NEW

MOS FET Relays

SSOP Package MOS FET Relay with Low Leakage Current, Output Capacitance and ON Resistance (C \times R = 20 pF• Ω) in a 60-V Load Voltage Model.

- ON resistance of 1 Ω (typical) suppresses output signal attenuation.
- Leakage current of 0.04 nA (typ.) when relay is open
- RoHS compliant

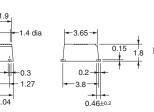
Application Examples

- Semiconductor inspection tools
- Measurement devices and Data loggers
- Broadband systems

Note: The actual product is marked differently from the image shown here.

List of Models

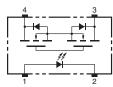
Contact form	Terminals	Load voltage (peak value)	Model	Number per tape
	Surface-mounting	60 VAC	G3VM-61LR	
	terminals		G3VM-61LR(TR05)	500
			G3VM-61LR(TR)	1,500


Dimensions

Note: All units are in millimeters unless otherwise indicated.

G3VM-61LR

Note: The actual product is marked differently from the image shown here.



Note: A tolerance of ± 0.1 mm applies to all dimensions unless otherwise specified.

Weight: 0.03 g

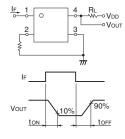
Terminal Arrangement/Internal Connections (Top View)

G3VM-61LR

Actual Mounting Pad Dimensions (Recommended Value, Top View) G3VM-61LR

OMRON

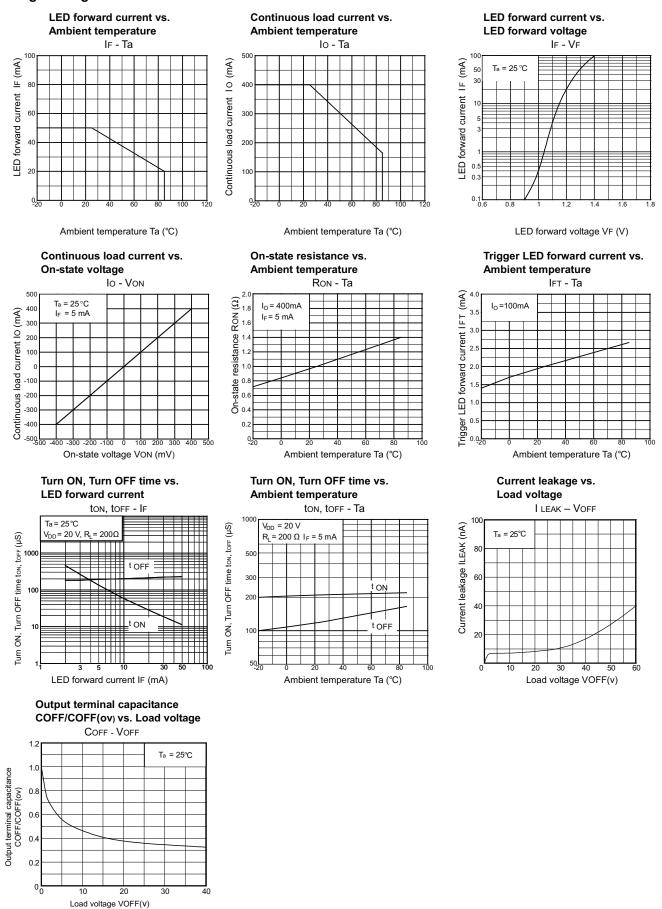
■ Absolute Maximum Ratings (Ta = 25°C)


	Item	Symbol	Rating	Unit	Measurement Conditions
Input	LED forward current	I _F	50	mA	
	LED forward current reduction rate	$\Delta I_{F}^{\circ}C$	-0.5	mA/°C	$T_a \ge 25^{\circ}C$
	LED reverse voltage	V _R	5	V	
	Connection temperature	T _j	125	°C	
Output	Load voltage (AC peak/DC)	V _{OFF}	60	V	
	Continuous load current	I _o	400	mA	
	ON current reduction rate	$\Delta I_{ON}/^{\circ}C$	-4.0	mA/°C	$T_a \ge 25^{\circ}C$
	Connection temperature	Tj	125	°C	
	ric strength between input and (See note 1.)	V _{I-O}	1,500	V _{rms}	AC for 1 min
Ambient operating temperature		T _a	-20 to +85	°C	With no icing or condensation
Storage temperature		T _{stg}	-40 to +125	°C	With no icing or condensation
Soldering temperature			260	°C	10 s

 The dielectric strength between the input and output was checked by applying voltage between all pins as a group on the LED side and all pins as a group on the light-receiving side.

■ Electrical Characteristics (Ta = 25°C)

	Item	Symbol	Mini- mum	Typical	Maxi- mum	Unit	Measurement conditions
Input	LED forward voltage	V _F	1.0	1.15	1.3	V	I _F = 10 mA
	Reverse current	I _R			10	μA	V _R = 5 V
	Capacity between terminals	C _T		15		pF	V = 0, f = 1 MHz
	Trigger LED forward current	I _{FT}		2	5	mA	I_{O} = 100 mA, R _{ON} < 1.5 Ω
Output	Maximum resistance with output ON	R _{ON}		1.0	1.5	Ω	$I_{\rm F} = 5 \text{ mA}, I_{\rm O} = 400 \text{ mA}$
	Current leakage when the relay is open	I _{LEAK}		0.04	1,000	nA	$V_{OFF} = 60$ V, $T_a = 25^{\circ}C$
	Capacity between terminals	C _{OFF}		20		pF	V = 0, f = 100 MHz, t = < 1 s
Capacity between I/O terminals		C _{I-O}		0.3		pF	f = 1 MHz, V _s = 0 V
Insulation resistance between I/O terminals		R _{I-O}	1,000			MΩ	$\begin{array}{l} V_{\text{I-O}} = 500 \text{ VDC}, \\ R_{\text{oH}} \leq 60\% \end{array}$
Turn-ON time		t _{on}		0.3	1	ms	$I_F = 5 \text{ mA}, R_L = 200 \Omega,$
Turn-OFF time		t _{OFF}		0.2	1	ms	$V_{DD} = 20 V$ (See note 2.)


Recommended Operating Conditions

Use the G3VM under the following conditions so that the Relay will operate properly.

Item	Symbol	Minimum	Typical	Maximum	Unit
Load voltage (AC peak/DC)	V _{DD}			48	V
Operating LED forward current	I _F	10		20	mA
Continuous load current (AC peak/DC)	I _o			400	mA
Operating temperature	T _a	-20		70	°C

OMRON

Engineering Data

Downloaded from Elcodis.com electronic components distributor

All sales are subject to Omron Electronic Components LLC standard terms and conditions of sale, which can be found at http://www.components.omron.com/components/web/webfiles.nsf/sales_terms.html

ALL DIMENSIONS SHOWN ARE IN MILLIMETERS. To convert millimeters into inches, multiply by 0.03937. To convert grams into ounces, multiply by 0.03527.

55 E. Commerce Drive, Suite B Schaumburg, IL 60173

OMRON ON-LINE

Global - http://www.omron.com USA - http://www.components.omron.com

847-882-2288

Cat. No. X302-E-1

12/10

Specifications subject to change without notice

Printed in USA

MOS FET Relays G3VM-61LR

Downloaded from Elcodis.com electronic components distributor