DESCRIPTION

The PS9305L is an optically coupled isolator containing a GaAIAs LED on the input side and a photo diode, a signal processing circuit and a power output transistor on the output side on one chip.

The PS9305L is designed specifically for high common mode transient immunity (CMR), high output current and high switching speed.

The PS9305L is suitable for driving IGBTs and MOS FETs.

FEATURES

- Long creepage distance (8 mm MIN.)
- Large peak output current (2.5 A MAX., 2.0 A MIN.)
- High speed switching (tpLh, tphl $=0.25 \mu \mathrm{~S}$ MAX.)
- UVLO (Under Voltage Lock Out) protection with hysteresis
- High common mode transient immunity ($\mathrm{CM}, \mathrm{CML}= \pm 25 \mathrm{kV} / \mu \mathrm{S}$ MIN.)

APPLICATIONS

- IGBT, Power MOS FET Gate Driver
- Industrial inverter
- IH (Induction Heating)

PACKAGE DIMENSIONS (UNIT: mm)

PHOTOCOUPLER CONSTRUCTION

Parameter	Unit (MIN.)
Air Distance	7 mm
Outer Creepage Distance	8 mm
Isolation Distance	0.4 mm

PS9305L

FUNCTIONAL DIAGRAM

MARKING EXAMPLE

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=\mathbf{2 5 ^ { \circ }}{ }^{\circ} \mathrm{C}$, unless otherwise specified)

Parameter		Symbol	Ratings	Unit
Diode	Forward Current	IF	25	mA
	Peak Transient Forward Current (Pulse Width $<1 \mu \mathrm{~s}$)	If (tran)	1.0	A
	Reverse Voltage	$V_{\text {R }}$	5	V
	Power Dissipation ${ }^{* 1}$	Pd	45	mW
Detector	High Level Peak Output Current ${ }^{* 2}$	IOH (PEAK)	2.5	A
	Low Level Peak Output Current ${ }^{*}$	IoL (PEAK)	2.5	A
	Supply Voltage	(Vcc- $\mathrm{Vee}^{\text {e }}$	0 to 35	V
	Output Voltage	Vo	0 to Vcc	V
	Power Dissipation ${ }^{* 3}$	Pc	250	mW
Isolation Voltage*4		BV	5000	Vr.m.s.
Operating Frequency ${ }^{* 5}$		f	50	kHz
Operating Ambient Temperature		TA	-40 to +110	${ }^{\circ} \mathrm{C}$
Storage Temperature		$\mathrm{T}_{\text {stg }}$	-55 to +125	${ }^{\circ} \mathrm{C}$

*1 Reduced to $1.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ at $\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$ or more.
*2 Maximum pulse width $=10 \mu \mathrm{~s}$, Maximum duty cycle $=0.2 \%$
*3 Reduced to $4.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ at $\mathrm{T}_{\mathrm{A}}=80^{\circ} \mathrm{C}$ or more.
*4 AC voltage for 1 minute at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{RH}=60 \%$ between input and output. Pins 1-4 shorted together, 5-8 shorted together.
*5 IOH (PEAK) $\leq 2.0 \mathrm{~A}(\leq 0.3 \mu \mathrm{~S})$, IOL (PEAK) $\leq 2.0 \mathrm{~A}(\leq 0.3 \mu \mathrm{~S})$

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	MIN.	TYP.	MAX.	Unit
Supply Voltage	$\left(\mathrm{VCC}^{-1} \mathrm{~V}_{\mathrm{EE}}\right)$	15		30	V
Forward Current (ON)	$\mathrm{I}_{\mathrm{F} \text { (ON) }}$	7	10	16	mA
Forward Voltage (OFF)	$\mathrm{V}_{\mathrm{F} \text { (OFF) }}$	-2		0.8	V
Operating Ambient Temperature	T_{A}	-40		110	${ }^{\circ} \mathrm{C}$

 V_{F} (OFF) $=\mathbf{- 2}$ to $0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=\mathrm{GND}$, unless otherwise specified)

Parameter		Symbol	Conditions	MIN.	TYP. ${ }^{* 1}$	MAX.	Unit
Diode	Forward Voltage	V_{F}	$\mathrm{IF}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	1.2	1.56	1.8	V
	Reverse Current	IR	$V_{R}=3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			10	$\mu \mathrm{A}$
	Terminal Capacitance	C_{t}	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{F}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		30		pF
Detector	High Level Output Current	Іон	$\mathrm{V}_{\mathrm{o}}=(\mathrm{Vcc}-4 \mathrm{~V})^{* 2}$	0.5	2.0		A
			$\mathrm{V}_{\mathrm{o}}=(\mathrm{Vcc}-15 \mathrm{~V})^{* 3}$	2.0			
	Low Level Output Current	lot	$\mathrm{V}_{\mathrm{O}}=\left(\mathrm{V}_{\mathrm{EE}}+2.5 \mathrm{~V}\right)^{* 2}$	0.5	2.0		A
			$V_{O}=\left(V_{E E}+15 \mathrm{~V}\right)^{* 3}$	2.0			
	High Level Output Voltage	Vor	$\mathrm{lo}=-100 \mathrm{~mA}^{* 4}$	Vcc-3.0	Vcc-1.5		V
	Low Level Output Voltage	Vol	$\mathrm{lo}=100 \mathrm{~mA}$		0.1	0.5	V
	High Level Supply Current	Іcch	$\mathrm{V}_{\mathrm{o}}=$ open, $\mathrm{l}_{\mathrm{F}}=10 \mathrm{~mA}$		2.0	3.0	mA
	Low Level Supply Current	Iccl	$\mathrm{V}_{\mathrm{o}}=$ open, $\mathrm{V}_{\mathrm{F}}=0$ to +0.8 V		2.0	3.0	mA
	UVLO Threshold	Vuvlo+	$\mathrm{V}_{\mathrm{O}}>5 \mathrm{~V}, \mathrm{IF}=10 \mathrm{~mA}$	10.8	12.3	13.4	V
		Vuvlo-		9.5	11.0	12.5	
	UVLO Hysteresis	UVLOhys	$\mathrm{V}_{0}>5 \mathrm{~V}, \mathrm{l}$ = $=10 \mathrm{~mA}$	0.4	1.3		V
Coupled	Threshold Input Current $(\mathrm{L} \rightarrow \mathrm{H})$	Iflu	$\mathrm{lo}=0 \mathrm{~mA}, \mathrm{~V}_{0}>5 \mathrm{~V}$		2.0	5.0	mA
	Threshold Input Voltage $(\mathrm{H} \rightarrow \mathrm{~L})$	Vfhl	$\mathrm{l}_{0}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{o}}<5 \mathrm{~V}$	0.8			V

*1 Typical values at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
*2 Maximum pulse width $=50 \mu \mathrm{~s}$, Maximum duty cycle $=0.5 \%$.
*3 Maximum pulse width $=10 \mu \mathrm{~s}$, Maximum duty cycle $=0.2 \%$
*4 Vон is measured with the DC load current in this testing (Maximum pulse width $=2 \mathrm{~ms}$, Maximum duty cycle $=$ 20\%).

SWITCHING CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=-40$ to $+110^{\circ} \mathrm{C}, \mathrm{Vcc}=15$ to 30 V , $\mathrm{IF}_{(\mathrm{ON})}=7$ to 16 mA ,
V_{F} (OFF) $=-2$ to $0.8 \mathrm{~V}, \mathrm{VEE}_{\mathrm{EE}}=\mathrm{GND}$, unless otherwise specified)

Parameter	Symbol	Conditions	MIN.	TYP. ${ }^{\text {¹ }}$	MAX.	Unit
Propagation Delay Time ($\mathrm{L} \rightarrow \mathrm{H}$)	tpLH	$\begin{aligned} & \mathrm{R}_{\mathrm{g}}=10 \Omega, \mathrm{C}_{\mathrm{g}}=10 \mathrm{nF}, \mathrm{f}=10 \mathrm{kHz}, \\ & \text { Duty Cycle }=50 \%^{* 2}, \mathrm{IF}=10 \mathrm{~mA} \end{aligned}$		0.18	0.25	$\mu \mathrm{s}$
Propagation Delay Time ($\mathrm{H} \rightarrow \mathrm{L}$)	tpHL			0.18	0.25	$\mu \mathrm{S}$
Pulse Width Distortion (PWD)	$\mid \mathrm{tPHL-tPLH\mid}$		-0.1	0.02	0.1	$\mu \mathrm{S}$
Propagation Delay Time (Difference Between Any Two Products)	tPhL-tpLH		-0.1		0.1	$\mu \mathrm{S}$
Rise Time	tr			50		ns
Fall Time	tf			50		ns
UVLO (Turn On Delay)	tuvLo on	$\mathrm{V}_{0}>5 \mathrm{~V}, \mathrm{l}$ F $=10 \mathrm{~mA}$		0.8		$\mu \mathrm{s}$
UVLO (Turn Off Delay)	tuvLo off	$\mathrm{V}_{0}<5 \mathrm{~V}, \mathrm{If}_{\mathrm{F}}=10 \mathrm{~mA}$		0.6		$\mu \mathrm{S}$
Common Mode Transient Immunity at High Level Output ${ }^{* 3}$	\|CM ${ }^{\text {\| }}$	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{~V} \mathrm{Cc}=30 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{o}}(\mathrm{MIN} .)=26 \mathrm{~V}, \mathrm{~V} \mathrm{CM}=1.5 \mathrm{kV} \end{aligned}$	25			$\mathrm{kV} / \mu \mathrm{s}$
Common Mode Transient Immunity at Low Level Output ${ }^{* 3}$	\|CMㄴ	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=30 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{O}(\mathrm{MAX} .)}=1 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{kV} \end{aligned}$	25			$\mathrm{kV} / \mu \mathrm{s}$

${ }^{* 1}$ Typical values at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
*2 This load condition is equivalent to the IGBT load at 1200 V/75 A.
*3 Connect pin 4 to the LED common.

Caution	GaAs Products	This product uses gallium arsenide (GaAs). GaAs vapor and powder are hazardous to human health if inhaled or ingested, so please observe the following points. • Follow related laws and ordinances when disposing of the product. If there are no applicable laws and/or ordinances, dispose of the product as recommended below. 1. Commission a disposal company able to (with a license to) collect, transport and dispose of materials that contain arsenic and other such industrial waste materials. 2. Exclude the product from general industrial waste and household garbage, and ensure that the product is controlled (as industrial waste subject to special control) up until final disposal. - Do not burn, destroy, cut, crush, or chemically dissolve the product. - Do not lick the product or in any way allow it to enter the mouth.

Revision History			PS9305L Preliminary Data Sheet
Rev.	Date	Description	
		Page	Summary
0.01	May 12, 2010	-	First Edition issued

