
## 13 - 15 GHz 4W Power Amplifier



Chip Dimensions 2.5 mm x 2.7 mm x 0.1 mm

#### **Fixtured Measured Performance**





Datasheet subject to change without notice

# >25 dB Nominal Gain>36 dBm Nominal Psat

**Key Features** 

44 dBm Nominal IP3 @ 14 GHz

0.5 um pHEMT Technology

- Bias 7V @ 1.3A ldq, 2.1A under RF drive
- Chip Dimensions 2.5mm x 2.7mm x 0.1 mm

#### **Primary Applications**

Ku-Band VSAT Transmit





# TABLE I MAXIMUM RATINGS <u>1</u>/

| Symbol           | Parameter                         | Value            | Notes          |  |
|------------------|-----------------------------------|------------------|----------------|--|
| V <sup>+</sup>   | Positive Supply Voltage           | 8V               |                |  |
| l+               | Positive Supply Current           | 2.3 A            | <u>2</u> /     |  |
| P <sub>D</sub>   | Power Dissipation                 | 18.4             |                |  |
| P <sub>IN</sub>  | Input Continuous Wave Power       | 24 dBm           |                |  |
| Т <sub>СН</sub>  | Operating Channel Temperature     | 200 °C           | <u>3</u> /, 4/ |  |
|                  | Mounting Temperature (30 seconds) | 320 °C           |                |  |
| T <sub>STG</sub> | Storage Temperature               | -65 °C to 150 °C |                |  |

- <u>1/</u> These values represent the maximum operable values of this device
- <u>2</u>/ Total current for the entire MMIC
- 3/ These ratings apply to each individual FET
- <u>4</u>/ Junction operating temperature will directly affect the device mean time to failure (Tm). For maximum life it is recommended that junction temperatures be maintained at the lowest possible levels.

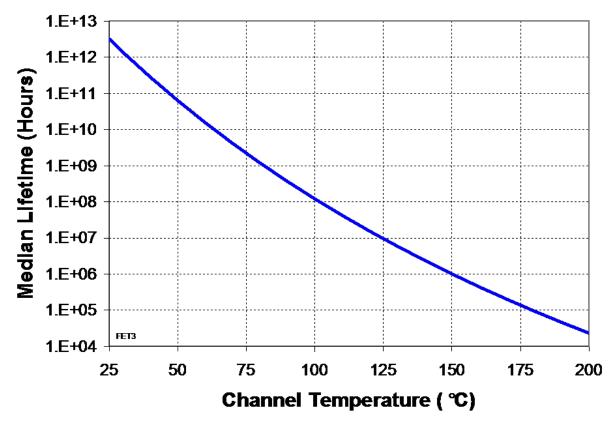




#### TABLE II ELECTRICAL CHARACTERISTICS (Ta = 25°C ± 5°C)

| PARAMETER                                             | TYPICAL | UNITS              |
|-------------------------------------------------------|---------|--------------------|
| Drain Operating Voltage                               | 7       | V                  |
| Quiescent Current                                     | 1.3     | A                  |
| Small Signal Gain                                     | 25      | dB                 |
| Gain Flatness (Freq=13.5 – 15 GHz)                    | 0.1     | dB/100MHz          |
| Input Return Loss (Linear Small Signal)               | 16      | dB                 |
| Output Return Loss (Linear Small Signal)              | 16      | dB                 |
| Reverse Isolation                                     | <-50    | dB                 |
| CW Output Power @ Psat at 14.5Ghz                     | 36      | dBm                |
| Power Add Efficiency @ Psat                           | 30      | %                  |
| P1dB Temperature Coeff. TC (-40 to + 70 $^{\circ}$ C) | -0.01   | dB/ <sup>0</sup> C |



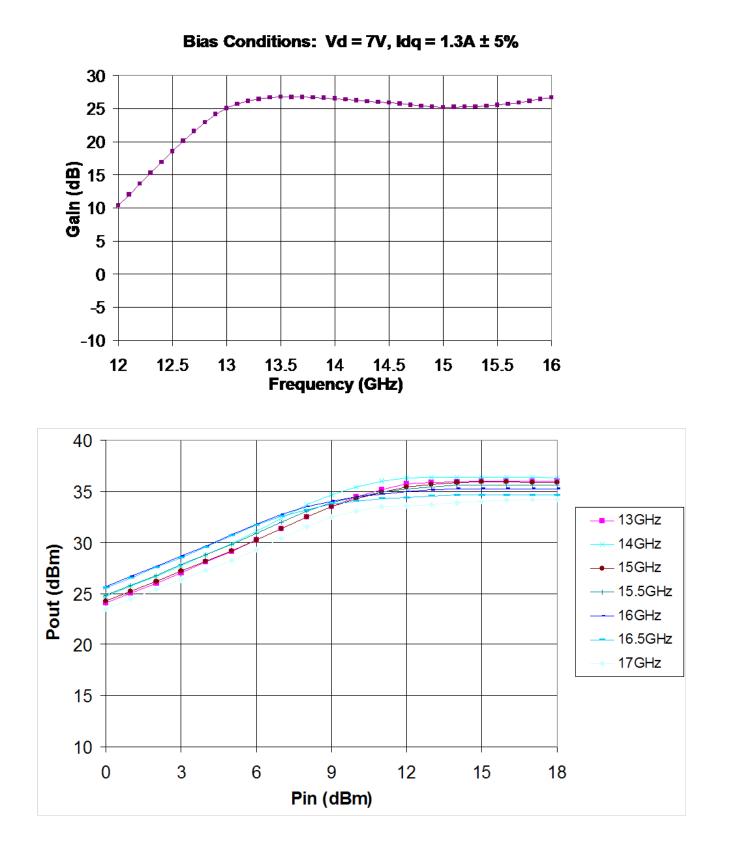



#### TABLE IV THERMAL INFORMATION

| PARAMETER                                                 | TEST CONDITIONS                         | Т <sub>сн</sub><br>(°С) | θ <sub>JC</sub><br>(°C/W) | T <sub>m</sub><br>(HRS) |
|-----------------------------------------------------------|-----------------------------------------|-------------------------|---------------------------|-------------------------|
| $\theta_{\text{JC}}$ Thermal Resistance (channel to Case) | Vd = 7 V<br>Id = 1.3 A<br>Pdiss = 9.1 W | 123                     | 5.8                       | 1.2E+7                  |

Note: Assumes eutectic attach using 1.5 mil 80/20 AuSn mounted to a 20 mil CuMo Carrier at 70°C baseplate temperature. Worst case condition with no RF applied, 100% of DC power is dissipated.






TriQuint Semiconductor: www.triquint.com (972)994-8465 Fax (972)994-8504 Info-mmw@tqs.com





### **Measured Fixtured Data**



TriQuint Semiconductor: www.triquint.com (972)994-8465 Fax (972)994-8504 Info-mmw@tqs.com





#### **Measured Fixtured Data**

Bias Conditions: Vd = 7V,  $Idq = 1.3A \pm 5\%$ 0 -5 -10 **(BP**) **15 15 15** -25 -30 -35 14 8 10 12 16 18 20 22 Frequency (GHz) U -5 -10 -15 **(BP**-20 **25**-25 -30 -35 -40 -45 -8

TriQuint Semiconductor: www.triquint.com (972)994-8465 Fax (972)994-8504 Info-mmw@tqs.com

Frequency (GHz)

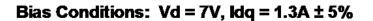
16

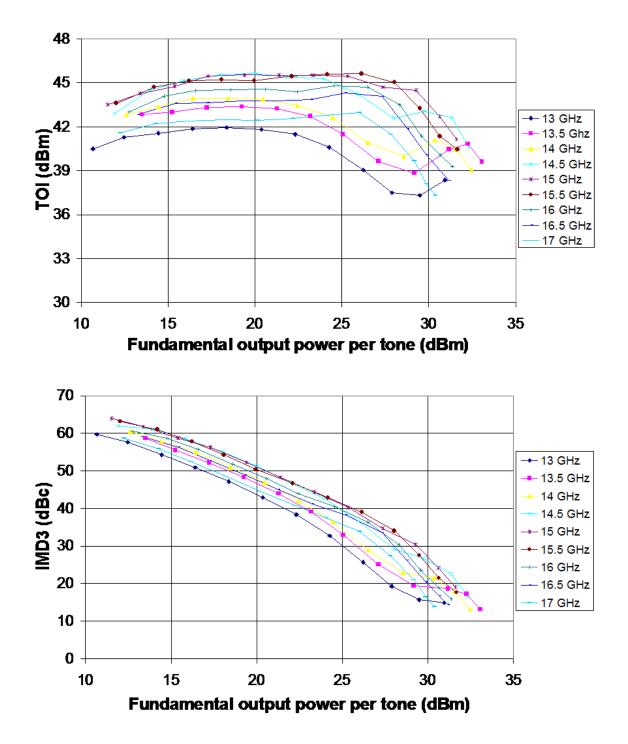
18

20

22

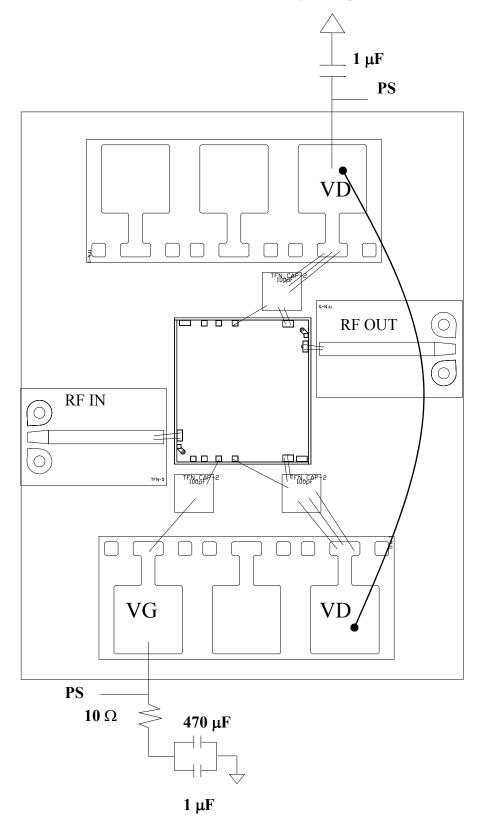
14


12


10






#### **Measured Fixtured Data**

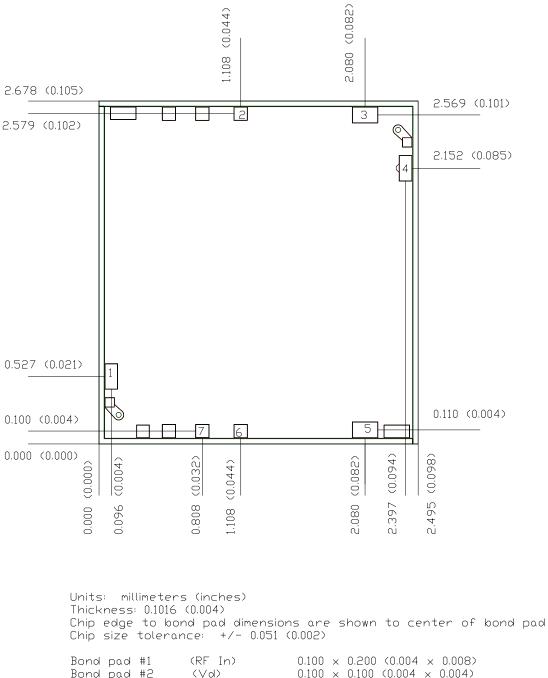











### Chip & Assembly Diagram

8



## **TGA2502**

#### **Mechanical Drawing**



| DOLIO POC | 1 II I | XIXI 1117 |                                           |  |
|-----------|--------|-----------|-------------------------------------------|--|
| Bond pad  | 1 #2   | (Vd)      | 0.100 × 0.100 (0.004 × 0.004)             |  |
| Bond pad  | k #3   | (Vd)      | 0.200 × 0.120 (0.008 × 0.005)             |  |
| Bond pad  | #4     | (RF 🛛ut)  | 0.100 × 0.200 (0.004 × 0.008)             |  |
| Bond pad  | 1 #5   | (Vd)      | 0.200 × 0.120 (0.008 × 0.005)             |  |
| Bond pad  | #6     | (∨d)      | $0.100 \times 0.100 (0.004 \times 0.004)$ |  |
| Bond pad  | l #7   | (Vg)      | $0.100 \times 0.100 (0.004 \times 0.004)$ |  |
|           |        |           |                                           |  |

GaAs MMIC devices are susceptible to damage from Electrostatic Discharge. Proper precautions should be observed during handling, assembly and test.



## **TGA2502**

#### **Assembly Process Notes**

Reflow process assembly notes:

- Use AuSn (80/20) solder with limited exposure to temperatures at or above 300<sup>0</sup>C (30 seconds max).
- An alloy station or conveyor furnace with reducing atmosphere should be used.
- No fluxes should be utilized.
- Coefficient of thermal expansion matching is critical for long-term reliability.
- Devices must be stored in a dry nitrogen atmosphere.

Component placement and adhesive attachment assembly notes:

- Vacuum pencils and/or vacuum collets are the preferred method of pick up.
- Air bridges must be avoided during placement.
- The force impact is critical during auto placement.
- Organic attachment can be used in low-power applications.
- Curing should be done in a convection oven; proper exhaust is a safety concern.
- Microwave or radiant curing should not be used because of differential heating.
- Coefficient of thermal expansion matching is critical.

Interconnect process assembly notes:

- Thermosonic ball bonding is the preferred interconnect technique.
- Force, time, and ultrasonics are critical parameters.
- Aluminum wire should not be used.
- Maximum stage temperature is 200<sup>0</sup>C.

GaAs MMIC devices are susceptible to damage from Electrostatic Discharge. Proper precautions should be observed during handling, assembly and test.