COMPLIANT GREEN

(5-2008)³

Vishay Semiconductors

Matched Pairs of Emitters and Detectors

DESCRIPTION

96 12317_1

The TCZT8020 include matched infrared emitters and phototransistors in leaded packages, used to assemble custom-designed transmissive sensors or reflective sensors. The phototransistor package blocks visible light.

FEATURES

- Package type: leaded
- · Detector type: phototransistor
- Dimensions (L x W x H in mm): 4.4 x 2 x 3
- Typical output current under test: I_C = 0.5 mA
- Daylight blocking filter
- Emitter wavelength: 950 nm
- Angle of half intensity: $\varphi = \pm 25^{\circ}$
- S420P: single detector component (dark epoxy)
- V420P: single emitter component (clear epoxy)
- Lead (Pb)-free soldering released
- Compliant to RoHS Directive 2002/95/EC and in accordance to WEEE 2002/96/EC

APPLICATIONS

- · Custom-design sensors for various distances
- · Reflective sensors
- Transmissive sensors

PRODUCT SUMMARY				
PART NUMBER	GAP WIDTH (mm)	TYPICAL OUTPUT CURRENT UNDER TEST ⁽¹⁾ (mA)	DAYLIGHT BLOCKING FILTER INTEGRATED	
TCZT8020	Variable	0.5	Yes	

Note

⁽¹⁾ Conditions like in table basic characteristics/coupler

ORDERING INFORMATION					
ORDERING CODE	PACKAGING	VOLUME (1)	REMARKS		
TCZT8020	Bulk	MOQ: 2000 pairs, 1000 pcs/bulk	Detectors and emitters in separate bulk		

Note

(1) MOQ: minimum order quantity

^{**} Please see document "Vishay Material Category Policy": www.vishay.com/doc?99902

Vishay Semiconductors

Matched Pairs of Emitters and **Detectors**

ABSOLUTE MAXIMUM RATINGS (T _{amb} = 25 °C, unless otherwise specified)				
PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT
COUPLER				
Ambient temperature range		T _{amb}	- 55 to + 85	°C
Storage temperature range		T _{stg}	- 55 to + 100	°C
Soldering temperature	Distance to package 2 mm, t ≤ 5 s	T _{sd}	260	°C
INPUT (EMITTER)				
Reverse voltage		V _R	6	V
Forward current		l _F	60	mA
Forward surge current	t ≤ 10 μs	I _{FSM}	1	Α
Power dissipation	T _{amb} ≤ 25 °C	P _V	100	mW
Junction temperature		Tj	100	°C
OUTPUT (DETECTOR)			<u>. </u>	
Collector emitter voltage		V _{CEO}	70	V
Emitter collector voltage		V _{ECO}	7	V
OUTPUT (DETECTOR)				
Collector current		I _C	50	mA
Collector peak current	$t_p/T = 0.5, t \le 10 \text{ ms}$	I _{CM}	100	mA
Power dissipation	T _{amb} ≤ 25 °C	P _V	150	mW
Junction temperature		T _j	100	°C

ABSOLUTE MAXIMUM RATINGS

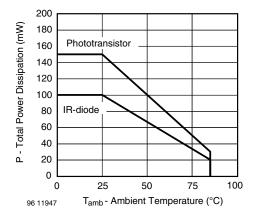


Fig. 1 - Power Dissipation Limit vs. Ambient Temperature

Matched Pairs of Emitters and **Detectors**

Vishay Semiconductors

BASIC CHARACTERISTICS (T _{amb} = 25 °C, unless otherwise specified)						
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT
COUPLER	•					
Collector current	$V_{CE} = 5 \text{ V}, I_F = 20 \text{ mA}, d = 4 \text{ mm}^{(1)}$	I _C	0.25	0.5		mA
I _C /I _F	$V_{CE} = 5 \text{ V}, I_F = 20 \text{ mA}, d = 4 \text{ mm}$	CTR	1.25	2.5		%
Collector emitter saturation voltage	$I_F = 20 \text{ mA}, I_C = 25 \mu\text{A}$	V _{CEsat}			0.4	V
Cut-off frequency	I_F = 10 mA, V_{CE} = 5 V, R_L = 100 Ω	f _C		110		kHz
INPUT (EMITTER)	•					
Forward voltage	I _F = 50 mA	V _F		1.25	1.6	V
Radiant intensity	$I_F = 60 \text{ mA}, t_P = 20 \text{ ms}$	l _e			7.8	mW/sr
Peak wavelength	I _F = 100 mA	λ _P	940			nm
Virtual source diameter	DIN EN ISO 1146/1:2005	d		1.1		mm
OUTPUT (DETECTOR)						
Collector emitter voltage	I _C = 1 mA	V _{CEO}	70			V
Emitter collector voltage	I _E = 100 μA	V _{ECO}	7			V
Collector dark current	$V_{CE} = 25 \text{ V}, I_F = 0 \text{ A}, E = 0 \text{ Ix}$	I _{CEO}			100	nA
SWITCHING CHARACTERISTI	cs					
Turn-on time	$V_S = 5 \text{ V}, I_C = 1 \text{ mA}, R_L = 100 \Omega$ (see figure 10)	t _{on}		15		μs
Turn-off time	$V_S = 5 \text{ V}, I_C = 1 \text{ mA}, R_L = 100 \Omega$ (see figure 10)	t _{off}		10		μs

Note

BASIC CHARACTERISTICS (T_{amb} = 25 °C, unless otherwise specified)

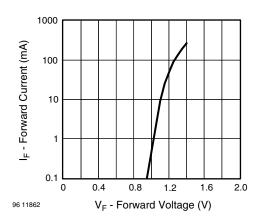


Fig. 2 - Forward Current vs. Forward Voltage

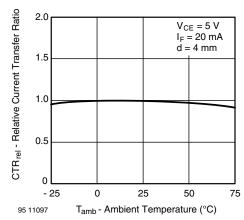


Fig. 3 - Relative Current Transfer Ratio vs. Ambient Temperature

⁽¹⁾ Characteristics are measurement with d = 4 mm (0.55") distance between emitter and detector, within a common axis of 0.5 mm (0.02") and with parallel alignment within 5°

Vishay Semiconductors

Matched Pairs of Emitters and **Detectors**

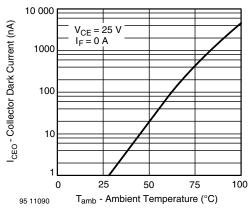


Fig. 4 - Collector Dark Current vs. Ambient Temperature

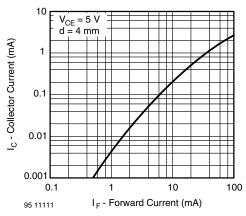


Fig. 5 - Collector Current vs. Forward Current

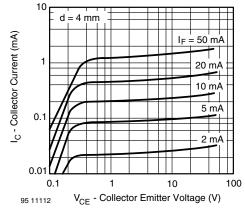


Fig. 6 - Collector Current vs. Collector Emitter Voltage

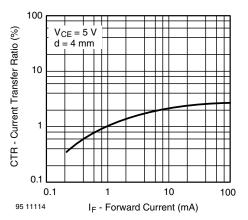


Fig. 7 - Current Transfer Ratio vs. Forward Current

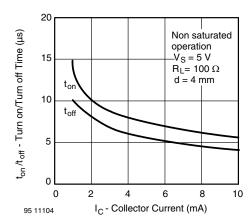


Fig. 8 - Turn on/off Time vs. Forward Current

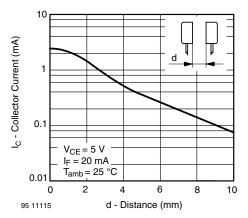


Fig. 9 - Collector Current vs. Distance

Matched Pairs of Emitters and **Detectors**

Vishay Semiconductors

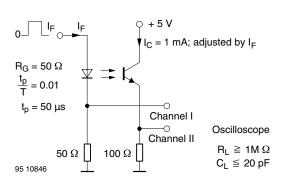


Fig. 10 - Pulse Diagram

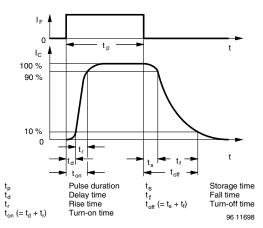
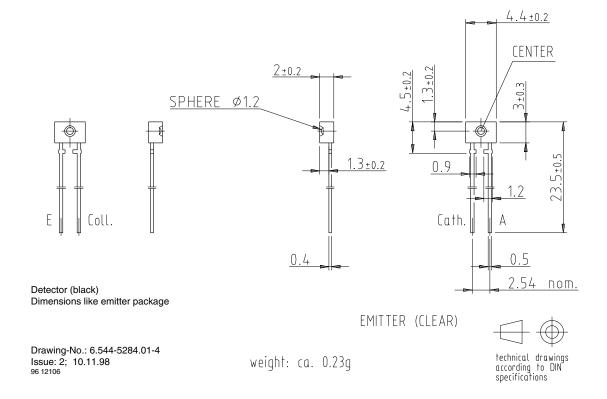



Fig. 11 - Switching Times

PACKAGE DIMENSIONS in millimeters

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk and agree to fully indemnify and hold Vishay and its distributors harmless from and against any and all claims, liabilities, expenses and damages arising or resulting in connection with such use or sale, including attorneys fees, even if such claim alleges that Vishay or its distributor was negligent regarding the design or manufacture of the part. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Document Number: 91000 www.vishay.com
Revision: 11-Mar-11 1