

Pacific Silicon Sensor Series 8 Data Sheet Part Description AD230-8-TO52-S1 Order # 06-015

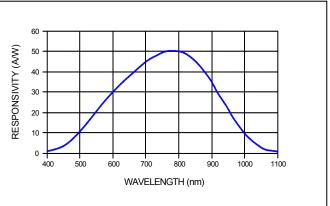
FEATURES

- + \varnothing 230 µm active area
- · High gain at low bias voltage
- Fast rise time
- Low capacitance

DESCRIPTION

0.042 mm² High Speed, High Gain Avalanche Photodiode with N on P construction. Hermetically packaged in a TO-52-S1 with a clear borosilicate glass window cap.

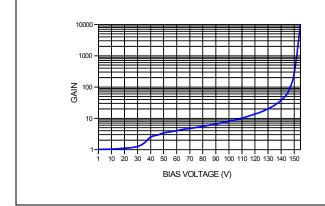
APPLICATIONS


- High speed optical
- communications
- Laser range finder
- Medical equipmentHigh speed photometry

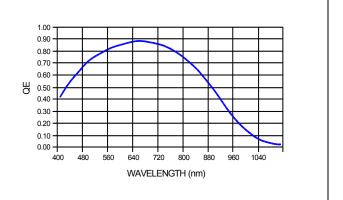
ABSOLUTE MAXIMUM RATING

SYMBOL	PARAMETER	MIN	MAX	UNITS
T _{STG}	Storage Temp	-55	+125	°C
T _{OP}	Operating Temp	-40	+100	°C
TSOLDERING	Soldering Temp 10 seconds		+260	°C
	Electrical Power Dissipation @ 22°C	-	100	mW
	Optical Peak Value, once for 1 second	-	200	mW
I _{PH} (DC)	Continuous Optical Operation	-	250	μA
I _{PH} (AC)	Pulsed Signal Input 50 µs "on" / 1 ms "off"	-	1	mA

SPECTRAL RESPONSE at M = 100

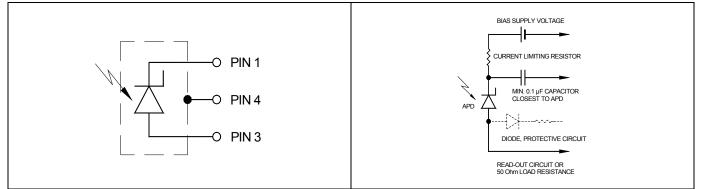

ELECTRO-OPTICAL CHARACTERISTICS @ 22 °C

SYMBOL	CHARACTERISTIC	TEST CONDITIONS	MIN	TYP	MAX	UNITS
ID	Dark Current	M = 100*		0.3	1.5	nA
С	Capacitance	M = 100*		1.2		pF
V _{BR}	Breakdown Voltage	$I_D = 2 \mu A$	80	200		V
	Temperature Coefficient of VBR		0.35	0.45	0.55	V/K
	Responsivity	M = 100; = 0 V; λ = 800 nm	45	50		A/W
$\Delta f_{ m 3dB}$	Bandwidth	-3dB		2		GHz
t _r	Rise Time			180		ps
	Optimum Gain		50	60		
	"Excess Noise" factor	M = 100		2.2		
	"Excess Noise" index	M = 100		0.2		
	Noise Current	M = 100		0.5		pA/Hz ^{1/2}
	Max Gain		200			
NEP	Noise Equivalent Power	M = 100; λ = 800 nm		1.0 X 10 ⁻¹⁴		W/Hz ^{1/2}


* Measurement conditions: Setup of photo current 1.0 nA at M = 1 and irradiated by a 680 nm, 60 nm bandwidth LED. Increase the photo current up to 1 μA, (M = 100) by internal multiplication due to an increasing bias voltage.

Disclaimer: Due to our policy of continued development, specifications are subject to change without notice.

TYPICAL GAIN vs BIAS VOLTAGE



QUANTUM EFFICIENCY for M = 1

DEVICE SCHEMATIC

SUGGESTED CIRCUIT SCHEMATIC

APPLICATION NOTES

- Current should be limited by a protecting resistor or current limiting IC inside the power supply.
- Use of low noise read-out IC.
- For high gain applications (M>50) bias voltage should be temperature compensated.
- For low light level applications, blocking of ambient light should be used.

HANDLING PRECAUTIONS:

- Soldering temperature 260°C for 10 seconds max. The device must be protected against solder flux vapor.
- Minimum pin length 2 mm
- · ESD protection Standard precautionary measures are sufficient.
- Storage Store devices in conductive foam.
- Avoid skin contact with window.
- · Clean window with Ethyl alcohol if necessary.
- Do not scratch or abrade window.

USA:

Pacific Silicon Sensor, Inc. 5700 Corsa Avenue, #105 Westlake Village, CA 91362 USA Phone (818) 706-3400 Fax (818) 889-7053 Email: <u>sales@pacific-sensor.com</u> www.pacific-sensor.com

International sales:

Silicon Sensor International AG Peter-Behrens-Str. 15 D-12459 Berlin, Germany Phone +49 (0)30-63 99 23 10 Fax +49 (0)30-63 99 23 33 Email: <u>sales@silicon-sensor.de</u> www.silicon-sensor.de

Proud Members of the Silicon Sensor International AG Group of companies