N-Channel Enhancement-Mode

 Vertical DMOS FETs
Features

- Free from secondary breakdown
- Low power drive requirement
- Ease of paralleling
- Low $\mathrm{C}_{\text {iss }}$ and fast switching speeds
- Excellent thermal stability
- Integral source-drain diode
- High input impedance and high gain

Applications

- Motor controls
- Converters
- Amplifiers
- Switches
- Power supply circuits
- Drivers (relays, hammers, solenoids, lamps, memories, displays, bipolar transistors, etc.)

General Description

This enhancement-mode (normally-off) transistor utilizes a vertical DMOS structure and Supertex's well-proven silicon-gate manufacturing process. This combination produces a device with the power handling capabilities of bipolar transistors and with the high input impedance and positive temperature coefficient inherent in MOS devices. Characteristic of all MOS structures, this device is free from thermal runaway and thermally induced secondary breakdown.

Supertex's vertical DMOS FETs are ideally suited to a wide range of switching and amplifying applications where high breakdown voltage, high input impedance, low input capacitance, and fast switching speeds are desired.

Ordering Information

Device	Package Options				$\mathrm{BV}_{\mathrm{Dss}} / \mathrm{BV}_{\mathrm{DGs}}$ (V)	$\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ max ($\Omega)$	$\mathbf{V}_{\mathrm{GS}(\mathrm{th})}$ max (V)
	TO-92	$\begin{aligned} & \text { 14-Lead } \\ & \text { PDIP } \end{aligned}$	$\begin{aligned} & \hline \text { TO-243AA } \\ & \text { (SOT-89) } \end{aligned}$	Die*			
VN3205	VN3205N3-G	VN3205P-G	VN3205N8-G	VN3205ND	50	0.3	2.4

-G indicates package is RoHS compliant ('Green')

* MIL visual screening available.

Absolute Maximum Ratings

Parameter	Value
Drain-to-source voltage	$\mathrm{BV}_{\text {DSS }}$
Drain-to-gate voltage	$\mathrm{BV}_{\text {DGS }}$
Gate-to-source voltage	$\pm 20 \mathrm{~V}$
Operating and storage temperature	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Soldering temperature*	$+300^{\circ} \mathrm{C}$

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied. Continuous operation of the device at the absolute rating level may affect device reliability. All voltages are referenced to device ground.

* Distance of 1.6 mm from case for 10 seconds.

Pin Configurations

 TO-92 (N3)

TO-243AA (SOT-89) (N8)

14-Lead PDIP (P)

Product Markings

Package may or may not include the following marks: Si or $\$ 7$
TO-92 (N3)
VN2LW
W = Code for week sealed
\qquad = "Green" Packaging
Package may or may not include the following marks: Si or (4i) TO-243AA (SOT-89) (N8)

Top Marking

YY = Year Sealed WW = Week Sealed L = Lot Number

C = Country of Origin*
A = Assembler ID* = "Green" Packaging
*May be part of top marking

Package may or may not include the following marks: Si or 4
14-Lead PDIP (P)

Thermal Characteristics

Package	I (continuous)* (A)	$\begin{gathered} \mathrm{I}_{\mathrm{D}} \\ \text { (pulsed) } \end{gathered}$ (A)	Power Dissipation $@ \mathrm{~T}_{\mathrm{c}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$ (W)	$\begin{gathered} \boldsymbol{\theta}_{j c} \\ \left({ }^{\circ} \mathrm{C} / \mathrm{W}\right) \end{gathered}$	$\begin{gathered} \boldsymbol{\theta}_{j a} \\ \left({ }^{\circ} \mathrm{C} / \mathrm{W}\right) \end{gathered}$	$\mathrm{I}_{\mathrm{DR}}{ }^{t}$ (A)	$I_{\text {DRM }}$ (A)
TO-92	1.2	8.0	1.0	125	170	1.2	8.0
14-Lead PDIP	1.5	8.0	3.0^{+}	$41.6{ }^{+}$	83.3^{+}	1.5	8.0
TO-243AA	1.5	8.0	$1.6\left(T_{A}=25^{\circ}\right)$	15	78^{\ddagger}	1.5	8.0

Notes:

* I_{D} (continuous) is limited by max rated $T_{s,} T_{A}=25^{\circ} \mathrm{C}$.
\dagger Total for package.
\ddagger Mounted on FR5 board, $25 \mathrm{~mm} \times 25 \mathrm{~mm} \times 1.57 \mathrm{~mm}$.

Electrical Characteristics $\left(T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

Sym	Parameter		Min	Typ	Max	Units	Conditions
$B V_{\text {DSs }}$	Drain-to-source breakdown voltage		50	-	-	V	$\mathrm{V}_{G S}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mathrm{~mA}$
$\mathrm{V}_{\text {GS(th) }}$	Gate threshold voltage		0.8	-	2.4	V	$V_{G S}=V_{D S}, I_{D}=10 \mathrm{~mA}$
$\Delta \mathrm{V}_{\text {GS(th) }}$	Change in $\mathrm{V}_{\mathrm{GS}(\mathrm{th})}$ with temperature		-	-4.3	-5.5	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	$V_{G S}=V_{D S}, I_{D}=10 \mathrm{~mA}$
$\mathrm{I}_{\text {GSS }}$	Gate body leakage current		-	1.0	100	nA	$\mathrm{V}_{\mathrm{GS}}= \pm 20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$
$\mathrm{I}_{\text {DSs }}$	Zero gate voltage drain current		-	-	10	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{DS}}=\text { Max Rating } \end{aligned}$
			-	-	1.0	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=0.8 \mathrm{Max} \text { Rating, } \\ & \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=125^{\circ} \mathrm{C} \end{aligned}$
$\mathrm{I}_{\mathrm{D}(\mathrm{ON})}$	On-state drain current		3.0	14	-	A	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{~V}_{\text {DS }}=5.0 \mathrm{~V}$
$\mathrm{R}_{\text {DS(ON) }}$	Static drain-to-source on-state resistance	TO-92 and PDIP	-	-	0.45	Ω	$\mathrm{V}_{G S}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1.5 \mathrm{~A}$
		TO-243AA	-	-	0.45		$\mathrm{V}_{G S}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.75 \mathrm{~A}$
		TO-92 and PDIP	-	-	0.3		$\mathrm{V}_{G S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=3.0 \mathrm{~A}$
		TO-243AA	-	-	0.3		$\mathrm{V}_{G S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1.5 \mathrm{~A}$
$\Delta \mathrm{R}_{\text {DS(ON) }}$	Change in $\mathrm{R}_{\mathrm{DS}(\mathrm{O})}$ with temperature		-	0.85	1.2	\%/ ${ }^{\circ} \mathrm{C}$	$\mathrm{V}_{G S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=3.0 \mathrm{~A}$
$\mathrm{G}_{\text {FS }}$	Forward transconductance		1.0	1.5	-	mho	$\mathrm{V}_{\mathrm{DS}}=25 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=2.0 \mathrm{~A}$

Electrical Characteristics (cont.) ($\tau_{A}=25^{\circ} \mathrm{C}$ unless otherwise specified)

Sym	Parameter	Min	Typ	Max	Units	Conditions
$\mathrm{C}_{\text {ISS }}$	Input capacitance	-	220	300	pF	$\begin{aligned} & V_{\text {GS }}=0 \mathrm{~V}, \\ & V_{\text {DS }}=25 \mathrm{~V}, \\ & f=1.0 \mathrm{MHz} \end{aligned}$
$\mathrm{C}_{\text {oss }}$	Common source output capacitance	-	70	120		
$\mathrm{C}_{\text {RSS }}$	Reverse transfer capacitance	-	20	30		
$\mathrm{t}_{\mathrm{d}(\mathrm{ON})}$	Turn-on delay time	-	-	10	ns	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=25 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{D}}=2.0 \mathrm{~A}, \\ & \mathrm{R}_{\mathrm{GEN}}=10 \Omega \end{aligned}$
t_{r}	Rise time	-	-	15		
$\mathrm{t}_{\text {d(OFF) }}$	Turn-off delay time	-	-	25		
t_{f}	Fall time	-	-	25		
$\mathrm{V}_{\text {SD }}$	Diode forward voltage drop	-	-	1.6	V	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\text {SD }}=1.5 \mathrm{~A}$
$\mathrm{t}_{\text {tr }}$	Reverse recovery time	-	300	-	ns	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\text {SD }}=1.0 \mathrm{~A}$

Notes:

1. All D.C. parameters 100% tested at $25^{\circ} \mathrm{C}$ unless otherwise stated. (Pulse test: 300μ s pulse, 2% duty cycle.)
2. All A.C. parameters sample tested.

Switching Waveforms and Test Circuit

Typical Performance Curves

Thermal Response Characteristics

Typical Performance Curves (cont.)

3-Lead TO-92 Package Outline (N3)

Front View

Side View

Bottom View

Symbol		A	b	c	D	E	E1	e	e1	L
Dimensions (inches)	MIN	. 170	. $014{ }^{+}$. $014{ }^{+}$. 175	. 125	. 080	. 095	. 045	. 500
	NOM	-	-	-	-	-	-	-	-	-
	MAX	. 210	. 022^{+}	. 022^{+}	. 205	. 165	. 105	. 105	. 055	.610*

JEDEC Registration TO-92.

* This dimension is not specified in the JEDEC drawing.
\dagger This dimension differs from the JEDEC drawing.
Drawings not to scale.
Supertex Doc.\#: DSPD-3TO92N3, Version E041009.

3-Lead TO-243AA (SOT-89) Package Outline (N8)

Top View

Side View

Symbol		A	b	b1	C	D	D1	E	E1	e	e1	H	L
$\begin{aligned} & \text { Dimensions } \\ & (\mathrm{mm}) \end{aligned}$	MIN	1.40	0.44	0.36	0.35	4.40	1.62	2.29	$2.00{ }^{+}$	$\begin{aligned} & 1.50 \\ & \text { BSC } \end{aligned}$	$\begin{aligned} & 3.00 \\ & \text { BSC } \end{aligned}$	3.94	0.89
	NOM	-	-	-	-	-	-	-	-			-	-
	MAX	1.60	0.56	0.48	0.44	4.60	1.83	2.60	2.29			4.25	1.20

JEDEC Registration TO-243, Variation AA, Issue C, July 1986.
\dagger This dimension differs from the JEDEC drawing
Drawings not to scale.
Supertex Doc. \#: DSPD-3TO243AAN8, Version E051509.

14-Lead PDIP (.300in Row Spacing) Package Outline (P)
 .750x.250in body, .210in height (max), .100in pitch

Top View

Side View

View A - A

Note:

1. A Pin 1 identifier must be located in the index area indicated. The Pin 1 identifier can be: a molded mark/identifier; an embedded metal marker; or a printed indicator.

Symbol		A	A1	A2	b	b1	D	D1	E	E1	e	eA	eB	L
Dimension (inches)	MIN	.130*	. 015	. 115	. 014	. 045	. 735	. 065^{+}	. $290{ }^{+}$. 240	$\begin{aligned} & .100 \\ & \text { BSC } \end{aligned}$	$\begin{aligned} & .300 \\ & \text { BSC } \end{aligned}$.300*	. 115
	NOM	-	-	. 130	. 018	. 060	. 750	-	. 310	. 250			-	. 130
	MAX	. 210	.035*	. 195	. $023{ }^{+}$. 070	. 810^{+}	.085*	. 325	. 280			. 430	. 150

JEDEC Registration MS-001, Variation AA, Issue D, June, 1993.

* This dimension is not specified in the JEDEC drawing.
\dagger This dimension differs from the JEDEC drawing.
Drawings not to scale.
Supertex Doc. \#: DSPD-14DIPP, Version B041009.
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to http://www.supertex.com/packaging.html.)

[^0]
[^0]: Supertex inc. does not recommend the use of its products in life support applications, and will not knowingly sell them for use in such applications unless it receives an adequate "product liability indemnification insurance agreement." Supertex inc. does not assume responsibility for use of devices described, and limits its liability to the replacement of the devices determined defective due to workmanship. No responsibility is assumed for possible omissions and inaccuracies. Circuitry and specifications are subject to change without notice. For the latest product specifications refer to the Supertex inc. website: http//www.supertex.com.

