



### **Product Features**

- 150 3000 MHz
- +44 dBm OIP3 (balanced configuration)
- +48 dBm OIP3 (dual push-pull configuration)
- Single-ended performance:
  - 13.5 dB Gain
  - 2.7 dB Noise Figure
  - +21 dBm P1dB
- Single +5 Volt Supply
- Lead-free/green/RoHScompliant SOIC-8 package

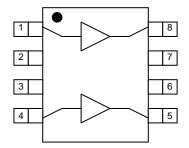
# **Applications**

- Mobile Infrastructure
- Defense / Homeland Security
- Fixed Wireless

# **Specifications** <sup>(1)</sup> (Single-ended Performance)

| Parameter                 | Units | Min  | Тур  | Max |
|---------------------------|-------|------|------|-----|
| Test Frequency            | MHz   |      | 800  |     |
| Gain                      | dB    | 12.4 | 13.5 |     |
| Input Return Loss (2)     | dB    |      | 8    |     |
| Output Return Loss        | dB    |      | 15   |     |
| Output IP3 <sup>(3)</sup> | dBm   | +37  | +41  |     |
| Output P1dB               | dBm   |      | +21  |     |
| Noise Figure              | dB    |      | 2.7  |     |
| Operating Current Range   | mA    | 120  | 150  | 180 |
| Supply Voltage            | V     |      | +5   |     |

1. Test conditions unless otherwise noted: T = 25 °C, Supply Voltage = +5 V, Frequency = 800 MHz, 50  $\Omega$  System, tested on each single-ended amplifier (there are two amplifiers in an AH11 package)


 S21 and S11 can be improved in the band of interest with some slight input tuning.
30IP measured with two tones at an output power of +5 dBm/tone separated by 10 MHz. The suppression on the largest IM3 product is used to calculate the 3OIP using a 2:1 rule. Slight OIP3 degradation of about 2 dB is expected to occur at lower temperatures (from 25 °C to −40 °C).

### **Product Description**

The AH11 is a high linearity amplifier for use in digital communication systems. It combines low noise figure and high intercept point into a low-cost SMT solution. This device extends the linear efficiency advantages of WJ's AH1 to higher power levels by combining two internally matched die. This dual-amplifier configuration allows for the optimal design of balanced or push-pull operation. The amplifier can also be used for single-ended operation in each branch of a diversity receive system.

A mature and reliable GaAs MESFET technology is employed to maximize linearity while achieving low noise figure. The package is a thermally enhanced leadfree/green/RoHS-compliant SOIC-8 package thus allowing the device to achieve an MTTF greater than 100 years at a case temperature of 85 °C. All devices are 100% RF and DC tested.

## **Functional Diagram**



| Function       | Pin No.                    |
|----------------|----------------------------|
| Input (Amp 1)  | 1                          |
| Ground         | 2, 3, 6, 7,<br>Bottom Slug |
| Input (Amp 2)  | 4                          |
| Output (Amp 1) | 5                          |
| Output (Amp 2) | 8                          |

#### Typical Performance (Balanced Configuration)

| Parameter    | Units |               | Typical |      |  |
|--------------|-------|---------------|---------|------|--|
| Frequency    | MHz   | 900           | 1900    | 2100 |  |
| S21          | dB    | 12.2          | 11.2    | 10.6 |  |
| S11          | dB    | -10           | -14     | -10  |  |
| S22          | dB    | -18           | -10     | -10  |  |
| Output IP3   | dBm   | +46           | +44     | +45  |  |
| Noise Figure | dB    | 4.1           | 4.2     | 5.6  |  |
| Supply Bias  |       | +5 V @ 300 mA |         |      |  |

Test conditions: T = 25 °C, in a tuned application circuit (shown on page 2)

#### Typical Performance (Dual P-P Configuration)

| Parameter    | Units | Тур    | ical   |
|--------------|-------|--------|--------|
| Frequency    | MHz   | 900    | 1900   |
| S21          | dB    | 13.4   | 11.9   |
| S11          | dB    | -19    | -19    |
| S22          | dB    | -12    | -10    |
| Output IP3   | dBm   | +48    | +48    |
| Noise Figure | dB    | 3.4    | 3.7    |
| Supply bias  |       | +5 V @ | 600 mA |

Test conditions: T = 25 °C, in a tuned application circuit (shown on pages 3 and 4)

### **Ordering Information**

| Part No.       | Description                                     |
|----------------|-------------------------------------------------|
| AH11-G         | High Dynamic Range CATV Amplifier               |
|                | (lead-free/green/RoHS-compliant SOIC-8 Package) |
| AH11BAL-PCB    | 0.6-2.1GHz Eval Board, Balanced Configuration   |
| AH11PP900-PCB  | 0.9GHz Eval Board, Dual Push-Pull Configuration |
| AH11PP1900-PCB | 1.9GHz Eval Board, Dual Push-Pull Configuration |
|                |                                                 |

Operation of this device above any of these parameters may cause permanent damage

Absolute Maximum Rating

Standard tape / reel size = 500 pieces on a 7" reel

Specifications and information are subject to change without notice

4 dB above Input P1dB

Rating

+6 V

29°C/W

+160°C

-55 to +125 °C

**RF Input Power (continuous)** 

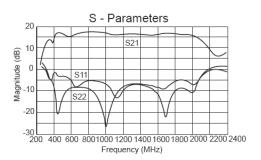
Thermal Resistance, Rth

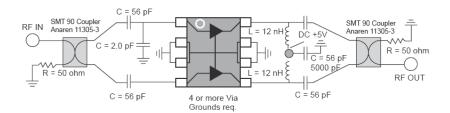
Junction Temperature

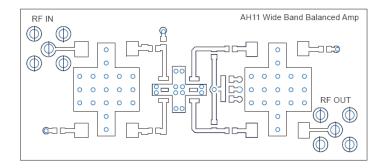
Parameter Storage Temperature

Supply Voltage



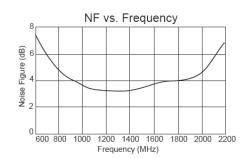

#### Balanced Circuit: 600 – 2100 MHz

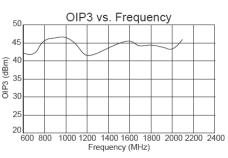

Typical Performance (50 Ohm System)

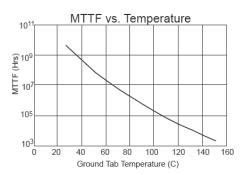

| Frequency     | 600 MHz   | 900 MHz       | 1900 MHz | 2100 MHz |  |
|---------------|-----------|---------------|----------|----------|--|
| Magnitude S21 | 10.7 dB   | 12.2 dB       | 11.2 dB  | 10.6 dB  |  |
| Magnitude S11 | -10.0 dB  | -10.0 dB      | -13.5 dB | -10.0 dB |  |
| Manitude S22  | -12.7 dB  | -18.2 dB      | -10.0 dB | -10.0 dB |  |
| NF            | 7.62 dB   | 4.13 dB       | 4.16 dB  | 5.55 dB  |  |
| OIP2          | 63 dBm    | 65 dBm        | 65 dBm   | 63 dBm   |  |
| OIP3          | 42 dBm    | 46 dBm        | 44 dBm   | 45 dBm   |  |
| Bias          | ∨ds = 5.0 | V, Id = 300 n | nA       |          |  |



### **Performance Charts**




#### Parts List

| QTY | Description         | Size  | MFR    | Part No. |
|-----|---------------------|-------|--------|----------|
| 1   | Hi pwr Linear Amp   | SOIC8 | WJ     | AH11     |
| 2   | 90 Coupler Wideband |       | Anaren | 11305-3  |
| 5   | 56 pF Capacitor     | 0603  | Kemet  |          |
| 1   | 5000 pF Capacitor   | 0603  | Kemet  |          |
| 1   | 0.1 uF Capacitor    | 0805  | Kemet  |          |
| 2   | 12 nH Inductor      | 0603  | Toko   |          |
| 1   | 2.0 pF Capacitor    | 0603  | Kemet  |          |
| 4   | 100 ohm Resistor    | 0603  |        |          |

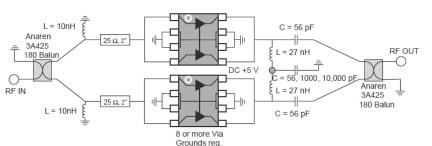


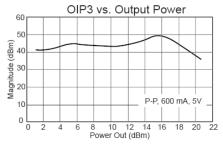




Specifications and information are subject to change without notice







### **Dual Push-Pull Circuit: 900 MHz**

Typical Performance (50 Ohm System)

| Frequency     | 700 MHz   | 800 MHz       | 900 MHz  | 1000 MHz |
|---------------|-----------|---------------|----------|----------|
| Magnitude S21 | 13.8 dB   | 13.8 dB       | 13.4 dB  | 12.8 dB  |
| Magnitude S11 | -30.0 dB  | -27.0 dB      | -18.6 dB | -12.2 dB |
| Manitude S22  | -11.5 dB  | -13.0 dB      | -12.0 dB | -12.5 dB |
| NF            | 3.4 dB    | 3.1 dB        | 3.4 dB   | 3.4 dB   |
| OIP3          | 48 dBm    | 48 dBm        | 48 dBm   | 48 dBm   |
| Bias          | Vds = 5.0 | V, Id = 600 m | nA       |          |

Schematic





**Performance Charts** 

S11

900

Frequency (MHz)

1000

1100

1200

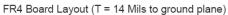
800

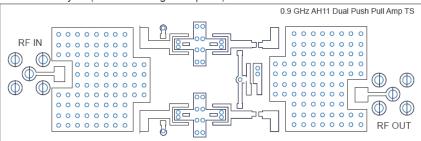
S21

S22

700

20


10


-10 -20

-30

Magnitude (dB)

S - Parameters



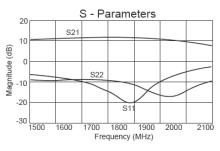


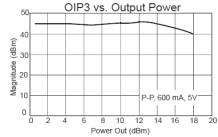
#### OIP3 vs. Frequency 70 60 (dBm) 50 OIP3 ( 40 Po = 8dBm/tone 30 20 600 800 1000 1200 1400 1600 1800 2000 2200 Frequency (MHz)

#### Parts List

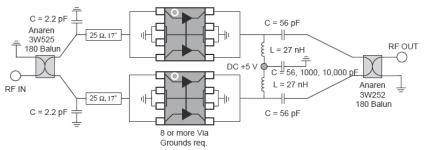
| QTY | Description       | Size  | MFR       | Part No.       |
|-----|-------------------|-------|-----------|----------------|
| 2   | Hi pwr Linear Amp | SOIC8 | WJ        | AH11           |
| 2   | 180 Balun 0.9 GHz |       | Anaren    | 3A425          |
| 5   | 56 pF Capacitor   | 0603  | Kemet     |                |
| 1   | 5000 pF Capacitor | 0603  | Kemet     |                |
| 1   | .01 uF Capacitor  | 0805  | Kemet     |                |
| 2   | 47 nH Inductor    | 0805  | Coilcraft | 0805CS-470XMBC |
| 2   | 10 nH Inductor    | 0603  | Toko      | LL 1608-F10NK  |



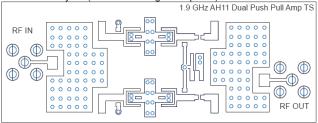




### **Dual Push-Pull Circuit: 1900 MHz**

#### Typical Performance (50 Ohm System)


| Frequency<br>Magnitude S21<br>Magnitude S11<br>Manitude S22<br>NF<br>OIP3 | 1700 MHz<br>11.8 dB<br>-10.0 dB<br>-8.3 dB<br>3.8 dB<br>47 dBm | 1800 MHz<br>11.9 dB<br>-14.0 dB<br>-10.0 dB<br>3.6 dB<br>47 dBm | 1900 MHz<br>11.9 dB<br>-19.0 dB<br>-10.0 dB<br>3.7 dB<br>48 dBm | 2000 MHz<br>11.6 dB<br>-10.0 dB<br>-14.0 dB<br>3.6 dB<br>48 dBm |
|---------------------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------|
| OIP3                                                                      | 47 dBm                                                         | 47 dBm                                                          | 48 dBm                                                          | 48 dBm                                                          |
| Bias                                                                      | Vds = 5.0                                                      | V, Id = 600 m                                                   | A                                                               |                                                                 |

# **Performance Charts**





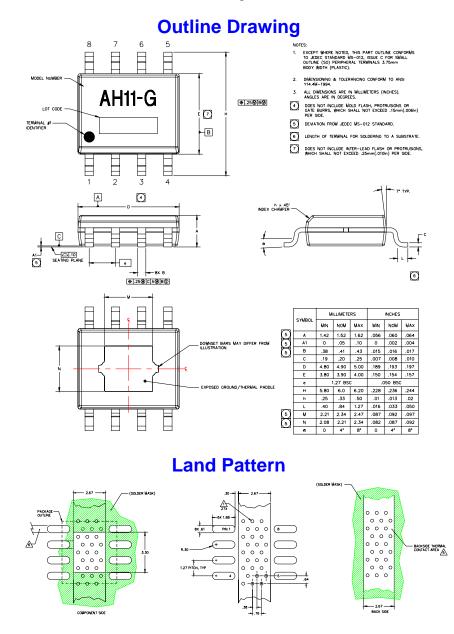

#### Schematic



#### FR4 Board Layout (T = 14 Mils to ground plane)



#### Parts List


| QTY | Description       | Size  | MFR       | Part No.       |
|-----|-------------------|-------|-----------|----------------|
| 2   | Hi pwr Linear Amp | SOIC8 | WJ        | AH11           |
| 2   | 180 Balun 1.9 GHz |       | Anaren    | 3W525          |
| 5   | 56 pF Capacitor   | 0603  | Kemet     |                |
| 1   | 5000 pF Capacitor | 0603  | Kemet     |                |
| 1   | .01 uF Capacitor  | 0805  | Kemet     |                |
| 2   | 27 nH Inductor    | 0805  | Coilcraft | 0805CS-270XMBC |
| 2   | 2.2 nH Inductor   | 0603  | Toko      |                |





### **AH11-G Mechanical Information**

This package is lead-free/Green/RoHS-compliant. The plating material on the leads is NiPdAu. It is compatible with both lead-free (maximum 260 °C reflow temperature) and lead (maximum 245 °C reflow temperature) soldering processes.



### **Product Marking**

The component will be marked with an "AH11-G" designator with an alphanumeric lot code on the top surface of the package. The obsolete tin-lead package is marked with an "AH11" designator followed by an alphanumeric lot code.

Tape and reel specifications for this part are located on the website in the "Application Notes" section.

# **ESD / MSL Information**

| ESD Rating: | Class 1B                             |
|-------------|--------------------------------------|
| Value:      | Passes from 500 to 1000 V            |
| Test:       | Human Body Model (HBM)               |
| Standard:   | JEDEC Standard JESD22-A114           |
|             |                                      |
| ESD Rating: | Class IV                             |
| Value       | Passes greater than 1000 V           |
| Test:       | Charge Device Model (CDM)            |
| Standard:   | JEDEC Standard JESD22-C101           |
|             |                                      |
| MSL Rating: | Level 2 at +260 °C convection reflow |
| Standard:   | JEDEC Standard J-STD-020A            |

# **Functional Pin Layout**

| Pin | Function                |  |  |  |  |
|-----|-------------------------|--|--|--|--|
| 1   | RF input (Amp1 input)   |  |  |  |  |
| 2   | Ground                  |  |  |  |  |
| 3   | Ground                  |  |  |  |  |
| 4   | RF input (Amp2 input)   |  |  |  |  |
| 5   | RF output (Amp2 output) |  |  |  |  |
| 6   | Ground                  |  |  |  |  |
| 7   | Ground                  |  |  |  |  |
| 8   | RF output (Amp1 output) |  |  |  |  |

The backside paddle is the Source and should be grounded for thermal and electrical purposes.

# Mounting Config. Notes

- 1. Ground / thermal vias are critical for the proper performance of this device. Vias should use a .35mm (#80/.0135") diameter drill and have a final plated through diameter of .25mm (.010")
- Add as much copper as possible to inner and outer layers 2 near the part to ensure optimal thermal performance.
- To ensure reliable operation, device ground paddle-to-ground pad solder joint is critical. 3.
- 4. Add mounting screws near the part to fasten the board to a heatsink. Ensure that the ground / thermal via region contacts the heatsink.
- For optimal thermal performance, expose soldermask on 5. backside where it contacts the heatsink
- RF trace width depends upon the PC board material and 6. construction.
- Use 1 oz. Copper minimum. 7.
  - If the PCB design rules allow, ground vias should be placed under the land pattern for better RF and thermal performance. Otherwise ground vias should be placed as close to the land pattern as possible. All dimensions are in mm. Angles are in degrees.

Specifications and information are subject to change without notice





| Freq (MHz) | S11 (dB) | S11 (ang) | S21 (dB) | S21 (ang) | S12 (dB) | S12 (ang) | S22 (dB) | S22 (ang) |
|------------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|
| 50         | -2.63    | -31.03    | 17.82    | 162.23    | -23.39   | 47.82     | -6.12    | -36.9     |
| 250        | -9.02    | -47.58    | 14.82    | 156.18    | -20.06   | 8.90      | -16.47   | -55.0     |
| 500        | -9.98    | -61.76    | 14.31    | 144.67    | -20.01   | -1.10     | -20.37   | -43.8     |
| 750        | -10.09   | -83.24    | 13.83    | 132.14    | -20.02   | -6.79     | -21.92   | -31.2     |
| 1000       | -10.11   | -102.89   | 13.29    | 119.28    | -20.11   | -11.57    | -21.92   | -23.7     |
| 1250       | -9.98    | -122.71   | 12.76    | 106.77    | -20.25   | -14.32    | -22.27   | -17.2     |
| 1500       | -9.69    | -141.39   | 12.18    | 94.43     | -20.31   | -18.20    | -22.53   | -17.0     |
| 1750       | -9.28    | -159.83   | 11.61    | 83.21     | -20.53   | -21.39    | -22.93   | -10.8     |
| 2000       | -8.86    | -175.83   | 11.06    | 72.08     | -20.71   | -24.33    | -23.65   | -9.6      |
| 2250       | -8.41    | 169.88    | 10.49    | 61.25     | -20.82   | -27.30    | -23.68   | -13.9     |
| 2500       | -7.81    | 155.71    | 9.92     | 50.78     | -20.98   | -29.62    | -23.88   | -1.5      |
| 2750       | -7.26    | 143.52    | 9.41     | 41.01     | -21.11   | -31.71    | -25.42   | -1.6      |
| 3000       | -6.70    | 133.22    | 8.81     | 31.62     | -21.22   | -34.23    | -24.24   | 5.1       |

# **Typical Device Data**

Device S-parameters are available for download from the website at: http://www.wj.com