

LatticeXP2 Brevia Development Kit

User's Guide

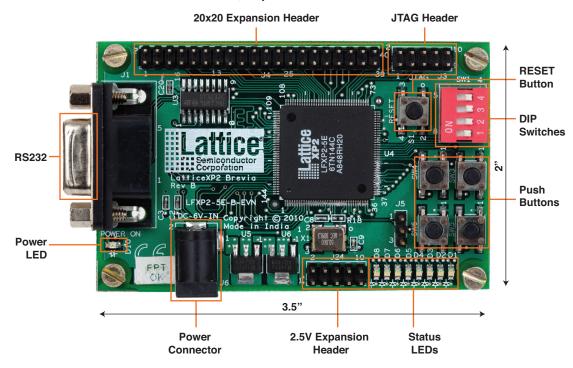
June 2010 Revision: EB53_01.1

Introduction

Thank you for choosing the Lattice Semiconductor LatticeXP2™ Brevia Development Kit!

This user's guide describes how to start using the LatticeXP2 Brevia Development Kit, an easy-to-use platform for evaluating and designing with LatticeXP2 FPGAs. Along with the evaluation board and accessories, this kit includes a pre-loaded Brevia System-on-Chip (SoC) demonstration design based on the LatticeMico8™ microcontroller.

Note: Static electricity can severely shorten the life span of electronic components.


Features

The LatticeXP2 Brevia Development Kit includes:

- LatticeXP2 Brevia Evaluation Board This is a small board (about the size of a business card) with the following on-board components and circuits:
 - LatticeXP2-5E 6TN144C
 - 2-Mbit SPI Flash memory
 - 128K by 8-bit SRAM
 - RS232 DB9 connector
 - 2x20 expansion header for general I/O
 - 2x5 expansion header for general I/O
 - Four general purpose pushbuttons
 - One reset pushbutton
 - 4-bit DIP switch
 - Eight status LEDs
- Pre-loaded Demo The kit includes a pre-loaded demo design that integrates several Lattice reference designs
 including the LatticeMico8 microcontroller, SRAM controller, SPI Flash memory controller, and a UART peripheral.
- One RS232 DB9
- One Parallel Port Download Cable The parallel port download cable permits reconfiguration of the FPGA. It
 also permits the use of the Reveal™ analysis tool. See Table 10 on page 17 for connection information.
- One International 6V DC Power Supply
- QuickSTART Guide Provides information on connecting the LatticeXP2 Brevia Evaluation Board and running the demo.
- LatticeXP2 Brevia Development Kit Web Page The <u>LatticeXP2 Brevia Development Kit web page</u> on the Lattice web site provides access to the latest documentation, demo designs and drivers for the kit.

The contents of this user's guide include demo operation, top-level functional descriptions of the various portions of the evaluation board, descriptions of the on-board connectors, switches and a complete set of schematics of the LatticeXP2 Brevia Evaluation Board.

Figure 1. LatticeXP2 Brevia Evaluation Board, Top Side

LatticeXP2 Device

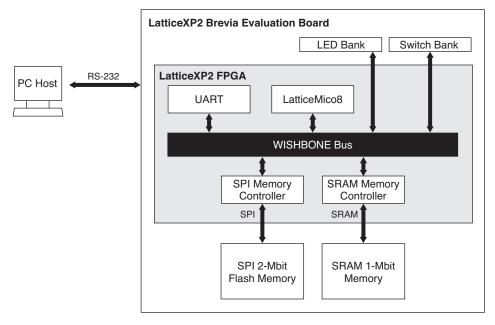
This board features a LatticeXP2 FPGA with a 1.2V core supply. It can accommodate all pin-compatible LatticeXP2 devices in the 144-pin TQFP (20x20 mm) package. A complete description of this device can be found in the LatticeXP2 Family Data Sheet.

Demonstration Design

Lattice provides a demo that illustrates key applications of the LatticeXP2 device.

Demo_LatticeXP2_Brevia_SoC

The Demo_LatticeXP2_Brevia_SoC is pre-programmed into the non-volatile Flash memory of the LatticeXP2 FPGA and is operational upon power-up. The design provides the following features:


- Prints the ASCII representation of any characters received by the UART on the eight LEDS (D0-D7).
- Prints the SPI memory ID code on demand.
- Displays the current DIP switch setting on demand.
- Logs Read ID and Read Switch commands, along with their results, into the asynchronous SRAM.
- Stores the contents of the SRAM into the SPI ROM on demand.
- Restores the SRAM contents from the SPI ROM on demand.

The demo design integrates the following Lattice reference designs:

- LatticeMico8 Microcontroller (RD1026)
- WISHBONE UART (RD1042)
- SPI WISHBONE Controller (RD1044)
- LatticeMico8 to WISHBONE Interface Adapter (RD1043)

Firmware running on the LatticeMico8 demonstrates control logic for the peripherals connected to a shared on-chip WISHBONE bus and communication between the LatticeXP2 Brevia Evaluation Board and a host PC connected to the RS232 cable.

Figure 2. Demo_LatticeXP2_Brevia_SoC Block Diagram

Set Up a VT100/ANSI Terminal Emulator

The Demo_LatticeXP2_Brevia_SoC preloaded in the LatticeXP2 Brevia Evaluation Board is operated by interacting with a monitor program. The monitor program sends and receives data across the RS232 communications port on the LatticeXP2 Brevia Evaluation Board. It is necessary to start and configure a VT100 or ANSI style terminal emulator program like HyperTerminal (Windows) or Minicom (Linux).

The RS232 port on the LatticeXP2 Brevia Evaluation Board is configured to operate at 115.2Kbps, 8 data bits, 1 stop bit, and no parity, and no flow control. Once the terminal emulator is running on the host computer, and the RS232 cable is attached between the host computer and the LatticeXP2 Brevia Evaluation Board you will see the following banner displayed when the board is powered, or following a RESET button assertion.

______ Welcome to the LatticeXP2 Brevia Development Kit SoC Demonstration Rev 1.0, April 2010 Main Menu 0: Re-display Main Menu 1: Read SPI Flash Memory IDCode 2: Read DIP Switch Bank 3: Read Data History from SRAM 4: Copy Data History from SRAM to SPI Flash Memory 5: Read Data History from SPI Flash Memory 6: Write Data to SRAM (Specified Address and Data) 7: Read Data from SRAM (Specified Address) 8: Write Data to SPI (Specified Address and Data) 9: Read Data from SPI (Specified Address) a: SRAM Auto-Test b: SPI Auto-Test Press 0-b to select an option. ______

SoC Command Monitor Features

The LatticeXP2 Brevia Evaluation Board, after it powers up or is reset, begins running a command interpreter monitor under the control of the LatticeMico8 microcontroller. The monitor code waits for a keypress and immediately performs the requested function.

When the Read ID and Read Switch Bank commands are executed the ASCII output from the command is stored into the SRAM. The LatticeMico8 stores the next address to write in three of its general purpose registers. After power up the registers are cleared to 0x000000. Commands that have their results logged to the SRAM print out the address of the next available SRAM location.

Read SPI Flash Memory IDCode Command

The SPI ROM device on the LatticeXP2 Brevia Evaluation Board can be queried and will return the ID code implemented by the ROM manufacturer. The LatticeMico8 initiates memory transactions using the SPI Memory controller to acquire the data.

To scan the SPI Flash Memory IDCode:

1. From the terminal Main Menu, press 1.

The LatticeMico8 performs the manufacturer specific SPI memory transactions to acquire the ID code. The ID number is returned as a hex value. This command logs the result to the SRAM.

Example:

ID:0x44

(SRAM ADDR: 0x00006)

Note: The ID for your board may differ.

Read DIP Switch Bank

The LatticeMico8 has the ability to read the state of switches 1-4 on the DIP switch bank. The pushbutton switches are can also be read. Each pushbutton press toggles the internal state of a register in the FPGA. The current state of the register is displayed on the high nibble of the output. The hexadecimal representation of the switches is printed and logged to the SRAM. A DIP switch that is set ON has a '0' value, and one that is OFF has a value of '1'.

To read the DIP switch:

1. From the terminal window press 2.

```
Example:
SW:0x00
(SRAM ADDR:0x0000C)
```

Read Data History from SRAM

Use the Read Data History from SRAM command to see the results from each command that is logged to the SRAM memory. The output from this command does not get written into the SRAM.

To read data history from SRAM:

1. From the terminal window press 3. The transaction log is listed.

Example:

```
SRAM:
0x44
0x00
```

Copy Data History from SRAM to SPI Flash Memory

This command erases a portion of the SPI ROM, and stores the command results logged in the SRAM. The LatticeMico8 starts writing from SRAM address 0x000000 and continues writing values into the SPI ROM until it reaches the last valid entry in the SRAM.

To copy data history from SRAM to SPI Flash memory:

1. From the terminal window press 4. The data log is transferred and the terminal indicates "Done".

Example:

```
SRAM => SPI:
    0x44
    0x00
Done.
```

Read Data History From SPI Flash Memory

This command copies the Data History from the SPI ROM into the SRAM. After power is supplied, or RESET asserted the SRAM Data History log information is no longer available. Running this command permits the history to be restored from the non-volatile SPI ROM.

To read data history from the SPI ROM into SRAM:

1. From the terminal window press 5. The transaction log is listed.

Example:

```
SPI Flash:
0x44
0x00
```

Write Data to SRAM (Specified Address and Data)

This command allows you to write a single data value to any location in the SRAM memory space.

1. From the terminal window press 6.

Example:

```
Please Enter the Address(17 bits, Hex), eg: 1f26a, no Spaces, then Press ENTER: 10000
Please Enter the Data(8 bits, Hex), eg: b7, no Spaces, then Press ENTER: 93
SRAM Write Done.
```

Read Data from SRAM (Specified Address)

This command allows you to read the data value from any address in the SRAM.

1. From the terminal window press 7.

Example:

```
Please Enter the Address(17 bits, Hex), eg: 1f26a, no Spaces, then Press ENTER: 10000
Read Data: 93
SRAM Read Done.
```

Write Data to SPI (Specified Address and Data)

This command allows you to write a single data value to any location in the SPI memory space.

1. From the terminal window press 8.

Example:

```
Please Enter the Address(18 bits, Hex), eg: 1f26a, no Spaces, then Press ENTER: 10000
Please Enter the Data(8 bits, Hex), eg: b7, no Spaces, then Press ENTER: 93
SPI Write Done.
```

Read Data from SPI (Specified Address)

This command allows you to read the data value from any address in the SPI.

1. From the terminal window press 9.

Example:

```
Please Enter the Address(18 bits, Hex), eg: 1f26a, no Spaces, then Press ENTER: 10000
Read Data: 93
SPI Read Done.
```

Perform SRAM Auto-test

This command automatically tests SRAM.

1. From the terminal window press a.

Example:

Perform SPI Auto-test

This command automatically tests SPI.

1. From the terminal window press b.

Example:

Download Demo Designs

Lattice distributes source and programming files for a variety of demonstration designs compatible with the LatticeXP2 Brevia Evaluation Board.

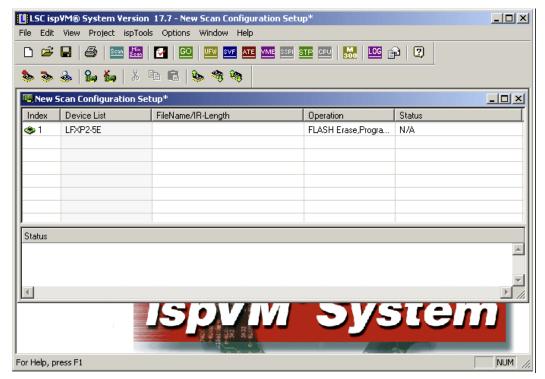
To download demo designs:

1. Browse to the <u>LatticeXP2 Brevia Development Kit web page</u> of the Lattice web site. Select the Demo Applications download and save the file.

 Extract the contents of Demo_LatticeXP2_Brevia_Soc_vhdl.zip and Demo_LatticeXP2_Brevia_Soc_verilog.zip to an accessible location on your hard drive. One or more designs will be extracted and each will follow the following basic form.

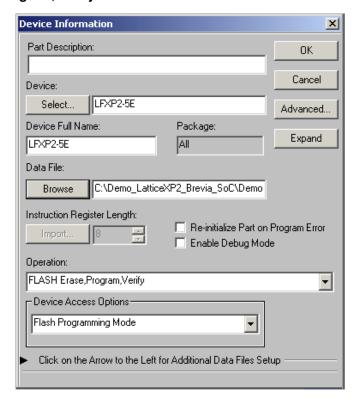
Demo	Directories
Demo Demo1	Demo1 .\project .\source .\LatticeMico8_Vx_y_Verilog .\RD1042 .\project .\source .\RD1043
	.\project .\source .\RD1044 .\project .\source .\RD1046 .\project .\source

Where:


- \project ispLEVER project (.syn), preferences (.lpf), and programming file (.jed). This directory may contain intermediate results of the ispLEVER build process.
- \source HDL source for the ispLEVER project.
- .\LatticeMico8_Vx_y_Verilog LatticeMico8 Microcontroller Reference Design (RD1026).
- .\RDxxxx Reference Designs integrated by the demo.

Programming Demo Design with ispVM

Demo_LatticeXP2_Brevia_SoC is pre-programmed into the LatticeXP2 Brevia Evaluation Board by Lattice. To restore a LatticeXP2 Brevia Evaluation Board to factory settings, use the procedure described in this section.


To program a demo programming file:

- Power off the LatticeXP2 Brevia Evaluation Board.
- 2. Connect the Parallel Port download cable to the PC
- 3. Connect opposite end of the Parallel Port download cable as shown in Table 9, leaving Pin 2 unconnected.
- 4. Apply power to the LatticeXP2 Brevia Evaluation Board.
- 5. Attach the download cable to Pin 2.
- 6. From the Start menu run ispVM System.
- 7. Choose **Options > Cable and IO Port Setup...** in order to configure the download cable.
- Click Auto Detect. ispVM will detect Cable Type Lattice and Port Setting 0x0378.
- 9. Click OK.
- 10. Choose **ispTools** > **Scan Chain**. The New Scan Configuration Setup window appears. The LatticeXP2 appears in the device list as LFXP2-5E.

- 11. Right-click the LFXP2-5E entry and choose Edit Device... The Device Information dialog appears.
- 12. From the **Data File** section, click the **Browse** button. The Open Data File dialog appears.

13. Browse to the <Demo Dir>\project folder, select <Demo>.jed, and click Open. From the Operation list choose Flash Erase, Program, Verify and click OK.

14. Choose Project > Download. ispVM reprograms the LatticeXP2 Brevia Evaluation Board.

A progress bar with a small timer window will appear to show elapsed programming time. At the end of programming, the configuration setup window's "Status" column will display "PASS" upon a successful programming sequence.

Rebuilding the Demo Project with ispLEVER

You can rebuild the Lattice-supplied demo. Follow the process outlined here:

- 1. Install and license ispLEVER software
- 2. Install the ispVM System software. The ispVM System software is bundled with ispLEVER, so this step is typically unnecessary to perform independently.
- 3. Download the demo source files from the LatticeXP2 Brevia Development Kit web page.
- 4. Run the ispLEVER Project Navigator.
- 5. Use File -> Open Project and open the ispLEVER <demo>.syn.
- Right-click on the Generate Data File (JEDEC) process and select Force.
- Wait for the JED file to be rebuilt. Use ispVM System, as described above, to download the newly rebuilt bitstream.

Reassembling the Demo LatticeMico8 Firmware

Use this procedure to reassemble and download changes to the LatticeMico8 microcontroller firmware.

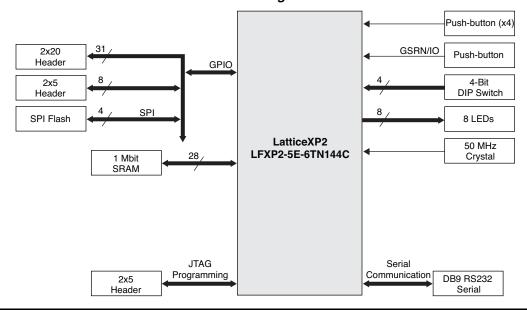
1. Install the LatticeMico8 Tool Code.

Note: The LatticeMico8 tool executables are also provided in the

- . \Demo_LatticeXP2_Brevia_SoC\LatticeMico8_Vx_y_Verilog\utils directory and
- . \Demo_LatticeXP2_Brevia_SoC\LatticeMico8_Vx_y_VHDL\utils directory
- 2. The C source code for the LatticeMico8 Assembler and Simulator is included in the tools package. An optional step you can perform is to compile this source instead of using the pre-compiled versions supplied by Lattice.
- 3. Modify the Assembly source (.s) file, if desired, and recompile to a memory image (.hex). Source for Demo_LatticeXP2_Brevia_SoC is provided as Demo_LatticeXP2_Brevia_SoC.s. The assembler and simulator are command line applications. The tools display their invocation syntax if they are started without command line parameters.
- 4. Once the assembly code has been recompiled it is necessary to update the LatticeMico8 PROM contents. The fastest way to update the PROM contents is to use the ispLEVER Memory Initialization tool from Project Navigator. The tool updates the PROM contents without modifying the connectivity of the design.

Launch the Memory Initialization tool, and select the isp8_prom component, choose the new memory initialization file, click on the **Apply Changes** button, and save the new NCD file.

- 5. Run the Generate Data File (JEDEC) process.
- 6. Download the new JED file to the FPGA. You will see the effects of your assembly code changes.


LatticeXP2 Brevia Evaluation Board

This section describes the features of the LatticeXP2 Brevia Evaluation Board in detail.

Overview

The LatticeXP2 Brevia Evaluation Board is a complete development platform for the LatticeXP2 FPGA. The board includes on-board SRAM and SPI Flash memory, and SPI microcontroller communication interfaces, a RS232 port, and an expansion header to support test connections.

Figure 3. LatticeXP2 Brevia Evaluation Board Block Diagram

I/O Mapping Details

UART Interface

The UART is used to communicate with the PC. U3 does the level translation between the LVCMOS I/Os and the RS232 port. The connector is a 9-pin D-type female. The interface details are included in Table 1.

Table 1. RS232 Interface

RS232 Connector Pin Number	RS232 Connector Pin Name	U3 Pin Number to J1	U3 Pin Number to U4	FPGA Pin Number	FPGA Pin Name	Pin Functionality
RS232 Connec	tor J1A, Bank 1					
1	NC	NC	NC	NC	NC	NC
2	RS232_Rx_EIA32	13	12	110	RS232_Rx_TTL	Receive
3	RS232_Tx_EIA32	14	11	109	RS232_Tx_TTL	Transmit
4	NC	NC	NC	NC	NC	NC
5	Ground	Ground	Ground	Ground	Ground	Ground
6	NC	NC	NC	NC	NC	NC
7	NC	NC	NC	NC	NC	NC
8	NC	NC	NC	NC	NC	NC
9	NC	NC	NC	NC	NC	NC

Expansion Header 1 Interface

Access to 40 I/Os are available to the user via the expansion headers J2 and J4. The connector type is a 2x20 0.100" center-to-center Berg stick, male. The interface details are included in Table 2.

Table 2. Expansion Header 1 Interface

Expansion Connector Pin Number	Expansion Connector/FPGA Pin Name	FPGA Pin Number	Pin Functionality
Expansion Connector J4, B	anks 2 and 3		
1	3.3V		Power
2	3.3V		Power
3	EXP_IO15	103	I/O
4	EXP_IO31	69	I/O
5	EXP_IO14	102	I/O
6	EXP_IO30	66	I/O
7	EXP_IO13	101	I/O
8	EXP_IO29	65	I/O
9	EXP_IO12	100	I/O
10	EXP_IO28	62	I/O
11	EXP_IO11	99	I/O
12	EXP_IO27	61	I/O
13	GND		Ground
14	GND		Ground
15	EXP_IO10	98	I/O

Table 2. Expansion Header 1 Interface (Continued)

Expansion Connector Pin Number	Expansion Connector/FPGA Pin Name	FPGA Pin Number	Pin Functionality
Expansion Connector J4, B	ank 2 and 3		1
16	EXP_IO26	116	I/O
17	EXP_IO9	96	I/O
18	EXP_IO25	115	I/O
19	EXP_IO8	94	I/O
20	EXP_IO24	114	I/O
21	EXP_IO7	93	I/O
22	EXP_IO23	113	I/O
23	EXP_IO6	92	I/O
24	EXP_IO22	78	I/O
25	GND		Ground
26	GND		Ground
27	EXP_IO5	91	I/O
28	EXP_IO21	77	I/O
29	EXP_IO4	90	I/O
30	EXP_IO20	74	I/O
31	EXP_IO3	89	I/O
32	EXP_IO19	73	I/O
33	EXP_IO2	88	I/O
34	EXP_IO18	108	I/O
35	EXP_IO1	87	I/O
36	EXP_IO17	107	I/O
37	GND		Ground
38	GND		Ground
39	XP2_RESET	19	Reset
40	EXP_IO16	104	I/O

Expansion Header 2 Interface

The connector is a 10-pin dual-row Berg stick, male. The interface details are included in Table .

Table 3. Expansion Header 2 Interface

Expansion Connector Pin Number	Expansion Connector Pin Name	FPGA Pin Number	Pin Functionality
Expansion Connector J2, Ba	nk 2 and 3 (Labeled as J24 on	Silk Screen)	
1	EXP_IO36	31	I/O
2	3.3V		Power
3	EXP_IO37	32	
4	EXP_IO32	27	
5	EXP_IO38	35	
6	EXP_IO33	28	
7	EXP_IO39	36	
8	EXP_IO34	29	
9	GND		Ground
10	EXP_IO35	30	

LEDs and Switches

Eight LEDs, four pushbutton switches and one DIP (4) switch are provided.

Table 4. LED Interface

LED	FPGA Pin Number
D1	46
D2	45
D3	44
D4	43
D5	40
D6	39
D7	38
D8	37

Table 5. Switch Interface

Switch	FPGA Pin Number
SW1A	58
SW1B	57
SW1C	56
SW1D	55
SW3	54
SW4	53
SW5	52
SW6	50

Flash Interface

The LatticeXP2 Brevia Evaluation Board provides 4Mbits of non-volatile flash memory. The Flash uses the four-wire SPI communication interface.

Table 6. Flash Interface

Flash Signal Name	FPGA Pin Number
FPGA Flash 2 Mbit (U1)
XP2_SPI_CS0	11
XP2_SPI_CLK	13
XP2_SPI_IN	15
XP2_SPI_OUT	16
FLASH_RST~	17
FLASH_W~	18

SRAM Interface

The LatticeXP2 Brevia Evaluation Board provides 1Mbit of asynchronous SRAM memory in a 128K x 8-bit configuration.

Table 7. SRAM Interface

SRAM Signal Name	FPGA Pin Number			
FPGA SRAM 1 Mbit (U2)				
Data_0	1			
Data_1	2			
Data_2	5			
Data_3	6			
Data_4	7			
Data_5	8			
Data_6	9			
Data_7	10			
Addr_0	119			
Addr_1	120			
Addr_2	121			
Addr_3	122			
Addr_4	123			
Addr_5	124			
Addr_6	125			
Addr_7	127			
Addr_8	129			
Addr_9	130			
Addr_10	131			
Addr_11	132			
Addr_12	133			
Addr_13	134			
Addr_14	137			
Addr_15	138			
Addr_16	141			
SRAM_CSb	142			
SRAM_Oeb	143			
SRAM_Web	144			

Configuration Interface

Jumper 5 controls the XP2 CFG0 input control pin.

Table 8. Configuration Interface

CFG0	Jumper Position
1	1-2
0	2-3

The factory default setting on J5 is to leave it unshunted. CFG0 has a weak pullup resistor.

Table 9. JTAG Programming Interface

JTAG Connector Pin Number	JTAG Connector Pin Name	FPGA Pin Number	FPGA Pin Name	Pin Functionality
JTAG Connector J3			<u> </u>	
1	JTAG_TDO	82	JTAG_TDO	TDO
2	3.3V	_	_	VCC
3	JTAG_TDI	80	JTAG_TDI	TDI
4	GND	_	_	GND
5	JTAG_TMS	79	JTAG_TMS	TMS
6	GND	_	_	GND
7	JTAG_TCK	81	JTAG_TCK	TCK
8	GND	_	_	GND
9	GND	_	_	GND
10	GND	_	_	GND

FPGA

The Lattice XP2 Brevia board is based on the Lattice Semiconductor LatticeXP2 non-volatile FPGA. The board is populated with a 5K LUT device in a 144 TQFP package. A complete description of the device can be found in the <u>LatticeXP2 Family Data Sheet</u> and on the <u>LatticeXP2 web page</u>.

JTAG Cable Color Coding

Table 10. JTAG Cable Color Coding

Color	J3 Pin Number	Association
Violet	1	TDO
Blue	2	VCC
Green	3	TDI
Yellow	4	GND
Orange	5	TMS
Red	6	GND
Brown	7	TCK
Black	8	GND
-	9	GND
-	10	GND

Software Requirements

You should install the following software before you begin developing designs for the evaluation board:

- · ispLEVER Starter or ispLEVER 7.2 SP2 or later
- ispVM System 17.3.3

Mechanical Specifications

Dimensions: 3-1/4 in. [L] x 2 in. [W] x 3/4 in. [H]

Environmental Requirements

The evaluation board must be stored between -40° C and 100° C. The recommended operating temperature is between 0° C and 55° C.

The evaluation board can be damaged without proper anti-static handling.

Glossary

DIP: Dual In-line Package

FPGA: Field-Programmable Gate Array

LED: Light Emitting Diode

LUT: Look-Up Table

PCB: Printed Circuit Board

RoHS: Restriction of Hazardous Substances Directive

PLL: Phase Locked Loop

SPI: Serial Peripheral Interface

SRAM: Static Random Access Memory

UART: Universal Asynchronous Receiver/Transmitter

WDT: Watchdog Timer

Troubleshooting

The LatticeXP2 Brevia Evaluation Board is not responsive.

- Verify the DC power supply is providing 6V DC.
- · Remove any jumper on J5.
- Verify the LatticeXP2 is programmed.

The functionality displayed by the board does not match the demo features described.

It is possible the LatticeXP2 Brevia Evaluation Board has been reprogrammed. You can either reprogram the FPGA with the demonstration bitstream, or read the checksum of the bitstream loaded in the FPGA. To restore the LatticeXP2 Brevia Evaluation Board to the factory default, see the Download Demo Designs section of this document for details on downloading and reprogramming the device.

You can use ispVM System to read the checksum of the bitstream programmed into the FPGA. This value can be compared against the checksum stored in the JEDEC file. The JEDEC file checksum value is the last line in the file. This may allow you to determine the contents of the FPGA.

A final option is to use ispVM System to read the current bitstream in the FPGA, and then to reprogram the FPGA with your desired bitstream.

Ordering Information

Description	Ordering Part Number	China RoHS Environment-Friendly Use Period (EFUP)
LatticeXP2 Brevia Development Kit	LFXP2-5E-B-EVN	©

Technical Support Assistance

Hotline: 1-800-LATTICE (North America)

+1-503-268-8001 (Outside North America)

e-mail: techsupport@latticesemi.com

Internet: www.latticesemi.com

Revision History

Date	Version	Change Summary	
June 2010	01.0	Initial release.	
June 2010	01.1	Updated zip file names in the "Download Demo Designs" text section.	
		Updated directory names in the "Reassembling the Demo LatticeMico8 Firmware" text section.	

(c) 2010 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specionation and information herein are subject to change without notice.

Appendix A. Schematics

Figure 4. LatticeXP2 Brevia Evaluation Board Block Diagram

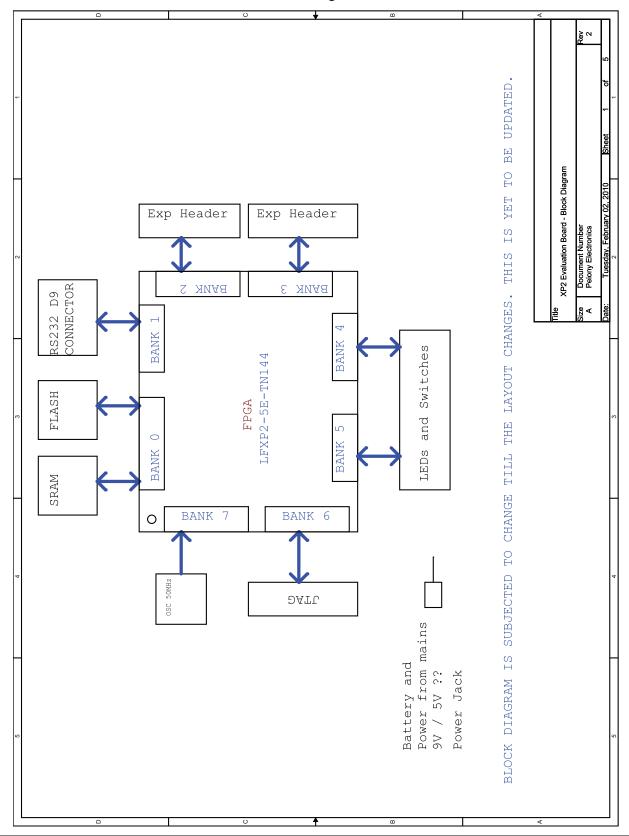


Figure 5. SPI Flash, SRAM, LEDs and Switches

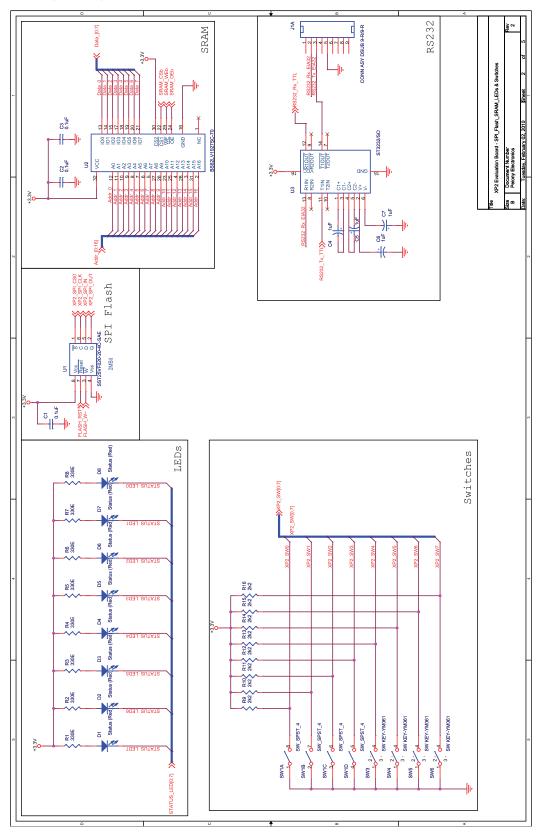


Figure 6. Banks 6 and 7

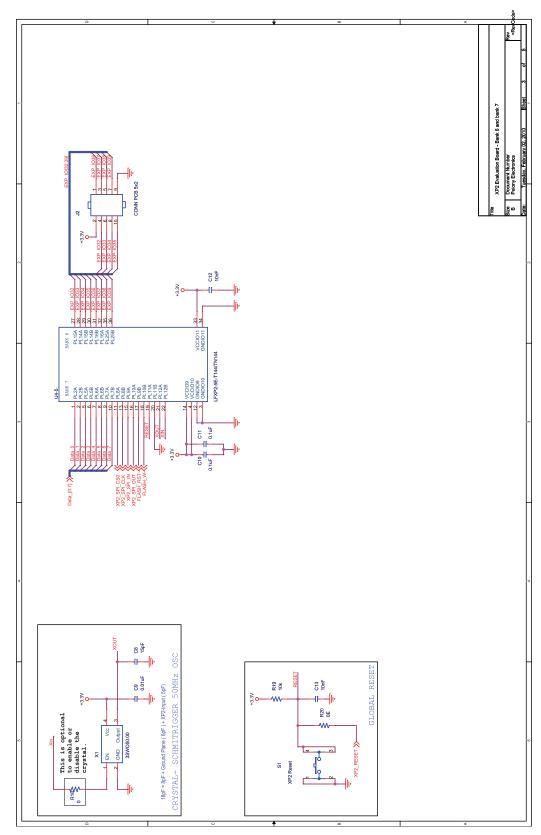


Figure 7. Banks 0-5

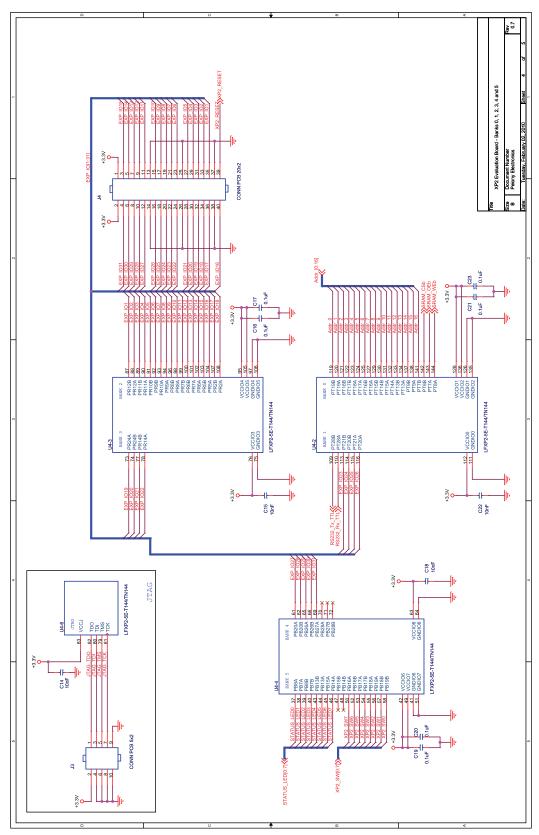
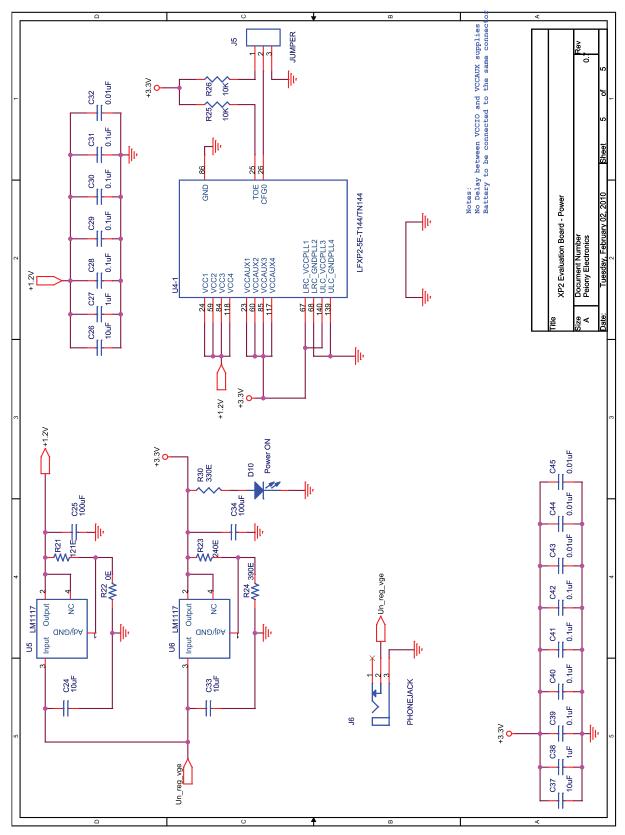



Figure 8. Power

Appendix B. Bill of Materials

Table 11. Bill of Materials

Item	Quantity	Reference	Part	PCB Footprint
1	19	C1,C2,C3,C10,C11,C16,C17,C19,C20, C21,C23,C28,C29,C30,C31,C39,C40, C41,C42	0.1uF	CC0402
2	6	C4,C5,C6,C7,C27,C38	1uF	CC0402
3	1	C8	15pF	CC0402
4	5	C9,C32,C43,C44,C45	0.01uF	CC0402
5	6	C12,C13,C14,C15,C18,C22	10nF	CC0402
6	4	C24,C26,C33,C37	10uF	CC3528
7	2	C25,C34	100uF	CC3528
8	8	D1,D2,D3,D4,D5,D6,D7,D8	Status (Green)	LED0805
9	1	D10	Power ON (Red)	LED0805
10	1	J1	CONN ASY DSUB 9-R/9-R	CON_DSUBRT_9FM
11	2	J2,J3	CONN PCB 5x2	BERG_2X5
12	1	J4	CONN PCB 20x2	BERG_2X20
13	1	J5	JUMPER	BERG_1X3
14	1	J6	PHONEJACK	CON_DC006_PWRJACK
15	9	R1,R2,R3,R4,R5,R6,R7,R8,R30	330E	RC0402
16	8	R9,R10,R11,R12,R13,R14,R15, R16	2k2	RC0402
17	1	R18	0	RC0402
18	3	R19,R25,R26	10K	RC0402
19	2	R20,R22	0E	RC0402
20	1	R21	121E	RC0402
21	1	R23	240E	RC0402
22	1	R24	390E	RC0402
23	1	SW1	SW_SPST_4	SW_DIP8
24	4	SW3,SW4,SW5,SW6	SW KEY-YM061	SW_B3FS-1000P
25	1	S1	XP2 Reset	SW_B3FS-1000P
26	1	U1	SST25VF020-20-4C-SAE	SOIC127P600_8
27	1	U2	BS62LV1027SC-70	SOIC127P1400_32
28	1	U3	ST3232/SO	SOIC127P780_16
29	1	U4	LFXP2-5E-T144/TN144	TQFP50P2200X2200_144
30	2	U5,U6	LM1117A	SOT223
31	1	X1	3SWO50.00	7 X 5 crystal oscillator