
Pacific Silicon Sensor Series 11 Data Sheet

Part Description AD800-11-TO52-S1 Order # 06-112

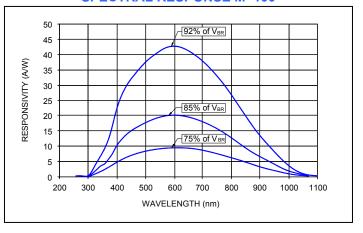
FEATURES

- Ø 800 µm active area
- Blue enhanced
- · High QE at blue range
- · Fast rise time

DESCRIPTION

0.50 mm² High Speed, High Gain, Blue Enhanced Avalanche Photodiode with P on N construction. Hermetically packaged in a case isolated TO-52-S1 with a UV transmitting clear glass window cap.

APPLICATIONS

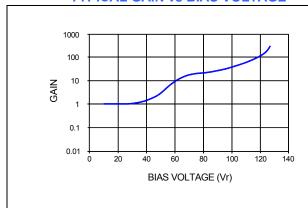

- Analytical equipment
- Scintillation
- · Medical equipment
- High speed photometry

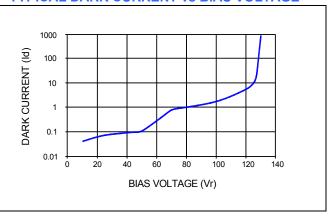
ABSOLUTE MAXIMUM RATING

SYMBOL	PARAMETER	MIN	MAX	UNITS	
T _{STG}	Storage Temp	-55	+125	°C	
T _{OP}	Operating Temp	-40	+85	°C	
T _{SOLDERING}	Soldering Temp 10 seconds		+260	°C	
	Electrical Power Dissipation @ 22°C	-	100	mW	
	Optical Peak Value, once for 1 second	-	200	mW	
I _{PH} (DC)	Continuous Optical Operation ≤ 1 mA for signal 50 µs "on" / 1 ms "off"		250	μΑ	

SPECTRAL RESPONSE M=100

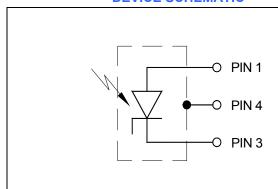
ELECTRO-OPTICAL CHARACTERISTICS @ 23 °C

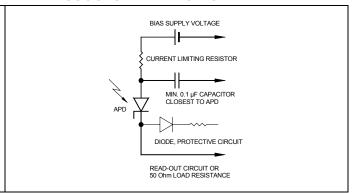

SYMBOL	CHARACTERISTIC	TEST CONDITIONS	MIN	TYP	MAX	UNITS
I _D	Dark Current	M = 100		1.0	5.0	nA
С	Capacitance	M = 100		2.5		pF
V_{BR}	Breakdown Voltage	$I_D = 2 \mu A$	100	200		V
	Temperature Coefficient of V _{BR}			0.88		V/K
	Responsivity	M = 100; λ = 400 nm		25		A/W
		M = 100; λ = 500 nm		35		
		$M = 100; \lambda = 600 \text{ nm}$		40		
$\Delta f_{\sf 3dB}$	Bandwidth	-3dB		175		MHz
t _r	Rise Time	λ = 410 nm; R _L = 50 Ω		1		ns
	Optimum Gain		50		80	
	Noise Current	M = 100		0.25		pA/Hz ^{1/2}
	Max Gain		200	500		
NEP	Noise Equivalent Power	M = 100; λ = 410 nm		1.0 X 10 ⁻¹⁴		W/Hz ^{1/2}


Disclaimer: Due to our policy of continued development, specifications are subject to change without notice.

7/28/2010 Page 1 of 2

TYPICAL GAIN vs BIAS VOLTAGE


TYPICAL DARK CURRENT vs BIAS VOLTAGE



DEVICE SCHEMATIC

SUGGESTED CIRCUIT SCHEMATIC

APPLICATION NOTES

- Current should be limited by a protecting resistor or current limiting IC inside the power supply.
- Use of low noise read-out IC.
- For high gain applications (M>50) bias voltage should be temperature compensated.
- For low light level applications, blocking of ambient light should be used.

HANDLING PRECAUTIONS:

- Soldering temperature 260°C for 10 seconds max. The device must be protected against solder flux vapor.
- Minimum pin length 2 mm
- ESD protection Standard precautionary measures are sufficient.
- · Storage Store devices in conductive foam.
- Avoid skin contact with window.
- · Clean window with Ethyl alcohol if necessary.
- · Do not scratch or abrade window.

USA:

Pacific Silicon Sensor, Inc. 5700 Corsa Avenue, #105 Westlake Village, CA 91362 USA Phone (818) 706-3400 Fax (818) 889-7053 Email: sales@pacific-sensor.com www.pacific-sensor.com

International sales:

Silicon Sensor International AG Peter-Behrens-Str. 15 D-12459 Berlin, Germany Phone +49 (0)30-63 99 23 10 Fax +49 (0)30-63 99 23 33 Email: sales@silicon-sensor.de www.silicon-sensor.de

Proud Members of the Silicon Sensor International AG Group of companies