

STGW35HF60W

35 A, 600 V ultra fast IGBT

Preliminary data

Features

- Improved E_{off} at elevated temperature
- Minimal tail current
- Low conduction losses
- V_{CE(sat)} classified for easy parallel connection

Applications

- Welding
- High frequency converters
- Power factor correction

The STGW35HF60W is based on a new advanced planar technology concept to yield an IGBT with more stable switching performance ($E_{\rm off}$) versus temperature, as well as lower conduction losses. The device is tailored to high switching frequency operation (over 100 kHz).

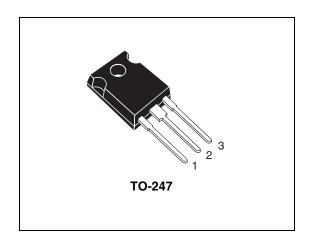


Figure 1. Internal schematic diagram

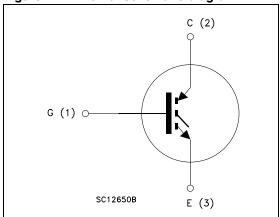


Table 1. Device summary

Order code	Marking ⁽¹⁾	Package	Packaging
	GW35HF60WA		
STGW35HF60W	GW35HF60WB	TO-247	Tube
	GW35HF60WC		

Collector-emitter saturation voltage is classified in group A, B and C, see Table 5: VCE(sat) classification. STMicroelectronics reserves the right to ship from any group according to production availability.

May 2010 Doc ID 17490 Rev 1 1/12

Electrical ratings STGW35HF60W

1 Electrical ratings

Table 2. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{CES}	Collector-emitter voltage (V _{GE} = 0)	600	V
I _C ⁽¹⁾	Continuous collector current at T _C = 25 °C	60	Α
I _C ⁽¹⁾	Continuous collector current at T _C = 100 °C	35	Α
I _{CP} ⁽²⁾	Pulsed collector current	150	Α
I _{CL} (3)	Turn-off latching current	80	Α
V _{GE}	Gate-emitter voltage	± 20	V
P _{TOT}	Total dissipation at T _C = 25 °C	200	W
T _{stg}	Storage temperature	– 55 to 150	°C
T _j	Operating junction temperature	- 33 10 130	C

^{1.} Calculated according to the iterative formula:

$$I_{C}(T_{C}) = \frac{T_{j(max)} - T_{C}}{R_{thj-c} \times V_{CE(sat)(max)}(T_{j(max)}, I_{C}(T_{C}))}$$

- 2. Pulse width limited by maximum junction temperature and turn-off within RBSOA
- 3. V_{CLAMP} = 80% (V_{CES}), V_{GE} = 15 V, R_{G} = 10 Ω , T_{J} = 150 °C

Table 3. Thermal data

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case	0.63	°C/W
R _{thj-amb}	Thermal resistance junction-ambient	50	°C/W

2 Electrical characteristics

(T_J = 25 °C unless otherwise specified)

Table 4. Static

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)CES}	Collector-emitter breakdown voltage (V _{GE} = 0)	I _C = 1 mA	600			V
V	Collector-emitter	V _{GE} = 15 V, I _C = 20 A			2.5	٧
V _{CE(sat)}	saturation voltage	$V_{GE} = 15V$, $I_C = 20$ A, $T_J = 125$ °C		1.65		V
V _{GE(th)}	Gate threshold voltage	$V_{CE} = V_{GE}$, $I_C = 1 \text{ mA}$	3.75		5.75	٧
I _{CES}	Collector cut-off current	V _{CE} = 600 V			250	μΑ
CES	$(V_{GE} = 0)$	V _{CE} = 600 V, T _J = 125 °C			1	mA
I _{GES}	Gate-emitter leakage current (V _{CE} = 0)	V _{GE} = ±20 V			± 100	nA

Table 5. V_{CE(sat)} classification

Symbol	Parameter	Group	Va	Unit	
Symbol	raiametei	Стопр	Min.	Max.	Oilit
		Α	1.68	1.92	
V _{CE(sat)}	Collector-emitter saturation voltage $V_{GE} = 15 \text{ V}, I_{C} = 20 \text{ A}$	В	1.88	2.17	V
	*GE = 10 *, 10 = 20 71	С	2.13	2.50	

Table 6. Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{ies} C _{oes} C _{res}	Input capacitance Output capacitance Reverse transfer capacitance	$V_{CE} = 25 \text{ V, f} = 1 \text{ MHz,}$ $V_{GE} = 0$	-	2400 235 50	-	pF pF pF
$egin{array}{c} Q_{ m g} \ Q_{ m gc} \end{array}$	Total gate charge Gate-emitter charge Gate-collector charge	V_{CE} = 400 V, I_{C} = 20 A, V_{GE} = 15 V, (see Figure 16)	-	140 13 52	-	nC nC nC

Electrical characteristics STGW35HF60W

Table 7. Switching on/off (inductive load)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)} t _r (di/dt) _{on}	Turn-on delay time Current rise time Turn-on current slope	V_{CC} = 400 V, I_{C} = 20 A R_{G} = 10 Ω , V_{GE} = 15 V, (see Figure 15)	-	30 15 1650	-	ns ns A/µs
t _{d(on)} t _r (di/dt) _{on}	Turn-on delay time Current rise time Turn-on current slope	$V_{CC} = 400 \text{ V}, I_{C} = 20 \text{ A}$ $R_{G} = 10 \Omega, V_{GE} = 15 \text{ V},$ $T_{J} = 125 ^{\circ}\text{C} \; (see Figure \; 15)$	-	30 15 1600	-	ns ns A/µs
$t_r(V_{off})$ $t_d(_{off})$ t_f	Off voltage rise time Turn-off delay time Current fall time	V_{CC} = 400 V, I_{C} = 20 A, R_{GE} = 10 Ω , V_{GE} = 15 V (see Figure 15)	-	30 175 40	-	ns ns ns
t _r (V _{off}) t _d (_{off}) t _f	Off voltage rise time Turn-off delay time Current fall time	V_{CC} = 400 V, I_{C} = 20 A, R_{GE} = 10 Ω , V_{GE} =15 V, T_{J} = 125 °C (see Figure 15)	-	50 225 70	-	ns ns ns

Table 8. Switching energy (inductive load)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
E _{on} ⁽¹⁾	Turn-on switching losses	$V_{CC} = 400 \text{ V}, I_{C} = 20 \text{ A}$		290		μJ
E _{off}	Turn-off switching losses	$R_G = 10 \Omega$, $V_{GE} = 15 V$,	-	185		μJ
E _{ts}	Total switching losses	(see Figure 17)		475		μJ
E _{on} ⁽¹⁾	Turn-on switching losses	V _{CC} = 400 V, I _C = 20 A		420		μJ
E _{off}	Turn-off switching losses	$R_G = 10 \Omega$, $V_{GE} = 15 V$,	-	350	530	μJ
E _{ts}	Total switching losses	T _J = 125 °C (see Figure 17)		770		μJ

Eon is the tun-on losses when a typical diode is used in the test circuit in Figure 17. If the IGBT is offered
in a package with a co-pak diode, the co-pack diode is used as external diode. IGBTs and diode are at the
same temperature (25 °C and 125 °C). Eon include diode recovery energy.

Electrical characteristics (curves) 2.1

Figure 2. **Output characteristics**

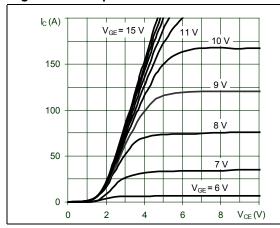


Figure 3. **Transfer characteristics**

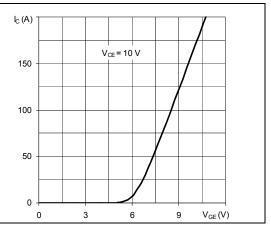
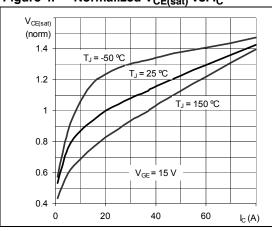



Figure 4. Normalized V_{CE(sat)} vs. I_C

Normalized $V_{\text{CE(sat)}}$ vs. temperature Figure 5.

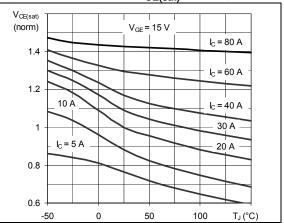
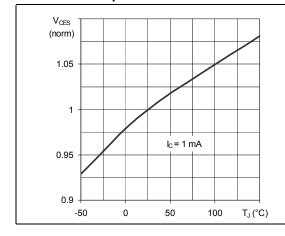
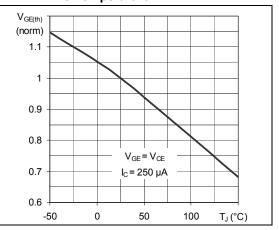
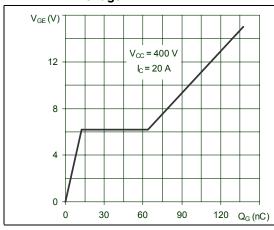




Figure 6. Normalized breakdown voltage vs. Figure 7. temperature

Normalized gate threshold voltage vs. temperature


Doc ID 17490 Rev 1

5/12

Electrical characteristics STGW35HF60W

Figure 8. Gate charge vs. gate-emitter voltage

Figure 9. Capacitance variations

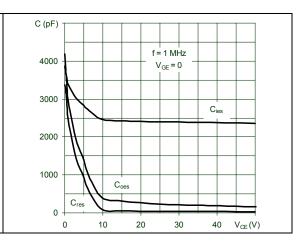
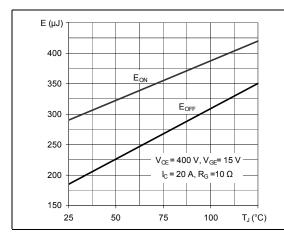



Figure 10. Switching losses vs temperature

Figure 11. Switching losses vs. gate resistance

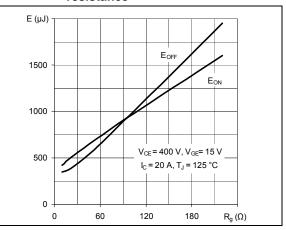
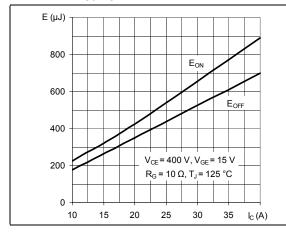
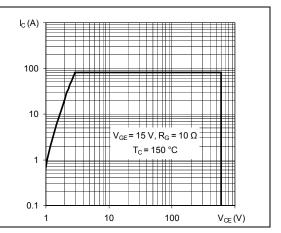
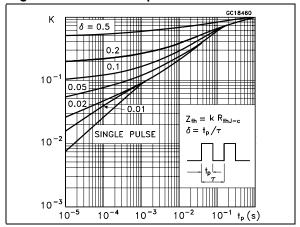




Figure 12. Switching losses vs. collector current


Figure 13. Turn-off SOA

6/12 Doc ID 17490 Rev 1

Figure 14. Thermal impedance

Test circuits STGW35HF60W

3 Test circuits

Figure 15. Test circuit for inductive load switching

Figure 16. Gate charge test circuit

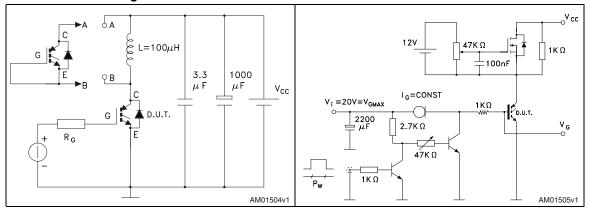
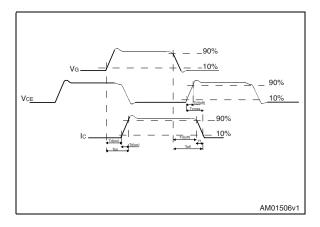
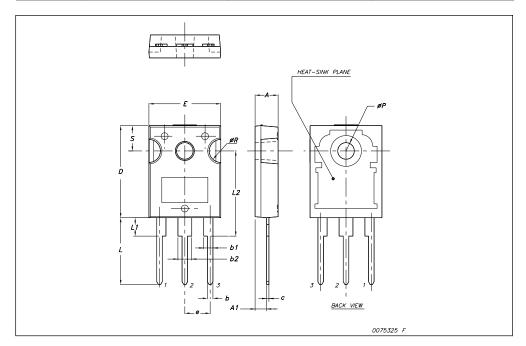



Figure 17. Switching waveform

8/12 Doc ID 17490 Rev 1


4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

577

TO-247 Mechanical d	data	cal data	echanic	M	-247	TO.
---------------------	------	----------	---------	---	------	-----

Dim.		mm.	
Dilli.	Min.	Тур	Max.
Α	4.85		5.15
A1	2.20		2.60
b	1.0		1.40
b1	2.0		2.40
b2	3.0		3.40
С	0.40		0.80
D	19.85		20.15
E	15.45		15.75
е		5.45	
L	14.20		14.80
L1	3.70		4.30
L2		18.50	
øΡ	3.55		3.65
øR	4.50		5.50
S		5.50	

4

STGW35HF60W Revision history

5 Revision history

Table 9. Document revision history

Date	Revision	Changes
17-May-2010	1	Initial release

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION). OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2010 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

12/12 Doc ID 17490 Rev 1

