International **IOR** Rectifier HEXFET[®] Power MOSFET

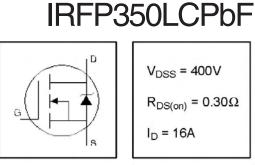
- Ultra Low Gate Charge
- **Reduced Gate Drive Requirement**
- Enhanced 30V V_{gs} Rating Reduced C_{iss}, C_{oss}, C_{rss}
- Isolated Central Mounting Hole
- Dynamic dv/dt Rated
- Repetitive Avalanche Rated
- Lead-Free

Description

This new series of Low Charge HEXFET Power MOSFETs achieve significantly lower gate charge over conventional MOSFETs. Utilizing advanced Hexfet technology the device improvements allow for reduced gate drive requirements, faster switching speeds and increased total system savings. These device improvements combined with the proven ruggedness and reliability of HEXFETs offer the designer a new standard in power transistors for switching applications.

The TO-247 package is preferred for commercial-industrial applications where higher power levels preclude the use of TO-220 devices. The TO-247 is similar but superior to the earlier TO-218 package because of its isolated mounting hole.

	Parameter	Max.	Units	
I _D @ T _C = 25°C	Continuous Drain Current, V GS @ 10V	16		
I _D @ T _C = 100°C	Continuous Drain Current, V GS @ 10V	9.9	A	
I _{DM}	Pulsed Drain Current 0	64		
P _D @T _C = 25°C	Power Dissipation	190	W	
	Linear Derating Factor	1.5	W/°C	
V _{GS}	Gate-to-Source Voltage	±30	V	
E _{AS}	Single Pulse Avalanche Energy 2	390	mJ	
I _{AR}	Avalanche Current O	16	A	
EAR	Repetitive Avalanche Energy O	19	mJ	
d∨/dt	Peak Diode Recovery dv/dt 3	4.0	V/ns	
TJ	Operating Junction and	-55 to + 150		
T _{STG}	Storage Temperature Range		°C	
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)		
h	Mounting torque, 6-32 or M3 screw.	10 lbf•in (1.1N•m)		


Absolute Maximum Ratings

Thermal Resistance

	Parameter	Min.	Тур.	Max.	Units
R _{0JC}	Junction-to-Case			0.65	
$R_{\theta CS}$	Case-to-Sink, Flat, Greased Surface		0.24		°CW
ROJA	Junction-to-Ambient		<u> </u>	40	

Document Number: 91224

08/03/04 www.vishay.com 1

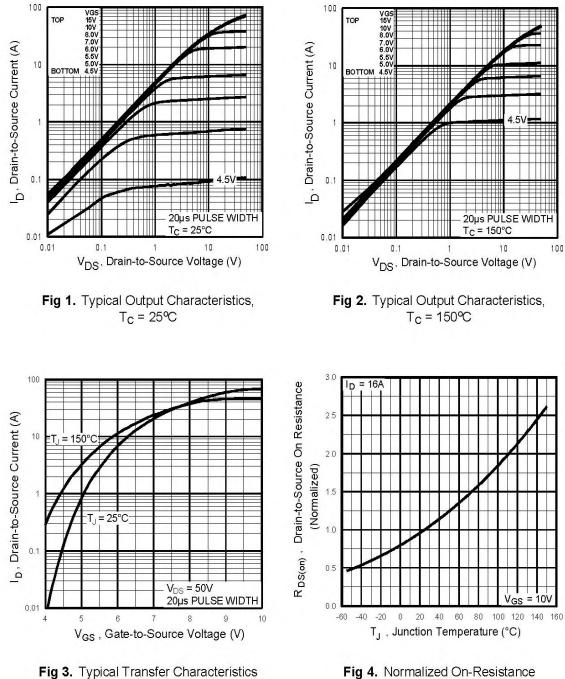
$$V_{DSS}$$
 = 400V
 $R_{DS(on)}$ = 0.30 Ω
 I_D = 16A

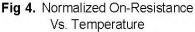
International **TER** Rectifier

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions	
V(BR)DSS	Drain-to-Source Breakdown Voltage	400	-	I	V	$V_{GS} = 0V, I_D = 250 \mu A$	
ΔV _{(BR)DSS} /ΔTJ	Breakdown Voltage Temp. Coefficient		0.49	<u> </u>	٧/°C	Reference to 25°C, I D = 1mA	
R _{DS(ON)}	Static Drain-to-Source On-Resistance			0.30	Ω	V _{GS} = 10V, I _D = 9.6A @	
V _{GS(th)}	Gate Threshold Voltage	2.0	·	4.0	V	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	
g fs	Forward Transconductance	8.1	_		S	V _{DS} = 50V, I _D = 9.6A	
in a start of the	Drain-to-Source Leakage Current			25	ыA	$V_{DS} = 400V, V_{GS} = 0V$	
DSS	Diairrio-Source Leakage Current		-	250	μA	$V_{DS} = 320V, V_{GS} = 0V, T_{J} = 125^{\circ}C$	
faces 1	Gate-to-Source Forward Leakage		-	100	nA	V _{GS} = 20V	
GSS	Gate-to-Source Reverse Leakage		-	-100	nA	V _{GS} = -20V	
Qg	Total Gate Charge		-	76		I _D = 16A V _{DS} = 320V	
Q _{gs}	Gate-to-Source Charge		_	20	nC		
Q _{gd}	Gate-to-Drain ("Miller") Charge		_	37		V _{GS} = 10V, See Fig. 6 and 13 ④	
t _{d(on)}	Rise Time — 54		14	-		V _{DD} = 200V	
tr			54			I _D = 16A	
t _{d(off)}			33		ns	$R_G = 6.2\Omega$	
t _f	Fall Time		35			R _D = 12Ω, See Fig. 10 @	
L _D	Internal Drain Inductance	-	5.0	—	nH	Between lead, 6mm (0.25in.)	
L _S	Internal Source Inductance	-	13	-		from package	
Ciss	Input Capacitance		2200	-		V _{GS} = 0V	
Coss	Output Capacitance		390		pF	V _{DS} = 25V	
Crss	Reverse Transfer Capacitance		31			f = 1.0MHz, See Fig. 5	

Source-Drain Ratings and Characteristics

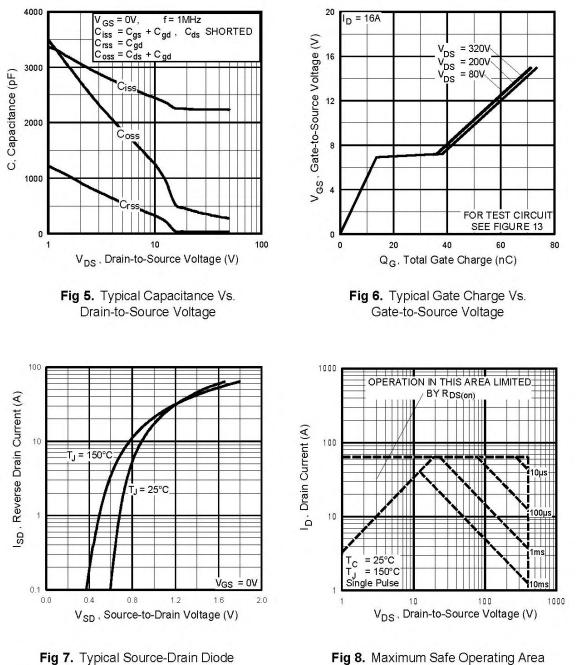

	Parameter	Min.	Typ.	Max.	Units	Conditions	
ls	Continuous Source Current (Body Diode)	-	_	16	•	MOSFET symbol showing the integral reverse p-n junction diode.	
I _{SM}	Pulsed Source Current (Body Diode) 0	-	_	64	A		
V _{SD}	Diode Forward Voltage	-		1.6	٧	T _J = 25°C, I _S = 16A, V _{GS} = 0V	
t _{rr}	Reverse Recovery Time		440	660	ns	T _J = 25°C, I _F = 16A	
Qrr	Reverse Recovery Charge	<u> </u>	4.1	6.2	μC	di/dt = 100A/µs 🕢	
t _{on}	Forward Turn-On Time	Intrinsic tum-on time is negligible (tum-on is dominated by L s+LD)					

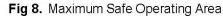

Notes:

- O Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11)
- $\label{eq:ISD} \textbf{3} \ \textbf{I}_{\text{SD}} \leq \textbf{16A}, \ \textbf{di/dt} \, \leq \textbf{200A/\mus}, \ \textbf{V}_{\text{DD}} \leq \textbf{V}_{(\text{BR})\text{DSS}},$ $T_{\rm J} \le 150^{\circ} C$
- O V_{DD} = 25V, starting T $_{\rm J}$ = 25°C, L = 2.7mH $R_G = 25\Omega$, $I_{AS} = 16A$. (See Figure 12)

Document Number: 91224

④ Pulse width \leq 300µs; duty cycle \leq 2%.

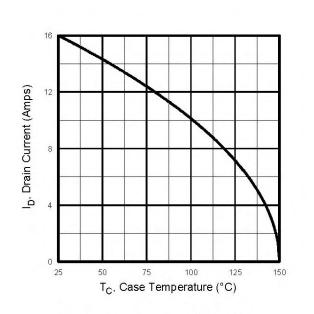


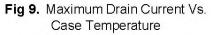

Document Number: 91224

International

TOR Rectifier

International **TER** Rectifier





Document Number: 91224

Forward Voltage

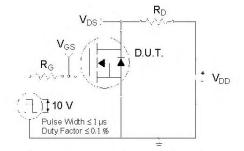


Fig 10a. Switching Time Test Circuit

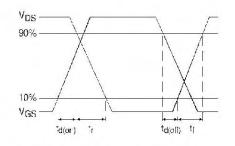


Fig 10b. Switching Time Waveforms

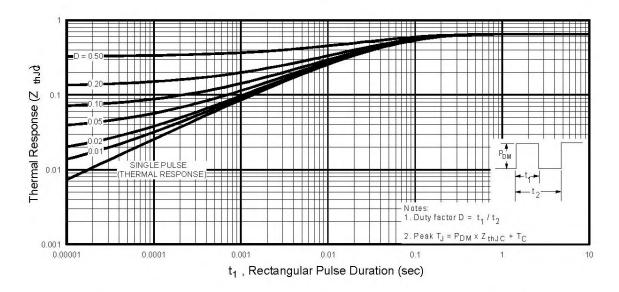


Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

Document Number: 91224

International

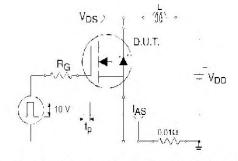


Fig 12a. Unclamped Inductive Test Circuit

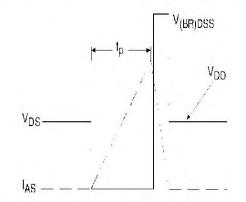


Fig 12b. Unclamped Inductive Waveforms

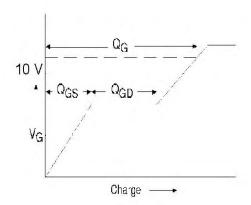
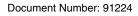
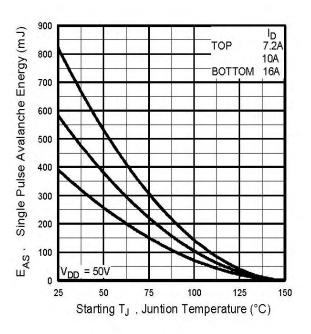
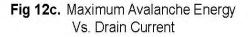





Fig 13a. Basic Gate Charge Waveform

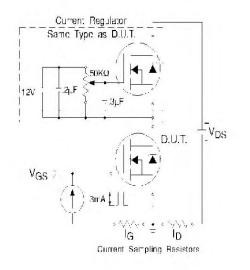
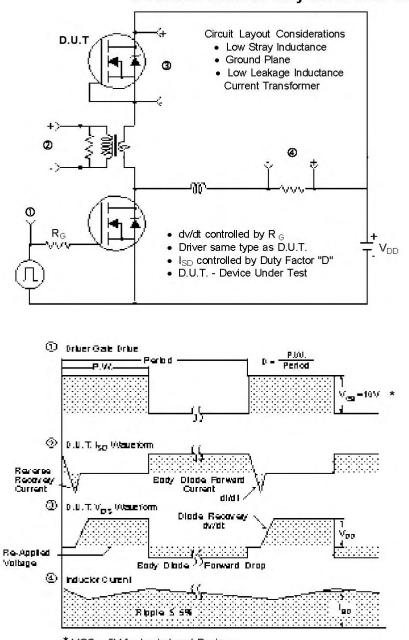
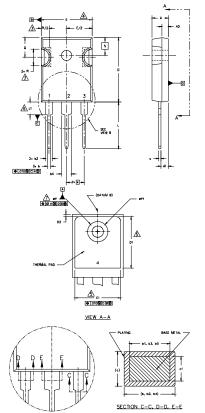



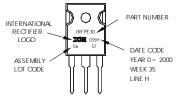
Fig 13b. Gate Charge Test Circuit

Peak Diode Recovery dv/dt Test Circuit


* VGS = 5V for Logic Level Devices

Document Number: 91224

International


TO-247AC Package Outline Dimensions are shown in millimeters (inches)

NOTES:								
1. DI	DIMENSIONING AND TOLERANCING PER ASME Y14.5M 1994.							
2. DI	DIMENSIONS ARE SHOWN IN INCHES [MILLIMETERS]							
<u>A</u> co	CONTOUR OF SLOT OPTIONAL.							
	FINSION D	& F DO N			SH MOLT	FLASH SHALL NOT EXCEED .005" (0.127)		
						OUTERMOST EXTREMES OF THE PLASTIC BODY.		
5 тн	ERMAL PA	CONTOUR	OPTIONAL	WITHIN DIM	FNISONS	D1 & F1.		
\wedge		UNCONTROL						
~								
		A MAXIMUN .154" [3.9		IGLE OF 1,	5 ° TO TH	E TOP OF THE PART WITH A MAXIMUM HOLE		
8. OL	ITLINE CON	FORMS TO	JEDEC OUTL	INE TO-24	47 WITH T	HE EXCEPTION OF DIMENSION C.		
		DIMEN	ISIONS					
SYMBOL	INC	HES	MILLIM	ETERS	1			
	Min.	MAX.	Min.	NAX,	NOTES			
A	.183	.209	4.65	5.31		LEAD ASSIGNMENTS		
A1 A2	.087	.102	2.21	2.59 2.49				
A2 b	.059 .039	.098 .055	1.50 0.99	2.49		HEXFET		
о 61	.039	.053	0.99	1.35		1 0175		
b2	.059	.033	1.65	2.39		1 GATE 2 DRAIN		
b3	.065	.092	1.65	2.35		3 SOURCE		
63 64	.102	.135	2.59	3.43		4 DRAIN		
b5	,102	.133	2.59	3.38		Divini		
c	,015	.034	0.38	0.86				
c1	.015	.030	0.38	0.76		IGBTs, CoPACK		
D	,776	.815	19,71	20,70	4			
D1	.515	-	13.08	-	5	1 GATE		
D2	.020	.030	0.51	0,76		2 COLLECTOR 3 EMITTER		
E	.602	.625	15.29	15,87	4	4 COLLECTOR		
E1	.540	-	15.72	-		4.= COLLECTOR		
e		BSC		BSC				
Øk		10	2.			DIODES		
L	.559	.634	14.20	16,10				
L1	,146	.169	3,71	4.29		1 ANODE/OPEN		
N		3		BSC	- 1	2 CATHODE		
¢₽	.140	.144	3.56	3.66		3 ANODE		
øP1	-	.275	-	6.98				
Q R	.209 .178	.224	5.31 4.52	5.69 5.49				
к S		BSC		5.49 BSC	-			
3	.217	030	3,31	030	-			

TO-247AC Part Marking Information

EXAMPLE: THIS IS AN IRF PE30 WITH ASSEMBLY LOT CODE 5657 ASSEMBLED CN WW 35, 2000 IN THE ASSEMBLY LINE "H" Note: "P" in assembly line position indicates "Lead-Free"

Data and specifications subject to change without notice.

International

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 08/04

> www.vishay.com 8

Document Number: 91224

VIEW B

Vishay

Notice

The products described herein were acquired by Vishay Intertechnology, Inc., as part of its acquisition of International Rectifier's Power Control Systems (PCS) business, which closed in April 2007. Specifications of the products displayed herein are pending review by Vishay and are subject to the terms and conditions shown below.

Specifications of the products displayed herein are subject to change without notice. Vishay Intertechnology, Inc., or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Vishay's terms and conditions of sale for such products, Vishay assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of Vishay products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Vishay for any damages resulting from such improper use or sale.

International Rectifier[®], IR[®], the IR logo, HEXFET[®], HEXSense[®], HEXDIP[®], DOL[®], INTERO[®], and POWIRTRAIN[®] are registered trademarks of International Rectifier Corporation in the U.S. and other countries. All other product names noted herein may be trademarks of their respective owners.