights reserved. Unauthorized use or reproduction is prohibited.

Supertex inc.