FAIRCHILD

SEMICONDUCTOR®

FDFME2P823ZT

Integrated P-Channel PowerTrench $^{\mbox{\scriptsize R}}$ MOSFET and Schottky Diode -20 V, -2.6 A, 142 $m\Omega$

Features

- Max $r_{DS(on)}$ = 142 m Ω at V_{GS} = -4.5 V, I_D = -2.3 A
- Max $r_{DS(on)}$ = 213 m Ω at V_{GS} = -2.5 V, I_D = -1.8 A
- Max $r_{DS(on)}$ = 331 m Ω at V_{GS} = -1.8 V, I_D = -1.5 A
- Max $r_{DS(on)}$ = 530 m Ω at V_{GS} = -1.5 V, I_D = -1.2 A
- Low profile: 0.55 mm maximum in the new package MicroFET 1.6x1.6 Thin
- Schottky: V_F < 0.57 V @ 1A
- Free from halogenated compounds and antimony oxides
- HBM ESD protection level > 1600 V (Note 3)
- RoHS Compliant

General Description

This device is designed specifically as a single package solution for the battery charge switch in cellular handset and other ultra-portable appliacrions. It features as MOSFET with low on-state resistance and an independently connected low forward voltage schottky diode for minimum condution losses.

The MicroFET 1.6x1.6 **Thin** package offers exceptional thermal performance for it's physical size and is well suited to switching and linear mode applications.

Applications

- Battery Charging
- DC-DC Conversion

MicroFET 1.6x1.6 Thin

MOSFET Maximum Ratings T_A = 25 °C unless otherwise noted

Symbol	Parameter			Ratings	Units	
V _{DS}	Drain to Source Voltage			-20	V	
V _{GS}	Gate to Source Voltage			±8	V	
	Drain Current -Continuous	T _A = 25 °C	(Note 1a)	-2.6	•	
D	-Pulsed			-6	A	
D	Power Dissipation for Single Operation	T _A = 25 °C	(Note 1a)	1.4	w	
PD	Power Dissipation for Single Operation	T _A = 25 °C	(Note 1b)	0.6	vv	
V _{RRM}	Schottky Repetitive Peak Reverse Voltage			28	V	
I _O	Schottky Average Forward Current			1	Α	
T _J , T _{STG}	Operating and Storage Junction Temperature Range		(Note 4)	-55 to +150	°C	

Thermal Characteristics

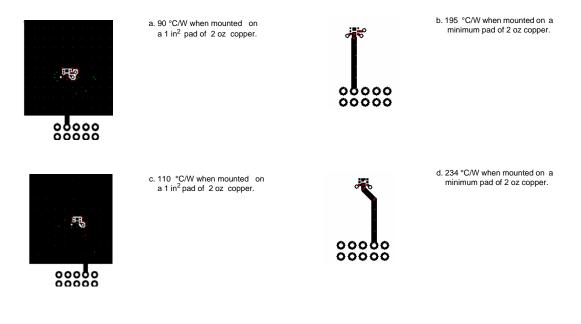
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient (Single Operation)	(Note 1a)	90	
R_{\thetaJA}	Thermal Resistance, Junction to Ambient (Single Operation)	(Note 1b)	195	°C/W
R_{\thetaJA}	Thermal Resistance, Junction to Ambient (Single Operation)	(Note 1c)	110	°C/vv
R_{\thetaJA}	Thermal Resistance, Junction to Ambient (Single Operation)	(Note 1d)	234	

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
3T	FDFME2P823ZT	MicroFET 1.6x1.6 Thin	7 "	8 mm	5000 units

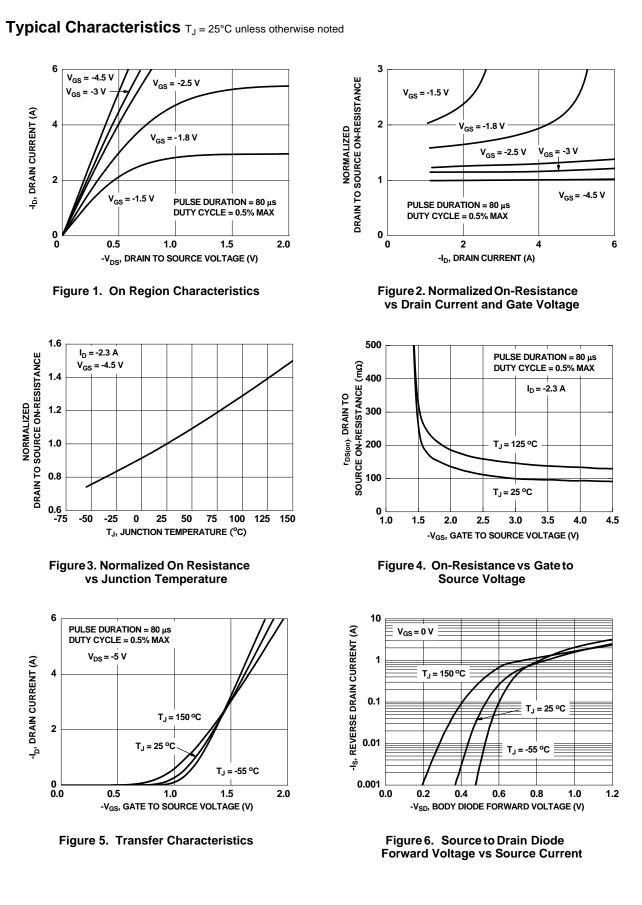
©2010 Fairchild Semiconductor Corporation FDFME2P823ZT Rev.C1 July 2010

Symbol	Parameter	Test	Conditions	Min	Тур	Max	Units
Off Chara	icteristics						
BV _{DSS}	Drain to Source Breakdown Voltage	I _D = -250 μA, V _{GS} = 0 V		-20			V
$\frac{\Delta BV_{DSS}}{\Delta T_J}$	Breakdown Voltage Temperature Coefficient		$I_D = -250 \ \mu\text{A}$, referenced to 25 °C		-12		mV/°C
IDSS	Zero Gate Voltage Drain Current	V _{DS} = -16 V,	$V_{GS} = 0 V$			-1	μA
I _{GSS}	Gate to Source Leakage Current	$V_{GS} = \pm 8 V, V_{I}$	$V_{GS} = \pm 8 \text{ V}, V_{DS} = 0 \text{ V}$			±10	μΑ
On Chara	cteristics						
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_{D}$	$V_{GS} = V_{DS}, I_{D} = -250 \ \mu A$		-0.6	-1.0	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate to Source Threshold Voltage Temperature Coefficient	$I_D = -250 \ \mu$ A, referenced to 25 °C			2		mV/°C
		V _{GS} = -4.5 V,		95	142		
		$V_{GS} = -2.5 V,$		120	213		
r _{DS(on)}	Drain to Source On Resistance		V _{GS} = -1.8 V, I _D = -1.5 A			331	mΩ
·DS(on)			$V_{GS} = -1.5 \text{ V}, I_D = -1.2 \text{ A}$		190	530	
		V _{GS} = -4.5 V, I _D = -2.3 A, T _J = 125 °C			128	190	
9 _{FS}	Forward Transconductance	$V_{DS} = -4.5 \text{ V}, \ \text{I}_{D} = -2.3 \text{ A}$			7		S
Dynamic	Characteristics						
C _{iss}	Input Capacitance				305	405	pF
C _{oss}	Output Capacitance		− V _{DS} = -10 V, V _{GS} = 0 V, − f = 1 MHz		55	75	pF
C _{rss}	Reverse Transfer Capacitance	1 = 1 10112			50	75	pF
Switching	g Characteristics						
t _{d(on)}	Turn-On Delay Time		V_{DD} = -10 V, I _D = -1 A, V _{GS} = -4.5 V, R _{GEN} = 6 Ω		4.7	10	ns
t _r	Rise Time				4.8	10	ns
t _{d(off)}	Turn-Off Delay Time	$V_{GS} = -4.5 V, I$			33	53	ns
t _f	Fall Time				16	29	ns
Q _q	Total Gate Charge		$V_{DD} = -10 \text{ V}, \text{ I}_{D} = -2.3 \text{ A},$		5.5	7.7	nC
Q _{gs}	Gate to Source Gate Charge				0.6		nC
Q _{gd}	Gate to Drain "Miller" Charge	— V _{GS} = -4.5 V			1.4		nC
Drain-Sou	urce Diode Characteristics						
V _{SD}	Source to Drain Diode Forward Voltage	$V_{GS} = 0 V, I_{S} =$	-0.9 A (Note 2)		-0.8	-1.2	V
t _{rr}	Reverse Recovery Time				16	29	ns
Q _{rr}	Reverse Recovery Charge	— I _F = -2.3 A, di/dt = 100 A/μs			4.4	10	nC
Schottky	Diode Characteristics						
	Reverse Leakage	V _R = 28 V	T _J = 25 °C		15	100	μA
I _R	INEVEISE LEARAYE	vR - 20 v	T _J = 85 °C		0.46	4.7	mA
V _F	Forward Voltage	I _F = 1 A	$T_J = 25 \ ^{\circ}C$		0.47	0.57	V
• F			T _J = 85 °C		0.45		3
			T _J = 25 °C		0.38		


©2010 Fairchild Semiconductor Corporation FDFME2P823ZT Rev.C1

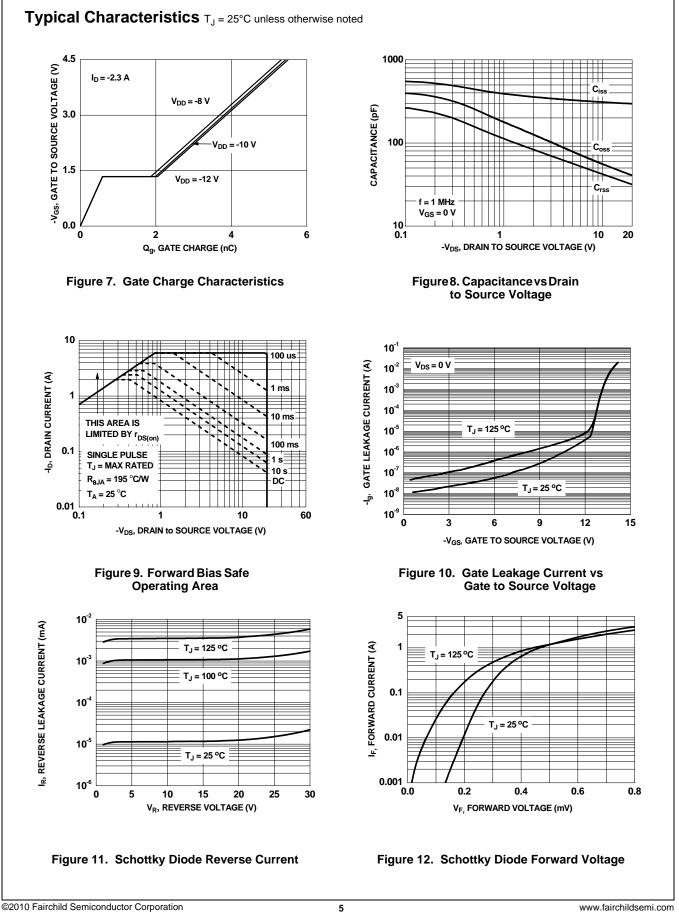
FDFME2P823ZT Integrated P-Channel PowerTrench[®] MOSFET and Schottky Diode

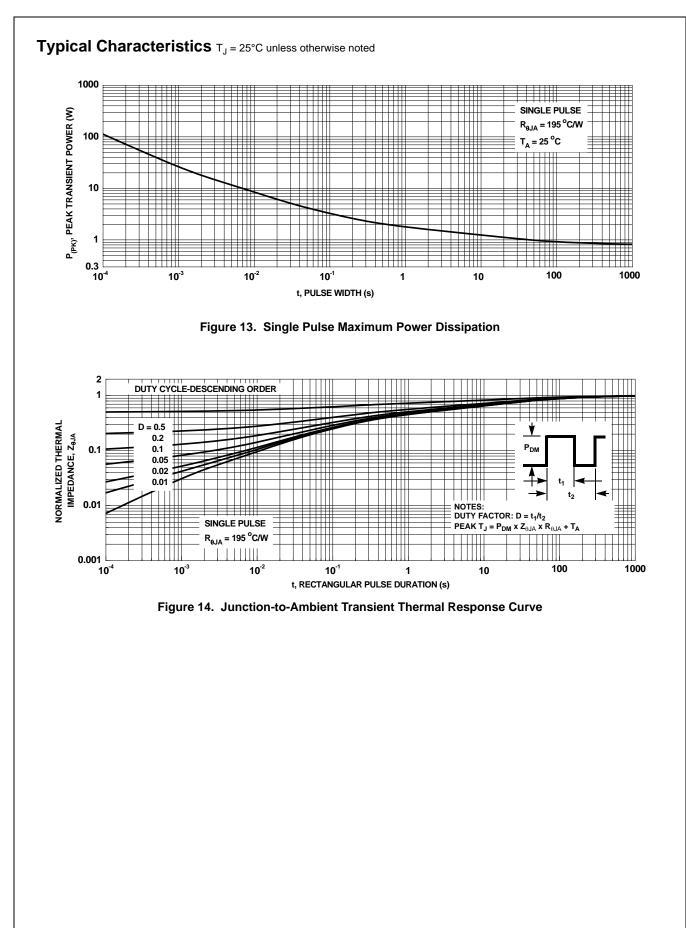
Electrical Characteristics


Notes:

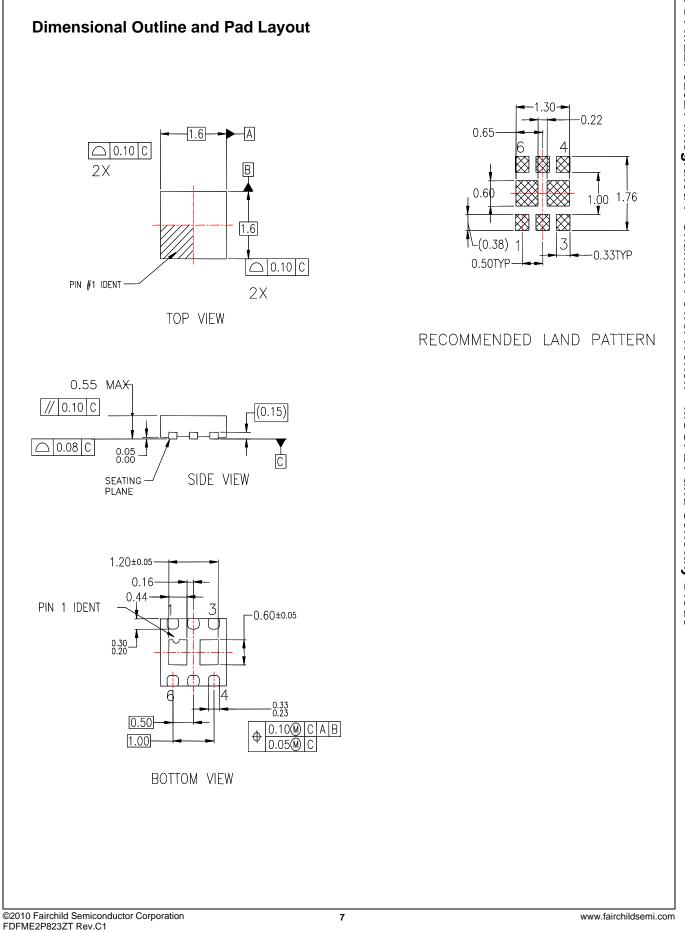
- 1. R_{0JA} is determined with the device mounted on a 1 in² oz. copper pad on a 1.5 x 1.5 in. board of FR-4 material. R_{0JC} is guaranteed by design while R_{0JA} is determined by the user's board design.
 - (a) MOSFET R_{0JA} = 90 °C/W when mounted on a 1 in² pad of 2 oz copper, 1.5 " x 1.5 " x 0.062 " thick PCB.
 - (b) MOSFET $R_{\theta JA}$ = 195 °C/W when mounted on a minimum pad of 2 oz copper.
 - (c) Schottky $R_{\theta JA}$ = 110 °C/W when mounted on a 1 in² pad of 2 oz copper, 1.5 " x 1.5 " x 0.062" thick PCB.
 - (d) Schottky $R_{\theta JA}$ = 234 °C/W when mounted on a minimum pad of 2 oz copper.

2. Pulse Test: Pulse Width < 300 $\mu s,$ Duty cycle < 2.0%.


- 3. The diode connected between the gate and source serves only as protection ESD. No gate overvoltage rating is implied.
- 4. Rating is applicable to MOSFET only.


www.fairchildsemi.com

FDFME2P823ZT Rev.C1


©2010 Fairchild Semiconductor Corporation

FDFME2P823ZT Rev.C1

FDFME2P823ZT Integrated P-Channel PowerTrench[®] MOSFET and Schottky Diode

©2010 Fairchild Semiconductor Corporation

FDFME2P823ZT Rev.C1