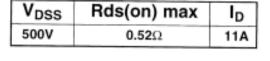
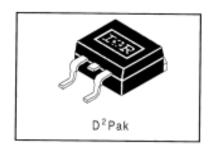
International TOR Rectifier

IRFS11N50APbF


HEXFET® Power MOSFET


Applications

- Switch Mode Power Supply (SMPS)
- Uninterruptable Power Supply
- · High speed power switching
- Lead-Free

Benefits

- Low Gate Charge Qg results in Simple Drive Requirement
- Improved Gate, Avalanche and dynamic dv/dt Ruggedness
- Fully Characterized Capacitance and Avalanche Voltage and Current
- Effective Coss Specified (See AN 1001)

Absolute Maximum Ratings

	Parameter	Max.	Units	
I _D	Continuous Drain Current, V _{GS} @ 10V®	11		
I _D	Continuous Drain Current, V _{GS} @ 10V®	7.0	- A	
IDM	Pulsed Drain Current ⊕⊕	44		
P _D @T _C = 25°C	Power Dissipation	170	w	
	Linear Derating Factor	1.3	W/°C	
V _{GS}	Gate-to-Source Voltage	± 30	V	
dw/dt	Peak Diode Recovery dv/dt ③⊚	6.9	V/ns	
Tj	Operating Junction and	-55 to + 150		
TSTG	Storage Temperature Range		*c	
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)	1 ~	

Applicable Off Line SMPS Topologies:

- Two Transistor Forward
- Half & Full Bridge
- Power Factor Correction Boost

Notes ® through ® are on page 8

Document Number: 91286

04/29/04 www.vishay.com

Static @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)OSS}	Drain-to-Source Breakdown Voltage	500	_	_	٧	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{\rm ISR,DS9}/\Delta T_{\rm J}$	Breakdown Voltage Temp. Coefficient	_	0.060	_	V/°C	Reference to 25°C, I _D = 1mA®
R _{DS(on)}	Static Drain-to-Source On-Resistance	_	_	0.52	Ω	V _{GS} = 10V, I _D = 6.6A ⊗
V _{GS(th)}	Gate Threshold Voltage	2.0	_	4.0	٧	$V_{DS} = V_{GS}, I_D = 250 \mu A$
loss	Drain-to-Source Leakage Current		_	25	μА	V _{DS} = 500V, V _{GS} = 0V
			_	250		V _{DS} = 400V, V _{GS} = 0V, T _J = 125°C
	Gate-to-Source Forward Leakage	_	-	100		V _{GS} = 30V
I _{G88}	Gate-to-Source Reverse Leakage		_	-100	nA	V _{GS} = -30V

Dynamic @ T_J = 25°C (unless otherwise specified)

_	Parameter	Min.	Тур.	Max.	Units	Conditions
grs .	Forward Transconductance	6.1	_	_	S	V _{DS} = 50V, I _D = 6.6A®
Qp	Total Gate Charge	_	_	52		I _D = 11A
Qps	Gate-to-Source Charge	_	_	13	nC	V _{DS} = 400V
Q _{pd}	Gate-to-Drain ("Miller") Charge	_	_	18	Ī	V _{GS} = 10V, See Fig. 6 and 13 ⊗ ®
t _{d(on)}	Turn-On Delay Time		14	_		V _{DD} = 250V
tr	Rise Time	_	35	_	ns	I _D = 11A
t _{d(off)}	Turn-Off Delay Time	_	32	_	1""	$R_G = 9.1\Omega$
t _f	Fall Time	_	28	_		R _D = 22Ω,See Fig. 10 @@
Ciss	Input Capacitance	=	1423	_		V _{GS} = 0V
Coss	Output Capacitance	$\overline{}$	208	_		V _{DS} = 25V
Crss	Reverse Transfer Capacitance	_	8.1	_	pF	f = 1.0MHz, See Fig. 5®
Coss	Output Capacitance	_	2000	_		$V_{GS} = 0V$, $V_{DS} = 1.0V$, $f = 1.0MHz$
Coss	Output Capacitance	_	55	-		$V_{GS} = 0V$, $V_{DS} = 400V$, $f = 1.0MHz$
Coss eff.	Effective Output Capacitance	_	97	_		V _{GS} = 0V, V _{DS} = 0V to 400V ⑤ ®

Avalanche Characteristics

	Parameter	Typ.	Max.	Units
E _{AS}	Single Pulse Avalanche Energy②®		275	mJ
IAR	Avalanche Current⊕	_	11	Α
EAR	Repetitive Avalanche Energy®		17	mJ

Thermal Resistance

	Parameter	Typ.	Max.	Units
Resc	Junction-to-Case		0.75	
R _{ecs}	Case-to-Sink, Flat, Greased Surface	0.50	_	°C/W
Reja	Junction-to-Ambient	_	62	

Diode Characteristics

	Parameter	Min.	Typ.	Max.	Units	Conditions
ls	S Continuous Source Current			MOSFET symbol		
		' A	showing the			
lsw	Pulsed Source Current				1 ^	integral reverse
	(Body Diode) ①	_	_	44		p-n junction diode.
V _{SD}	Diode Forward Voltage		_	1.5	٧	T _J = 25°C, I _S = 11A, V _{GS} = 0V ®
t _{rr}	Reverse Recovery Time		510	770	ns	T _J = 25°C, I _F = 11A
Q _{rr}	Reverse RecoveryCharge		3.4	5.1	μC	di/dt = 100A/µs ⊗⊚
ton	Forward Turn-On Time	Intr	Intrinsic turn-on time is negligible (turn-on is dominated by L _S +L _D)			

International Rectifier

IRFS11N50APbF

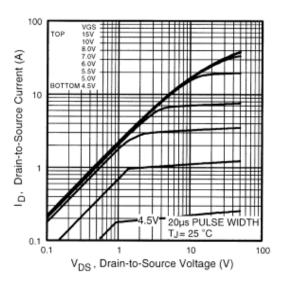


Fig 1. Typical Output Characteristics

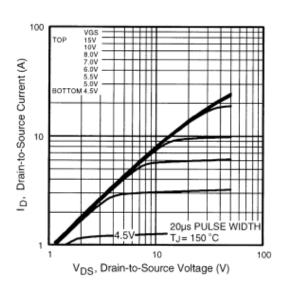


Fig 2. Typical Output Characteristics

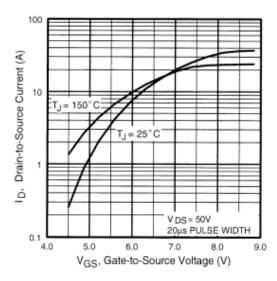


Fig 3. Typical Transfer Characteristics

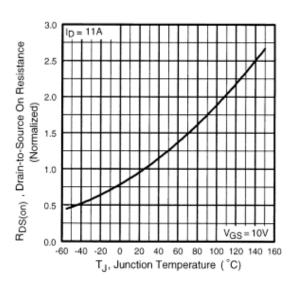


Fig 4. Normalized On-Resistance Vs. Temperature

Document Number: 91286

www.vishay.com

International

Rectifier

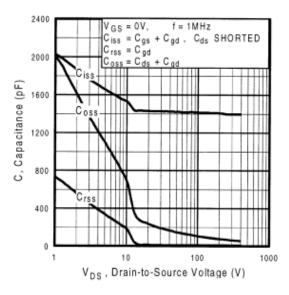


Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

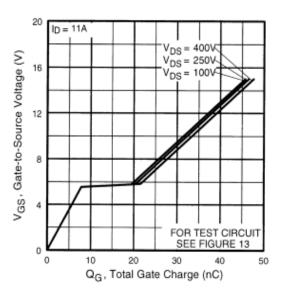


Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

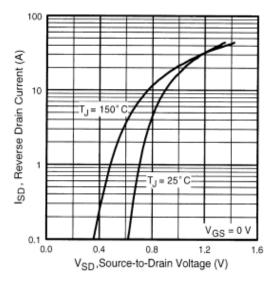


Fig 7. Typical Source-Drain Diode Forward Voltage

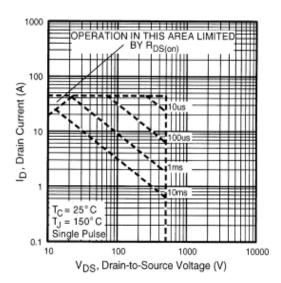


Fig 8. Maximum Safe Operating Area

International Rectifier

IRFS11N50APbF

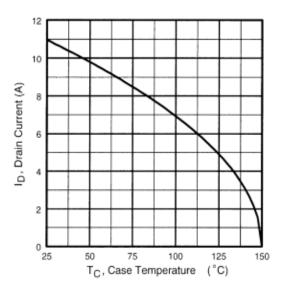


Fig 9. Maximum Drain Current Vs. Case Temperature

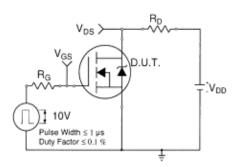


Fig 10a. Switching Time Test Circuit

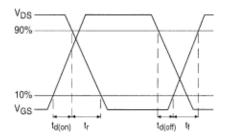


Fig 10b. Switching Time Waveforms

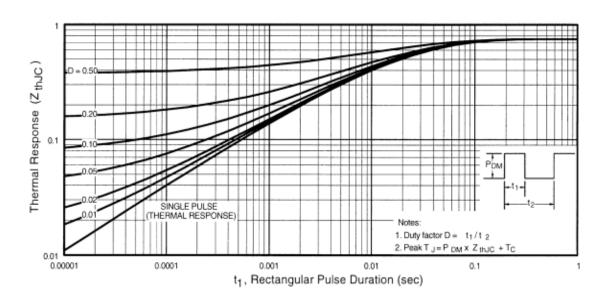


Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case



Fig 12a. Unclamped Inductive Test Circuit

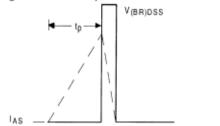


Fig 12b. Unclamped Inductive Waveforms

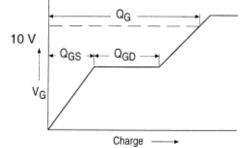


Fig 13a. Basic Gate Charge Waveform

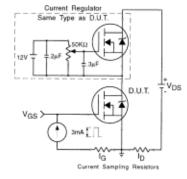


Fig 13b. Gate Charge Test Circuit

Document Number: 91286

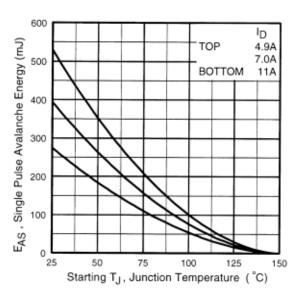


Fig 12c. Maximum Avalanche Energy Vs. Drain Current

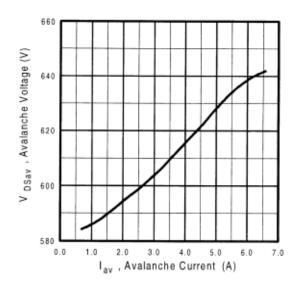
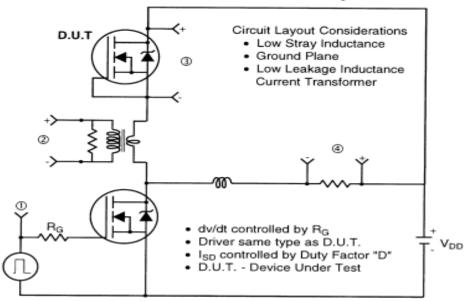
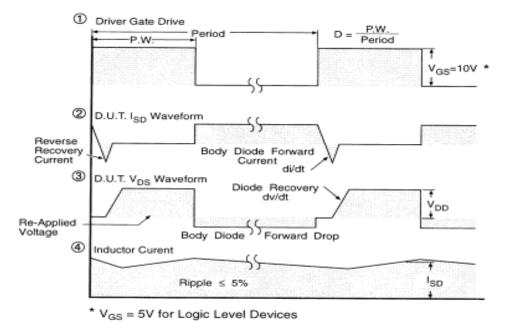
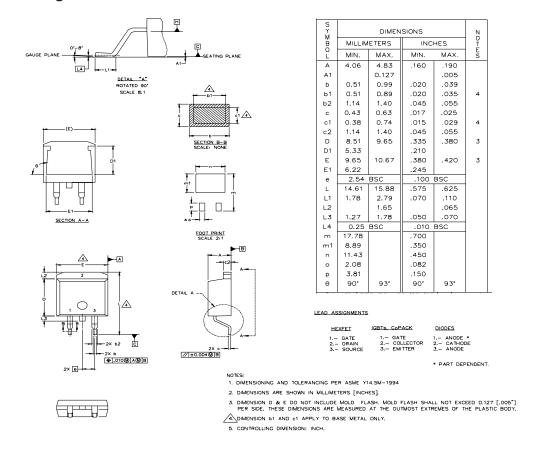
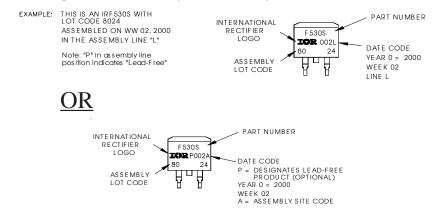



Fig 12d. Typical Drain-to-Source Voltage Vs. Avalanche Current

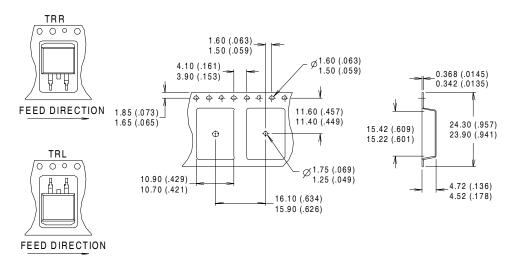
www.vishay.com

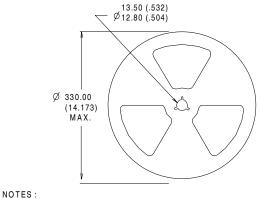
Peak Diode Recovery dv/dt Test Circuit

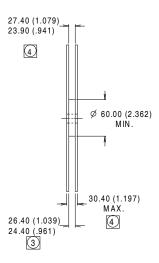




Fig 14. For N-Channel HEXFETS

D²Pak Package Outline




D²Pak Part Marking Information (Lead-Free)



D²Pak Tape & Reel Information

Dimensions are shown in millimeters (inches)

COMFORMS TO EIA-418.

- CONTROLLING DIMENSION: MILLIMETER.
 DIMENSION MEASURED @ HUB.
- INCLUDES FLANGE DISTORTION @ OUTER EDGE.

Data and specifications subject to change without notice.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903

04/04

Vishay

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.

Document Number: 91000 www.vishay.com Revision: 18-Jul-08