International IER Rectifier

Characteristics	90SQ...	Units
$I_{\text {F(AV) }}$ Rectangular waveform	9	A
$\mathrm{V}_{\text {RRM }}$ range	30/45	V
$\mathrm{I}_{\text {FSM }}$ @tp $=5 \mu \mathrm{~s}$ sine	2150	A
V_{F} @9Apk, $T_{J}=125^{\circ} \mathrm{C}$	0.42	V
$\mathrm{T}_{\mathrm{J}} \quad$ range	-55to 150	${ }^{\circ} \mathrm{C}$

Description/ Features

The 90SQ axial leaded Schottky rectifier series has been optimized for very low forward voltage drop, with moderate leakage. The proprietary barrier technology allows for reliable operation up to $150^{\circ} \mathrm{C}$ junction temperature. Typical applications are in switching power supplies, converters, freewheeling diodes, and reverse battery protection.

- $150^{\circ} \mathrm{C} \mathrm{T}_{\jmath}$ operation
- High purity, high temperature epoxy encapsulation for enhanced mechanical strength and moisture resistance
- Very low forward voltage drop
- High frequency operation
- Guard ring for enhanced ruggedness and long term reliability
- Lead-Free plating

Voltage Ratings

Part number	90 SQ030	90 SQ035	90 SQ040	90 SQ045
V_{R} Max. DC Reverse Voltage (V)	30	35	40	45
$\mathrm{~V}_{\text {RWM }}$ Max. Working Peak Reverse Voltage (V)	30		40	

Absolute Maximum Ratings

	Parameters	90SQ	Units	Conditions	
$I_{\text {F(AV) }}$	Max. Average Forward Current *SeeFig. 5	9	A	50% duty cycle @ $T_{C}=69^{\circ} \mathrm{C}$, rectangularwave form	
$\mathrm{I}_{\text {FSM }}$	Max.Peak One Cycle Non-Repetitive	2150	A	5μ s Sine or $3 \mu \mathrm{~s}$ Rect. pulse	Following any rated load condition and with rated $\mathrm{V}_{\text {RRM }}$ applied
	Surge Current * See	340		10 ms Sine or6ms Rect. pulse	
$\mathrm{E}_{\text {AS }}$	Non-RepetitiveAvalancheEnergy	12	mJ	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{AS}}=1.8 \mathrm{Amps}, \mathrm{L}=7.4 \mathrm{mH}$	
$\mathrm{I}_{\text {AR }}$	RepetitiveAvalancheCurrent	1.8	A	Current decaying linearly to zero in $1 \mu \mathrm{sec}$ Frequency limited by T_{J} max. $\mathrm{V}_{\mathrm{A}}=1.5 \mathrm{x} \mathrm{V}_{\mathrm{R}}$ typical	

Electrical Specifications

	Parameters	90SQ	Units	Conditions	
$V_{\text {FM }}$	Max. Forward Voltage Drop * See Fig. 1	0.48	V	@ 9A	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$
		0.57	V	@ 18A	
		0.42	V	@ 9A	$\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$
		0.52	V	@ 18A	
$\mathrm{I}_{\text {RM }}$	Max. Reverse Leakage Current (1)	1.75	mA	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	$V_{R}=\text { rated } V_{R}$
	* See Fig. 2	70	mA	$\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$	
$\mathrm{C}_{\text {T }}$	Max. Junction Capacitance	900	pF	$\mathrm{V}_{\mathrm{R}}=5 \mathrm{~V}_{\mathrm{DC}}$, (test signal range 100 Khz to 1 Mhz) $25^{\circ} \mathrm{C}$	
$\mathrm{L}_{\text {s }}$	Typical Series Inductance	10.0	nH	Measured lead to lead 5mm from body	
$\mathrm{dv} / \mathrm{dt}$	Max. Voltage Rate of Change (Rated V_{R})	10000	$\mathrm{V} / \mu \mathrm{s}$		

(1) Pulse Width $<300 \mu \mathrm{~s}$, Duty Cycle $<2 \%$

Thermal-Mechanical Specifications

	Parameters	90SQ	Units	Conditions
T ${ }_{\text {J }}$	Max. Junction Temperature Range	-55 to 150	${ }^{\circ} \mathrm{C}$	
$\mathrm{T}_{\text {stg }}$	Max. Storage Temperature Range	-55 to 150	${ }^{\circ} \mathrm{C}$	
$\mathrm{R}_{\text {thJL }}$	Max. Thermal Resistance Junction toLead	8.0	${ }^{\circ} \mathrm{C} / \mathrm{W}$	DCoperation *See Fig. 4 1/8inchlead leangth
$\mathrm{R}_{\text {thJA }}$	Typical Thermal Resistance, Junction to Air	44	${ }^{\circ} \mathrm{C} / \mathrm{W}$	
wt	Approximate Weight	1.4(0.049)	g(oz.)	
	CaseStyle	DO-204AR		JEDEC

Fig. 2-Typical Values of Reverse Current Vs. Reverse Voltage

Fig. 3-Typical Junction Capacitance Vs. Reverse Voltage
Fig. 1-Maximum Forward Voltage Drop Characteristics

Fig. 4-Maximum Thermal Impedance $\mathrm{Z}_{\text {thJL }}$ Characteristics

Fig. 5-Maximum Allowable Case Temperature Vs. Average Forward Current

Fig. 6-Forward Power Loss Characteristics

Fig. 7-Maximum Non-Repetitive Surge Current

Fig. 8-Unclamped Inductive Test Circuit

Ordering Information Table

International
 ISR Rectifier

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7309

Notice

The products described herein were acquired by Vishay Intertechnology, Inc., as part of its acquisition of International Rectifier's Power Control Systems (PCS) business, which closed in April 2007. Specifications of the products displayed herein are pending review by Vishay and are subject to the terms and conditions shown below.

Specifications of the products displayed herein are subject to change without notice. Vishay Intertechnology, Inc., or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Vishay's terms and conditions of sale for such products, Vishay assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of Vishay products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Vishay for any damages resulting from such improper use or sale.

International Rectifier ${ }^{\circledR}$, IR $^{\circledR}$, the IR logo, HEXFET ${ }^{\circledR}$, HEXSense ${ }^{\circledR}$, HEXDIP ${ }^{\circledR}$, DOL ${ }^{\circledR}$, INTERO ${ }^{\circledR}$, and POWIRTRAIN ${ }^{\circledR}$ are registered trademarks of International Rectifier Corporation in the U.S. and other countries. All other product names noted herein may be trademarks of their respective owners.

