

Vishay Siliconix

Power MOSFET

PRODUCT SUMMARY					
V _{DS} (V)	500				
$R_{DS(on)}(\Omega)$	V _{GS} = 10 V	0.190			
Q _g (Max.) (nC)	150				
Q _{gs} (nC)	44				
Q _{gd} (nC)	72				
Configuration	Single				

N-Channel MOSFET

FEATURES

• Superfast Body Diode Eliminates the Need for External Diodes in ZVS Applications

 Lower Gate Charge Results in Simpler Drive RoHS Requirements

- Enhanced dV/dt Capabilities Offer Improved Ruggedness
- Higher Gate Voltage Threshold Offers Improved Noise **Immunity**
- Compliant to RoHS Directive 2002/95/EC

APPLICATIONS

- Zero Voltage Switching SMPS
- Telecom and Server Power Supplies
- Uninterruptible Power Supplies
- Motor Control Applications

ORDERING INFORMATION				
Package	TO-247AC			
Load (Db) fire	IRFP23N50LPbF			
Lead (Pb)-free	SiHFP23N50L-E3			
SnPb	IRFP23N50L			
SIIFD	SiHFP23N50L			

ABSOLUTE MAXIMUM RATINGS (T_C	= 25 °C, unl	ess otherwis	se noted)			
PARAMETER			SYMBOL	LIMIT	UNIT	
Drain-Source Voltage			V_{DS}	500	V	
Gate-Source Voltage			V_{GS}	± 30		
Continuous Drain Current	V at 10 V	T _C = 25 °C		23		
	V _{GS} at 10 V	T _C = 100 °C	I _D	15	Α	
Pulsed Drain Current ^a			I _{DM}	92		
Linear Derating Factor				2.9	W/°C	
Single Pulse Avalanche Energy ^b			E _{AS}	410	mJ	
Repetitive Avalanche Currenta			I _{AR}	23	А	
Repetitive Avalanche Energy ^a			E _{AR}	37	mJ	
Maximum Power Dissipation	T _C =	25 °C	P_{D}	370	W	
Peak Diode Recovery dV/dt ^c			dV/dt	21	V/ns	
Operating Junction and Storage Temperature Range			T _J , T _{stg}	- 55 to + 150	°C	
Soldering Recommendations (Peak Temperature)	for 10 s			300 ^d	1	
Mounting Torque	6-32 or M3 screw			10	lbf ⋅ in	
				1.1	N · m	

- a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11). b. Starting T_J = 25 °C, L = 1.5 mH, R_g = 25 Ω , I_{AS} = 23 A (see fig. 12). c. I_{SD} \leq 23 A, dl/dt \leq 650 A/µs, V_{DD} \leq V_{DS}, T_J \leq 150 °C.

- d. 1.6 mm from case.

^{*} Pb containing terminations are not RoHS compliant, exemptions may apply

IRFP23N50L, SiHFP23N50L

Vishay Siliconix

THERMAL RESISTANCE RATINGS					
PARAMETER	SYMBOL	TYP.	MAX.	UNIT	
Maximum Junction-to-Ambient	R_{thJA}	-	40		
Case-to-Sink, Flat, Greased Surface	R _{thCS}	0.24	=	°C/W	
Maximum Junction-to-Case (Drain)	R_{thJC}	-	0.34		

PARAMETER	SYMBOL	TES	MIN.	TYP.	MAX.	UNIT	
Static							
Drain-Source Breakdown Voltage	V_{DS}	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$		500	-	-	V
V _{DS} Temperature Coefficient	$\Delta V_{DS}/T_{J}$	Reference to 25 °C, I _D = 1 mA ^d		-	0.27	-	V/°C
Gate-Source Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_D = 250 \mu\text{A}$		3.0	-	5.0	V
Gate-Source Leakage	I _{GSS}		$V_{GS} = \pm 30 \text{ V}$	-	-	± 100	nA
Zero Gate Voltage Drain Current	less	V _{DS} = 500 V, V _{GS} = 0 V		-	-	50	μΑ
Zero Gate Voltage Drain Gurrent	I _{DSS}	V _{DS} = 400 \	$V_{\rm S} = 0 \ V_{\rm T} = 125 \ ^{\circ}{\rm C}$	-	-	2.0	mA
Drain-Source On-State Resistance	R _{DS(on)}	V _{GS} = 10 V		-	0.190	0.235	Ω
Forward Transconductance	9 _{fs}	V _{DS} = 50 V, I _D = 14 A ^b		12	-	-	S
Dynamic							
Input Capacitance	C _{iss}	$V_{GS} = 0 \text{ V},$ $V_{DS} = 25 \text{ V},$		-	3600	-	
Output Capacitance	C _{oss}			-	380	-	
Reverse Transfer Capacitance	C_{rss}	f = 1	.0 MHz, see fig. 5	-	37	-	pF
Output Capacitance	C _{oss}		$V_{DS} = 1.0 \text{ V}$, f = 1.0 MHz	-	4800		
			$V_{DS} = 400 \text{ V}$, f = 1.0 MHz	-	100	=.	
Effective Output Capacitance	C _{oss} eff.	$V_{GS} = 0 V$	$V_{DS} = 0 \text{ V to } 400 \text{ V}^{c}$	-	220		
Effective Output Capacitance (Energy Related)	Coss eff. (ER)		$V_{DS} = 0 V \text{ to } 400 V^d$	-	160	-	
Internal Gate Resistance	R_{G}	f = 1 MHz, open drain		-	1.2	-	Ω
Total Gate Charge	Q_g		$I_D = 23 \text{ A}, V_{DS} = 400 \text{ V}$	-	-	150	
Gate-Source Charge	Q_{gs}	$V_{GS} = 10 \text{ V}$ see fig. 6 and 13^{b}		-	-	44	nC
Gate-Drain Charge	Q_{gd}			-	-	72	
Turn-On Delay Time	t _{d(on)}	$V_{DD} = 250 \text{ V}, I_D = 23 \text{ A}$		-	26	-	
Rise Time	t _r	R _a = 6.0, V _{GS} = 10 V		-	94	-	ns
Turn-Off Delay Time	$t_{d(off)}$	g		-	53	-	115
Fall Time	t _f	see fig. 10 ^b		-	45	-	
Drain-Source Body Diode Characteristic	s						
Continuous Source-Drain Diode Current	I _S	MOSFET symbol showing the integral reverse p - n junction diode		-	-	23	A
Pulsed Diode Forward Current ^a	I _{SM}			-	-	92	
Body Diode Voltage	V_{SD}	T _J = 25 °C, I _S = 14 A, V _{GS} = 0 V ^b		-	-	1.5	V
Body Diode Reverse Recovery Time	t _{rr}	T _J = 25 °C T _{.1} = 125 °C	I _F = 23 A,	-	170 220	250 330	ns
Body Diode Reverse Recovery Charge	Q _{rr}	$T_J = 25 ^{\circ}\text{C}$ $T_J = 125 ^{\circ}\text{C}$ $T_J = 125 ^{\circ}\text{C}$		-	560 980	840 1500	μC
Reverse Recovery Current	I _{RRM}	.,	T _J = 25 °C	_	7.6	11	Α
Forward Turn-On Time	t _{on}	Intrinsic turn-on time is negligible (turn-on is dominated by L _S and				l	

Notes

- a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11).

- b. Pulse width \leq 300 µs; duty cycle \leq 2 %. c. C_{oss} eff. is a fixed capacitance that gives the same charging time as C_{oss} while V_{DS} is rising fom 0 % to 80 % V_{DS} . d. C_{oss} eff. (ER) is a fixed capacitance that stores the same energy time as C_{oss} while V_{DS} is rising fom 0 % to 80 % V_{DS} .

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

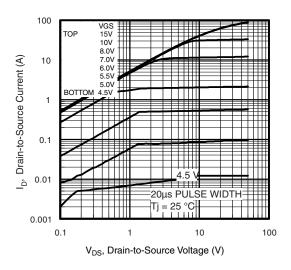


Fig. 1 - Typical Output Characteristics

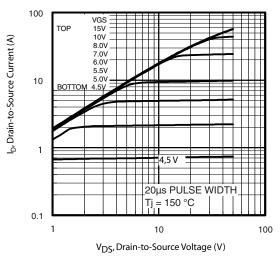


Fig. 2 - Typical Output Characteristics

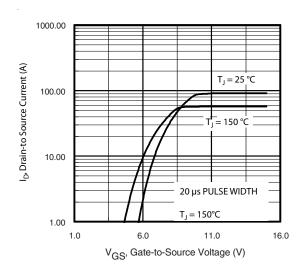


Fig. 3 - Typical Transfer Characteristics

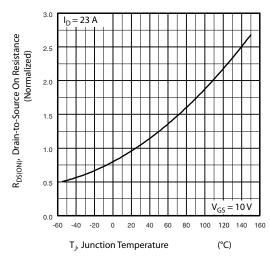


Fig. 4 - Normalized On-Resistance vs. Temperature

Vishay Siliconix

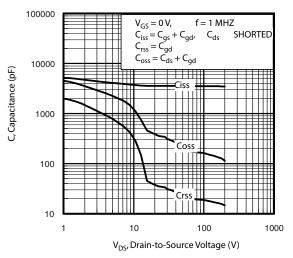


Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage

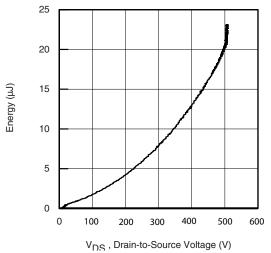


Fig. 6 - Typical Gate Charge vs. Gate-to-Source Voltage

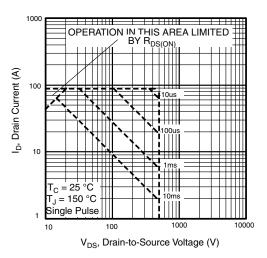


Fig. 7 - Maximum Safe Operating Area

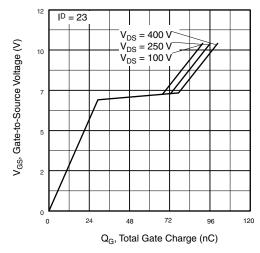


Fig. 8 - Typical Gate Charge vs. Gate-to-Source Voltage

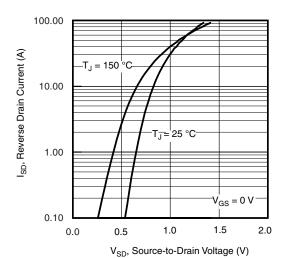


Fig. 9 - Typical Source-Drain Diode Forward Voltage

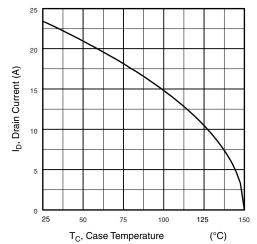


Fig. 10 - Maximum Drain Current vs. Case Temperature

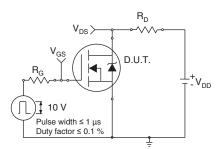


Fig. 11a - Switching Time Test Circuit

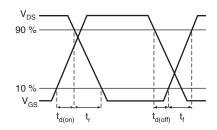


Fig. 11b - Switching Time Waveforms

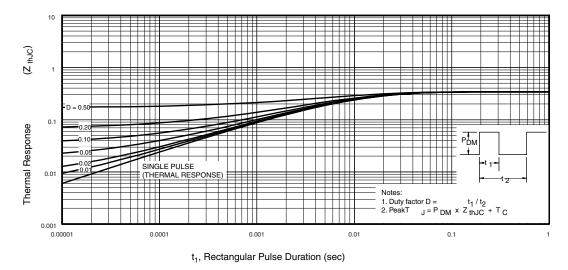


Fig. 12 - Maximum Effective Transient Thermal Impedance, Junction-to-Case

Vishay Siliconix

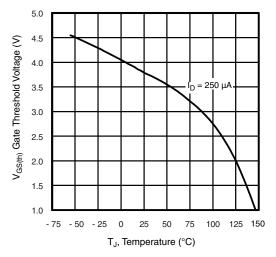


Fig. 13 - Threshold Voltage vs. Temperature

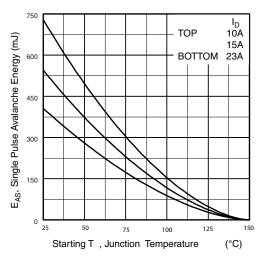


Fig. 14 - Maximum Avalanche Energy s. Drain Current

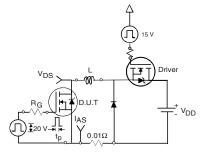


Fig. 15a - Unclamped Inductive Test Circuit

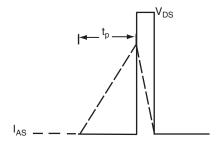


Fig. 15b - Unclamped Inductive Waveforms

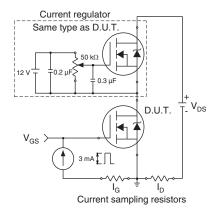


Fig. 16a - Gate Charge Test Circuit

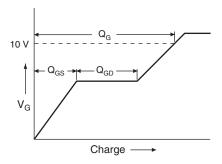
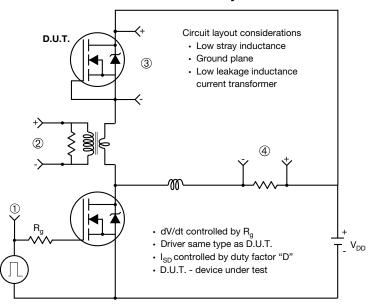



Fig. 16b - Basic Gate Charge Waveform

Peak Diode Recovery dV/dt Test Circuit

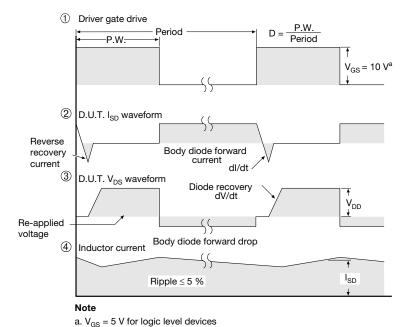


Fig. 17 - For N-Channel

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?91209.

Document Number: 91209 S11-0445-Rev. B, 21-Mar-11

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk and agree to fully indemnify and hold Vishay and its distributors harmless from and against any and all claims, liabilities, expenses and damages arising or resulting in connection with such use or sale, including attorneys fees, even if such claim alleges that Vishay or its distributor was negligent regarding the design or manufacture of the part. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Document Number: 91000 www.vishay.com
Revision: 11-Mar-11 1