Product Features

- DC-6 GHz
- 22 dB Gain @ 1 GHz
- +12.5 dBm P1dB @ 1 GHz
- +25 dBm OIP3 @ 1 GHz
- 3.4 dB Noise Figure
- Internally matched to 50Ω
- Lead-free/green/RoHS-compliant SOT-363 package

Applications

- Mobile Infrastructure
- CATV / FTTX
- W-LAN / ISM
- RFID
- WiMAX / WiBro

Product Description

The ECG001F is a general-purpose buffer amplifier that offers high dynamic range in a low-cost surface-mount package. At 1000 MHz , the ECG001F typically provides 22 dB of gain, +25 dBm Output IP3, and +12.5 dBm P1dB.

The ECG001F consists of a Darlington-pair amplifier using the high reliability InGaP/GaAs HBT process technology and only requires DC-blocking capacitors, a bias resistor, and an inductive RF choke for operation. The device is ideal for wireless applications and is available in a lowcost, surface-mountable lead-free/green/RoHS-compliant SOT-363 package. All devices are $100 \% \mathrm{RF}$ and DC tested.

The broadband MMIC amplifier can be directly applied to various current and next generation wireless technologies such as GPRS, GSM, CDMA, and W-CDMA. In addition, the ECG001F will work for other various applications within the DC to 6 GHz frequency range such as CATV and mobile wireless.

Functional Diagram

Function	Pin No.
Input	3
Output/Bias	6
Ground	$1,2,4,5$

Specifications ${ }^{(1)}$

Parameter	Units					Min	Typ	Max
Operational Bandwidth	MHz	DC		6000				
Test Frequency	MHz	1000						
Gain	dB		22.2					
Output P1dB	dBm		+12.5					
Output IP3 ${ }^{(2)}$	dBm		+25					
Test Frequency	MHz	2000						
Gain	dB	19.2	20.7	21.8				
Input Return Loss	dB		35					
Output Return Loss	dB		18					
Output P1dB	dBm		+12.5					
Noise Figure	dB		3.4					
Device Voltage	V	3.0	3.4	3.8				
Device Current	mA		30					

1. Test conditions unless otherwise noted: $25^{\circ} \mathrm{C}$, Supply Voltage $=+5 \mathrm{~V}$, Rbias $=51 \Omega, 50 \Omega$ System.

Absolute Maximum Rating

Parameter	Rating
Storage Temperature	-55 to $+150{ }^{\circ} \mathrm{C}$
Device Current	150 mA
RF Input Power (continuous)	+12 dBm
Thermal Resistance, Rth	$270^{\circ} \mathrm{C} / \mathrm{W}$
For 10 hours MTTF	$+160^{\circ} \mathrm{C}$
Junction Temperature	

[^0]Typical Performance ${ }^{(1)}$

Parameter	Units				
Frequency	MHz	500	900	1900	2140
S21	dB	22.6	22.4	20.9	20.6
S11	dB	-46	-42	-35	-29
S22	dB	-29	-24	-18	-17
Output P1dB	dBm	+12	+12.5	+12.5	+12.5
Output IP3 ${ }^{(2)}$	dBm	+23	+25	+26	+26
Noise Figure	dB	3.4	3.4	3.4	3.4

Ordering Information

Part No.	Description
ECG001F-G	InGaP HBT Gain Block (lead-free/green/RohS-compliant SOT-363 package)
ECG001F-PCB	$700-2400$ MHz Fully Assembled Eval. Board

Standard tape $/$ reel size $=3000$ pieces on a $7 "$ reel

Typical Device RF Performance

Supply Bias $=+5 \mathrm{~V}, \mathrm{R}_{\text {bias }}=51 \Omega, \mathrm{I}_{\mathrm{cc}}=30 \mathrm{~mA}$

Frequency	$\mathbf{M H z}$	$\mathbf{1 0 0}$	$\mathbf{5 0 0}$	$\mathbf{9 0 0}$	$\mathbf{1 9 0 0}$	$\mathbf{2 1 4 0}$	$\mathbf{2 4 0 0}$	$\mathbf{3 5 0 0}$	$\mathbf{5 8 0 0}$
S21	dB	22.8	22.6	22.4	20.9	20.6	20.2	18.6	15.5
S11	dB	-48	-46	-42	-35	-29	-28	-22	-14
S22	dB	-34	-29	-24	-18	-17	-16	-13	-8
Output P1dB	dBm	+11.6	+11.6	+12.6	+12.6	+12.6	+12.8	+12.2	+11
Output IP3	dBm	+23.6	+23.5	+24.8	+26	+25.6	+25.4	+23	
Noise Figure	dB	3.4	3.4	3.4	3.4	3.4	3.4		

1. Test conditions: $T=25^{\circ} \mathrm{C}$, Supply Voltage $=+5 \mathrm{~V}$, Device Voltage $=+3.4 \mathrm{~V}$, Rbias $=51 \Omega$, Icc $=30 \mathrm{~mA}$ typical, 50Ω System.
2. 3OIP measured with two tones at an output power of $-1 \mathrm{dBm} /$ tone separated by 1 MHz . The suppression on the largest IM3 product is used to calculate the 30 IP using a $2: 1$ rule.
3. Data is shown as device performance only. Actual implementation for the desired frequency band will be determined by external components shown in the application circuit.

Recommended Application Circuit

ECG001F-PCB

Recommended Component Values							
	$\mathbf{5 0}$	$\mathbf{5 0 0}$	$\mathbf{9 0 0}$	$\mathbf{1 9 0 0}$	$\mathbf{2 2 0 0}$	$\mathbf{2 5 0 0}$	$\mathbf{3 5 0 0}$
	820 nH	220 nH	68 nH	27 nH	22 nH	18 nH	15 nH
	$.018 \mu \mathrm{~F}$	1000 pF	100 pF	68 pF	68 pF	56 pF	39 pF

1. The proper values for the components are dependent upon the intended frequency of operation.
2. The following values are contained on the evaluation board to achieve optimal broadband performance:

Ref. Desig.	Value / Type	Size
L 1	39 nH wirewound inductor	0603
$\mathrm{C} 1, \mathrm{C} 2$	56 pF chip capacitor	0603
C 3	$0.018 \mu \mathrm{~F}$ chip capacitor	0603
C 4	Do Not Place	
R4	$51 \Omega 1 \%$ tolerance	0805

Recommended Bias Resistor Values

Supply Voltage	R1 value	Size
5 V	53.3 ohms	0805
6 V	86.7 ohms	0805
8 V	153 ohms	1210
9 V	187 ohms	1210
10 V	220 ohms	2010
12 V	287 ohms	2010

The proper value for R1 is dependent upon the supply voltage and allows for bias stability over temperature. WJ recommends a minimum supply bias of +5 V . A 1% tolerance resistor is recommended.

ECG001F-G Mechanical Information

This package is lead-free/Green/RoHS-compliant. The plating material on the leads is annealed matte tin over copper. It is compatible with both lead-free (maximum $260^{\circ} \mathrm{C}$ reflow temperature) and leaded (maximum $245^{\circ} \mathrm{C}$ reflow temperature) soldering processes.

Outline Drawing

TOP VIEW

.
DIMENSION D DOES NOT INCLUDE MLD FLASH, PROTRUSIONS OR GATE BURRS,
MOLD FLASH. PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.15 mm PER END. DMENENION EL DOES NOT INCLUEE INTRRLEAD FLASH OR PROTRUSION.
INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.15 mm PER SIDE INTRRLLAD FLASH OR PROTR SION SHALL NOT EXCEEE 0.15 mm PER SIDE
D ANE EI DIMENSIONS ARE DETERMINED AT DATUM H.
THE PACKAGE TOP MAY RE SUALLER THAN THE PACKACE BOTTOM, DME ESIONS D AND E1 ARE DETERMMED AT THE OUTERNOST EXTREME
OF THE PLASTIC BODY EXCLISVE OF MOL FLASH TIE BAR BURRS, GATE BURRS AN INTERLEAD FLASH, BUT INCLUDNG ANY MISMATCH BETMEE THE
BOXD O AD E
AT DATMM

Land Pattern

Product Marking

The component will be marked with a two-digit numeric lot code (shown as "XX") followed with a " 4 " designator on the top surface of the package.

Tape and reel specifications for this part are located on the website in the "Application Notes" section.

ESD Rating: Class 1A

Value:	Passes between 250 and 500V
Test:	Human Body Model (HBM)
Standard:	JEDEC Standard JESD22-A114

MSL Rating: Level 3 at $+260^{\circ} \mathrm{C}$ convection reflow Standard: JEDEC Standard J-STD-020

Mounting Config. Notes

1. Ground / thermal vias are critical for the proper performance of this device. Vias should use a .35 mm ($\left.\# 80 / .0135^{\prime \prime}\right)$ diameter drill and have a final plated thru diameter of $.25 \mathrm{~mm}\left(.010^{\prime \prime}\right)$.
2. Add as much copper as possible to inner and outer layers near the part to ensure optimal thermal performance.
3. Mounting screws can be added near the part to fasten the board to a heatsink. Ensure that the ground / thermal via region contacts the heatsink.
4. Do not put solder mask on the backside of the PC board in the region where the board contacts the heatsink.
5. RF trace width depends upon the PC board material and construction.
6. Use 1 oz . Copper minimum.
7. All dimensions are in millimeters (inches). Angles are in degrees

Typical Device S-Parameters

S-Parameters ($\mathrm{V}_{\text {device }}=+3.4 \mathrm{~V}, \mathrm{I}_{\mathrm{CC}}=30 \mathrm{~mA}, \mathrm{~T}=25^{\circ} \mathrm{C}$, calibrated to device leads)

Freq (MHz)	$\mathbf{S 1 1}(\mathbf{d B})$	S11 (ang)	$\mathbf{S 2 1}(\mathbf{d B})$	S21 (ang)	S12 (dB)	S12 (ang)	S22 (dB)	S22 (ang)
50	-33.58	15.96	22.85	178.01	-24.47	-1.35	-28.60	3.58
500	-24.53	12.09	22.63	162.01	-24.14	1.89	-22.29	-35.35
1000	-32.76	32.44	22.20	144.90	-23.99	4.76	-25.75	-100.14
1500	-28.56	153.22	21.54	129.42	-23.56	7.59	-20.80	-165.24
2000	-25.13	172.50	20.74	114.94	-23.12	9.11	-17.59	175.89
2500	-28.01	-117.92	20.11	103.13	-22.71	7.41	-20.44	169.69
3000	-28.65	-133.85	19.33	91.28	-22.14	7.37	-18.13	154.41
3500	-28.35	-142.02	18.59	79.59	-21.68	4.16	-16.41	140.24
4000	-25.99	-171.80	17.77	68.13	-20.88	2.49	-14.29	124.73
4500	-22.91	160.22	17.05	57.38	-20.50	2.47	-12.47	116.41
5000	-19.69	153.85	16.39	48.12	-20.03	-0.55	-11.36	113.60
5500	-17.30	152.52	15.78	39.49	-19.55	-5.36	-11.30	114.22
6000	-15.88	144.43	15.21	30.49	-19.14	-6.76	-11.31	113.24

Device S-parameters are available for download from the website at: www.TriQuint.com

[^0]: Operation of this device above any of these parameters may cause permanent damage.

