

# Product Datasheet

January 27, 2011

# 9.9-12.5Gb/s Optical Modulator Driver

# TGA4953-SL

OC-192 Metro and Long Haul Applications Surface Mount Package



# Description

The TriQuint TGA4953-SL is part of a series of surface mount modulator drivers suitable for a variety of driver applications and is compatible with Metro MSA standards.

The TGA4953-SL consists of two high performance wideband amplifiers combined with off chip circuitry assembled in a surface mount package. A single TGA4953-SL placed between the MUX and Optical Modulator provides OEMs with a board level modulator driver surface mount solution.

The TGA4953-SL provides Metro and Long Haul designers with system critical features such as: low power dissipation (1.1W at Vo = 6V), very low rail ripple, high voltage drive capability at 5V bias (6 V amplitude adjustable to 3 V), low output jitter (1ps rms typical), and low input drive sensitivity (250mV at Vo = 6V).

The TGA4953-SL requires external DC blocks, a low frequency choke, and control circuitry.

The TGA4953-SL is available on an evaluation board.

RoHS compliant.

### **Key Features and Performance**

- Metro MSA Compatible
- Wide Drive Range (3V to 10V)
- Single-ended Input / Output
- Low Power Dissipation (1.1W at Vo = 6V)
- Very Low Rail Ripple
- 25ps Edge Rates (20/80)
- Small Form Factor
  - 11.4 x 8.9 x 2 mm
  - 0.450 x 0.350 x 0.080 inches

### **Primary Applications**

- Mach-Zehnder Modulator Driver for Metro and Long Haul
- IRZ & Duobinary Applications

# **Measured Performance**

TGA4953-SL Evaluation Board (Metro MSA Conditions) 10.7 Gb/s, Vdd = 5 V, Idd = 210 mA, (Pdc = 1.1W)  $V_{OUT} = 6 V_{PP}$ , CPC = 50%,  $V_{IN} = 500 \text{ mV}_{PP}$ Scale: 2 V/div, 15 ps/div





#### TABLE I MAXIMUM RATINGS

| Symbol                                       | Parameter                            | Value              | Notes           |
|----------------------------------------------|--------------------------------------|--------------------|-----------------|
| $V_{D1} \; V_{D2T}$                          | Drain Voltage                        | 8 V                | <u>1/ 2</u> /   |
| $V_{G1}  V_{G2}$                             | Gate Voltage Range                   | -3V to 0V          | <u>1</u> /      |
| V <sub>CTRL1</sub><br>V <sub>CTRL2</sub>     | Control Voltage Range                | -3V to $V_D$       | <u>1</u> /      |
| I <sub>D1</sub>                              | Drain Supply Current (Quiescent)     | 200 mA             | 1/2/            |
| I <sub>D2T</sub>                             |                                      | 350 mA             | <u> </u>        |
| I <sub>G1</sub>  <br>  I <sub>G2</sub>       | Gate Supply Current                  | 15 mA              | <u>1</u> /      |
| I <sub>CTRL1</sub>  <br>  I <sub>CTRL2</sub> | Control Supply Current               | 15 mA              | <u>1</u> /      |
| P <sub>IN</sub>                              | Input Continuous Wave Power          | 23 dBm             | <u>1/ 2</u> /   |
| V <sub>IN</sub>                              | 12.5Gb/s PRBS Input Voltage          | 4 V <sub>PP</sub>  | <u>1/ 2</u> /   |
| PD                                           | Power Dissipation                    | 4 W                | <u>1/ 2/ 3/</u> |
| T <sub>CH</sub>                              | Operating Channel Temperature        | 150 <sup>0</sup> C | <u>4</u> /      |
| Τ <sub>M</sub>                               | Mounting Temperature<br>(10 Seconds) | 230 <sup>0</sup> C |                 |
| T <sub>STG</sub>                             | Storage Temperature                  | -65 to 150 °C      |                 |

- 1/ These ratings represent the maximum operable values for this device
- $\underline{2}$ / Combinations of supply voltage, supply current, input power, and output power shall not exceed P<sub>D</sub> at a package base temperature of 80°C
- 3/ When operated at this bias condition with a baseplate temperature of 80°C, the MTTF is reduced
- <u>4</u>/ Junction operating temperature will directly affect the device median time to failure (MTTF). For maximum life, it is recommended that junction temperatures be maintained at the lowest possible levels.



#### TABLE II THERMAL INFORMATION

| Parameter                                                           | Test Conditions                                                                         | Т <sub>сн</sub><br>(°С) | R <sub>⊛JC</sub><br>(°C/W) | MTTF<br>(hrs) |
|---------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------|----------------------------|---------------|
| $R_{\Theta JC}$ Thermal Resistance (Channel to Backside of Package) | $V_{D2T} = 4.7V$<br>$I_{D2T} = 150mA$<br>$P_{DISS} = 0.71W$<br>$T_{BASE} = 80^{\circ}C$ | 98                      | 26                         | >1E6          |

Note: Thermal transfer is conducted through the bottom of the TGA4953-SL package into the motherboard. The motherboard must be designed to assure adequate thermal transfer to the base plate.

Downloaded from **Elcodis.com** electronic components distributor



 $\left(4\right)$ 

#### TABLE III RF CHARACTERIZATION TABLE $(T_A = 25^{\circ}C, Nominal)$

| Parameter                    | Test Conditions                                      | Min                        | Тур | Max | Units | Notes         |
|------------------------------|------------------------------------------------------|----------------------------|-----|-----|-------|---------------|
| Small Signal<br>Bandwidth    |                                                      |                            | 8   |     | GHz   |               |
| Saturated Power<br>Bandwidth |                                                      |                            | 12  |     | GHz   |               |
| Small Signal<br>Gain         | 0.1, 2, 4 GHz<br>6 GHz<br>10 GHz<br>14 GHz<br>16 GHz | 30<br>28<br>26<br>19<br>14 |     |     | dB    | <u>1/ 2</u> / |
| Input Return<br>Loss         | 0.1, 2, 4, 6, 10, 14,<br>16 GHz                      | 10                         | 15  |     | dB    | <u>1/ 2</u> / |
| Output Return<br>Loss        | 0.1, 2, 4, 6, 10, 14,<br>16 GHz                      | 10                         | 15  |     | dB    | <u>1/ 2</u> / |
| Noise Figure                 | 3 GHz                                                |                            | 2.5 |     | dB    |               |
| Small Signal<br>AGC Range    | Midband                                              |                            | 30  |     | dB    |               |
| Saturated Output<br>Power    | 2, 4, 6, 8 & 10 GHz                                  | 25                         |     |     | dBm   | <u>6/ 7</u> / |



# TABLE IIIRF CHARACTERIZATION TABLE $(T_A = 25^{\circ}C, Nominal)$

| Parameter                    | Test Conditions                                                                                           | Min                            | Тур        | Мах        | Units           | Notes         |
|------------------------------|-----------------------------------------------------------------------------------------------------------|--------------------------------|------------|------------|-----------------|---------------|
| Eye Amplitude                | $V_{D2T} = 8.0V V_{D2T} = 6.5V V_{D2T} = 5.5V V_{D2T} = 4.5V V_{D2T} = 4.0V $                             | 10<br>8.0<br>7.0<br>6.0<br>5.5 |            |            | V <sub>PP</sub> | <u>3/ 4</u> / |
| Additive Jitter<br>(RMS)     | $\begin{array}{l} V_{\text{IN}} = 500 m V_{\text{PP}} \\ V_{\text{IN}} = 800 m V_{\text{PP}} \end{array}$ |                                | 0.9<br>1.0 | 2.0<br>2.0 | Ps              | <u>5</u> /    |
| Q-Factor                     | $\begin{array}{l} V_{\text{IN}} = 500mV_{\text{PP}} \\ V_{\text{IN}} = 800mV_{\text{PP}} \end{array}$     | 28.5<br>28.5                   | 35<br>35   |            | V/V             |               |
| Delta Eye<br>Amplitude       | 500–800 mV in p-p                                                                                         | -0.10                          |            | 0.10       | $V_{PP}$        |               |
| Delta Crossing<br>Percentage | 500–800 mV in p-p                                                                                         | -6                             |            | 6          | %               |               |

### Table III Notes:

- 1/ Verified at package level RF test
- $\underline{2}$ / Typical Package RF Test Bias Conditions: Vdd = 5V, adjust V<sub>G1</sub> to achieve Idd = 65mA then adjust V<sub>G2</sub> to achieve I<sub>D2T</sub> = 115 155 mA (Idd = 180 220mA), V<sub>CTRL1</sub> = -0.2V & V<sub>CTRL2</sub> = +0.2 V
- $\underline{3}$  / Verified by design, SMT assembled onto a demonstration board detailed on sheet 6.
- $\underline{4}$ / V<sub>IN</sub> = 250mV, Data Rate = 10.7Gb/s, V<sub>D1</sub> = V<sub>D2T</sub> or greater, V<sub>CTRL2</sub> and V<sub>G2</sub> are adjusted for maximum output. Typical final Idd under drive ~ 220 mA.
- <u>5</u>/ Computed using RSS Method where  $J_{RMS_DUT} = \sqrt{(J_{RMS_TOTAL}^2 J_{RMS_SOURCE}^2)}$
- 6/ Verified at die level on-wafer probe
- <u>7</u>/ Power Bias Die Probe:  $V_{TEE} = 8V$ , adjust  $V_G$  to achieve Idd = 175mA ±5%,  $V_{CTRL} = +1.5V$
- Note: At the die level, drain bias is applied through the RF output port using a bias tee, voltage is at the DC input to the bias tee



# **Demonstration Board**



Note: Devices designated as EPU are typically early in their characterization process prior to finalizing all electrical and process specifications. Specifications are subject to change without notice.



# **Demonstration Board Application Circuit**



### Notes:

1. C3 and C4 extend low frequency performance thru 30 KHz. For applications requiring low frequency performance thru 100 KHz, C3 and C4 may be omitted

2. C5 is a power supply decoupling capacitor and may be omitted

3. C6 and C7 are power supply decoupling capacitors and may be omitted when driven directly with an op-amp. Impedance looking into VCTRL1 and VCTRL2 is  $10k\Omega$  real



# Demonstration Board Application Circuit (Continued)

### **Recommended Components:**

| DESIGNATOR | DESCRIPTION                  | MANUFACTURER            | PART NUMBER                |
|------------|------------------------------|-------------------------|----------------------------|
| C1, C2     | DC Block, Broadband          | Presidio                | BB0502X7R104M16VNT9820     |
| C3, C4, C5 | 10uF Capacitor MLC Ceramic   | AVX                     | 0805YC106KA                |
| C6, C7     | 0.01 uFCapacitor MLC Ceramic | AVX                     | 0603YC103KA                |
| C8         | 10 uF Capacitor Tantalum     | AVX                     | TAJT106K016                |
| L1         | 220 uH Inductor              | Panasonic or<br>Belfuse | ELLCTV221M<br>S581-4000-14 |
| L2         | 330 nH Inductor              | Panasonic               | ELJ-FAR33MF2               |
| R1, R2     | 274 Ω Resistor               | Panasonic               | ERJ2RKD274                 |



# TGA4953-SL Typical Performance Data is measured in a Test Fixture



**Test Fixture Block Diagram** 



### Typical Measured Performance on Demonstration Board 10.7Gb/s 2^31-1, Vdd=5V CPC=50%

Vo=6V Eile Control Setup Measure Calibrate Utilities Help 15 Jan 2003 15:13 NRZ Eye Meas 🤗 Mask Tes Average Power °**†**X Rise Time ¥ Fal Time total m XI' Jitter RMS( Jitter p-p( Eye Amp( Setup & Info 9.3 ps 5.9710 V One Level Oear Meas. Acquisition is stop RZ / NRZ 1 Scale: 1.00 V. Difset0.0 V /div 2 Scale: 1.00 V/div 3 Not Present 4 Not Present Time: 15.0 ps/div Trigger Level Delay:24.1722 ns -517 mV

Vo=4V



Vo=5V Eile Control Setup Measure Calibrate Utilities Help 15 Jan 2003 15:18 wit " NRZ Eye Meas 🤗 Mask Test Average Power ¥**T**X Crossing Percentage ¥ Rise Time \_\_\_\_\_ Fal Time XT' Jitter RHS(2) Jitter p-p(2) Eye Amp(2) Setup & Info 1.3 ps 1.0463 V One Level RZ / NRZ Clear Meas. Acquisition is stop Time: 15.0 ps/div Trigger Level Delay:24.1722 ns -517 mV 1)Scale:1.00 V/div Diffset:0.0 V Diffset:0.0 V Diffset:-500 mV 3) Not Present 4) Not Present

#### Vo=3V



#### Input Signal Vin=500mV







# Typical Measured Performance on Demonstration Board IRZ 2^31-1, Vdd=8V Vin=800mVpp

9.953Gbps



10.7Gbps 🔆 Eile Control Setup Measure Calibrate Utilities Help 17 Jan 2006 10:13 Eye Mease RZ IRZ input 800mVpp Vd=8V; idq=88mÅ; id=197mÅ; Vg1=-0.71V; Vctr1=+2.0V; Vg2=-1.96V; Msk Test 🖻 Eye Amplitude <u>^1</u> Opening Factor Eye Width VA Pulse Width Jitter RHS(2) Jitter p-p(2) Pulse wid (2) Eye Amp(2 Eye 0/F(2 T A 2 Scale: 1.50 V/div 3 Scale:



Input Signal 10.7Gbps







### Typical Bias Conditions Vdd=5V

| Vo(V) | Vg1(V) | Vg2(V) | ldd | Vctrl2 |
|-------|--------|--------|-----|--------|
| 6     | -0.66  | -0.57  | 221 | +0.22  |
| 5     | -0.66  | -0.59  | 198 | +0.04  |
| 4     | -0.66  | -0.67  | 172 | -0.14  |
| 3     | -0.66  | -0.74  | 147 | -0.34  |

Notes:

- 1. Vdd=5V, Id1=65mA, and Vctrl1=-0.2V
- 2. Vin=500mVpp
- 3. 50%CPC
- 4. Actual bias points may be different.

#### General Comments for Production Operation of TGA4953-SL:

- 1. Due to natural variations in gate voltages observed with GaAs FET amplifiers used internally to the TGA4953-SL, optimal eye performance is obtained when the gate voltages (Vg1 and Vg2) are set to control desired drain currents (Id1 and Id2T)
- 2. Vc2 feedback circuit recommended for output amplitude correction.



# Demonstration Board - Bias ON/OFF Procedure Vdd=5V, Vo=6Vamp, CPC=50%

(Hot Pluggable)

#### **Bias ON**

- 1. Disable the output of the PPG
- 2. Set Vdd=0V Vctrl1=0V Vctrl2=0 Vg1=0V and Vg2=0V
- 3. Set Vg1=-1.5V Vg2=-1.5V Vctrl1=-0.2V
- 4. Increase Vdd to 5V observing Idd. - Assure Idd=0mA
- 5. Set Vctrl2=+0.2V
  - Idd should still be 0mA
- 6. Make Vg1 more positive until Idd=65mA.
  - This is Id1 (current into the first stage)
  - Typical value for Vg1 is -0.65V
- 7. Make Vg2 more positive until Idd=180 220 mA.
  - This sets Id2T to 115 -155 mA.
  - Typical value for Vg2 is -0.55V
- 8. Enable the output of the PPG.
  - Set Vin=500mV

9. <u>Output Swing Adjust</u>: Adjust <u>Vctrl2</u> slightly positive to increase output swing or adjust Vctrl slightly negative to decrease the output swing.

- Typical value for Vctrl2 is +0.22V for

Vo=6V.

10. <u>Crossover Adjust</u>: Adjust <u>Vg2</u> slightly positive to push the crossover down or adjust Vg2 slightly negative to push the crossover up.

- Typical value for Vg2 is -0.57V to center

crossover with Vo=6V.

#### **Bias OFF**

- 1. Disable the output of the PPG
- 2. Set Vctrl2=0V
- 3. Set Vdd=0V
- 4. Set Vctrl1=0V
- 5. Set Vg2=0V
- 6. Set Vg1=0V



# Production - Initial Alignment - Bias Procedure Vdd=5V, Vo=6Vamp, CPC=50%

(Hot Pluggable)

#### **Bias Network Initial Conditions -**

Vg1=-1.5V Vg2=-1.5V Vctrl1=-0.2V Vctrl2=+.1V Vdd=5V

#### **Bias ON**

- 1. Disable the output of MUX
- 2. Apply Vg1, Vg2, Vctrl1, Vctrl2, and Vdd in any sequence. Note: If Vdd is applied first Idd could reach near 400mA.
- 3. Make Vg1 more positive until Idd=65mA.
- This is Id1 (current into the first stage)
- Typical value for Vg1 is -0.65V
- 4. Make Vg2 more positive until Idd=180 220mA.
  - This sets Id2T to 115 155 mA.
  - Typical value for Vg2 is -0.55V
- 5. Enable the output of the MUX.

#### - Set Vin=500mV

6. <u>Output Swing Adjust</u>: Adjust <u>Vctrl2</u> slightly positive to increase output swing or adjust Vctrl2 slightly negative to decrease the output swing.

- Typical value for Vctrl2 is +0.22V for
- Vo=6V.

7. <u>Crossover Adjust</u>: Adjust <u>Vg2</u> slightly positive to push the crossover down or adjust Vg2 slightly negative to push the crossover up.

- Typical value for <u>Vg2 is -0.57V</u> to center crossover with Vo=6V.

#### **Bias OFF**

Remove Vg1, Vg2, Vctrl1, Vctrl2, and Vdd in any sequence.

14



# Production - Post Alignment - Bias Procedure Vdd=5V, Vo=6Vamp, CPC=50%

(Hot Pluggable)

#### **Bias Network Initial Conditions -**

Vg1= As found during initial alignment Vg2=-As found during initial alignment Vctrl1=-0.2V Vctrl2=As found during initial alignment Vdd=5V

#### **Bias ON**

- 1. Mux output can be either Enabled or Disabled
- 2. Apply Vg1, Vg2, Vctrl1, Vctrl2, and Vdd in any sequence. Note: If Vdd is applied first Idd could reach near 400mA.
- 3. Enable the output of the MUX

4. <u>Output Swing Adjust</u>: Adjust <u>Vctrl2</u> slightly positive to increase output swing or adjust Vctrl slightly negative to decrease the output swing.

5. <u>Crossover Adjust</u>: Adjust <u>Vg2</u> slightly positive to push the crossover down or adjust Vg2 slightly negative to push the crossover up.

#### **Bias OFF**

Remove Vg1, Vg2, Vctrl1, Vctrl2, and Vdd in any sequence.

#### General Comments for Production Operation of TGA4953-SL:

- 1. Due to natural variations in gate voltages observed with GaAs FET amplifiers used internally to the TGA4953-SL, optimal eye performance is obtained when the gate voltages (Vg1 and Vg2) are set to control desired drain currents (Id1 and Id2T)
- 2. Vc2 feedback circuit recommended for output amplitude correction.



# Production - Initial Alignment – IRZ Bias Procedure Vdd=8V, Vo=6Vamp

(Hot Pluggable)

#### **Bias Network Initial Conditions -**

Vg1=-1.5V Vg2=-2.0V Vctrl1=+1.0V Vctrl2=+2.0V Vdd=8V

#### **Bias ON**

- 1. Disable the output of MUX
- 2. Apply Vg1, Vg2, Vctrl1, Vctrl2, and Vdd in any sequence. Note: If Vdd is applied first Idd could reach near 400mA.
- 3. Make Vg1 more positive until Idd=80mA.
  - This is Id1 (current into the first stage)
  - Typical value for Vg1 is -0.55V
- 4. Enable the output of the MUX.

- Set Vin=800mV

5. <u>Crossover Adjust</u>: Adjust <u>Vg2</u> slightly negative to push the crossover towards zero level.

6. <u>Output Swing Adjust</u>: Adjust <u>Vctrl2</u> slightly positive to increase output swing or adjust Vctrl2 slightly negative to decrease the output swing.

- 7. Duty Cycle Fine Tune: Adjust Vctrl1 slightly negative to reduce duty cycle percentage.
- 8. Readjust <u>Vctrl2</u> for proper output amplitude.

### **Bias OFF**

Remove Vg1, Vg2, Vctrl1, Vctrl2, and Vdd in any sequence.

16



# **Mechanical Drawing**



Notes:

- Dimensions: Inches. Tolerance: Length and Width: +/-.003 inches. Height +/-.006 inches. Adjacent pad to pad spacing: +/- .0002 inches. Pad Size: +/- .001 inches.
  Surface Mount Interface:
- Material: RO4003 (thickness=.008 inches), 1/2oz copper (thickness=.0007 inches) Plating Finish: 100-350 microinches nickel underplate, with 5-10 microinches flash gold overplate.
- 3. Note for Pin 13: Pin 13 can be soldered to the PCB but MUST be left electrically open.



### **Recommended Surface Mount Package Assembly**

Proper ESD precautions must be followed while handling packages.

Clean the board with acetone. Rinse with alcohol. Allow the circuit to fully dry.

TriQuint recommends using a conductive solder paste for attachment. Follow solder paste and reflow oven vendors' recommendations when developing a solder reflow profile. Typical solder reflow profiles are listed in the table below.

Hand soldering is not recommended. Solder paste can be applied using a stencil printer or dot placement. The volume of solder paste depends on PCB and component layout and should be well controlled to ensure consistent mechanical and electrical performance. <u>This package has little tendency to self-align</u> <u>during reflow</u>.

TriQuint recommends using no-clean solder for the TGA4953-SL. If cleaning is required, then de-ionized water or isopropyl alcohol solutions are acceptable.

| Reflow Profile                          | SnPb                        | Pb Free                     |
|-----------------------------------------|-----------------------------|-----------------------------|
| Ramp-up Rate                            | 3 °C/sec                    | 3 °C/sec                    |
| Activation Time and<br>Temperature      | 60 – 120 sec @ 140 – 160 °C | 60 – 180 sec @ 150 – 200 °C |
| Time above Melting Point                | 60 – 150 sec                | 60 – 150 sec                |
| Max Peak Temperature                    | 240 °C                      | 260 °C                      |
| Time within 5 °C of Peak<br>Temperature | 10 – 20 sec                 | 10 – 20 sec                 |
| Ramp-down Rate                          | 4-6 °C/sec                  | 4 – 6 °C/sec                |

#### **Typical Solder Reflow Profiles**

### **Environmental Ratings**

| Moisture Sensitivity Rating | ESD Rating |
|-----------------------------|------------|
| MSL5A                       | 1A         |

### **Ordering Information**

| Part       | Package Style                                  |
|------------|------------------------------------------------|
| TGA4953-SL | Land Grid Array Surface Mount (RoHS Compliant) |

GaAs MMIC devices are susceptible to damage from Electrostatic Discharge. Proper precautions should be observed during handling, assembly and test.