

VLSL5012A, VLSL5024A, VLSL5036A

Vishay Semiconductors

High Brightness LED Power Module

DESCRIPTION

The VLSL50xxA are metal core based high brightness LED power modules, assembled with 12, 24 or 36 HB white LEDs. The colour temperature is cool white in the typical range of 5000 K to 7000 K. The LED's are designed with a clear silicone lens for a butterfly shaped radiation characteristic.

PRODUCT GROUP AND PACKAGE DATA

- Product group: LED
- · Package: LED module
- Product series: power
- Angle of half intensity: vertical: ± 35°, horizontal: ± 60°

FEATURES

- Metal core PCB: Al > 0.75 thickness
- Single side/single layer PCB
- · Shiny white surface
- COMPLIANT • 12, 24 or 36 LED's minimum 82 lm at 350 mA per GREEN LED. Max. current per LED 1 A (5-2008)
- Conductive top layer: Cu (min. 18 μm)
- Isolation layer prepreg > 63 µm
- · Luminous flux and colour binning
- ESD withstand voltage: up to 2 kV according to JESD22-A114-B
- LM80 certified LEDs
- Compliant to RoHS Directive 2002/95/EC

APPLICATIONS

- Streetlight
- · Internal lighting in buildings
- Tunnel lights
- · General lighting application

PARTS TABLE						
PART	COLOR	LUMINOUS FLUX (at $I_F = 700 \text{ mA typ.}$)	COLOR TEMPERATURE K	TECHNOLOGY		
VLSL5012A	Cool white	Φ_V = 1740 lm	5000 to 7000	InGaN		
VLSL5024A	Cool white	Φ_V = 3480 lm	5000 to 7000	InGaN		
VLSL5036A	Cool white	Φ_{V} = 5220 lm	5000 to 7000	InGaN		

ABSOLUTE MAXIMUM RATINGS (Tamb = 25 °C, unless otherwise specified) VLSL5012A, VLSL5024A, VLSL5036A

PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT
Forward current	Per row	I _F	750	mA
Power dissipation VLSL5012A		P _{tot}	35	W
Power dissipation VLSL5024A	Total (max.)	P _{tot}	69	W
Power dissipation VLSL5036A		P _{tot}	104	W
Junction temperature		Тj	120	°C
Operating temperature range		T _{amb}	- 40 to + 85	°C
Storage temperature range		T _{stg}	- 40 to + 85	°C

** Please see document "Vishay Material Category Policy": www.vishay.com/doc?99902

Document Number: 83353 Rev. 1.2, 13-Apr-11

For technical questions, contact: LED@vishay.com

www.vishay.com

This document is subject to change without notice. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 Downloaded from Elcodis.com electronic components distributor

RoHS

Vishay Semiconductors High Brightness LED Power Module

OPTICAL AND ELECTRICAL CHARACTERISTICS ⁽¹⁾ ($T_{amb} = 25$ °C, unless otherwise specified) **VLSL5012A, COOL WHITE**

PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT
Luminous flux per row ⁽²⁾	I _F = 700 mA	Φv	760	870	-	lm
Luminous flux total ⁽²⁾	I _{board} = 2 x 700 mA	Φv	1520	1740	-	lm
Color temperature	I _F = 700 mA	TK	5000	-	7000	K
Forward voltage per row	I _F = 700 mA	V _F	19	20	23	V
Class A (V _{Fmax.} - V _{Fmin.}) all rows ⁽³⁾	I _F = 700 mA	ΔV_F	-	-	0.9	V
Temperature coefficient of V _F per row	I _F = 350 mA	TC _{VF}	-	- 20	-	mV/K
Temperature coefficient of Φ_V	I _F = 350 mA (per row)	TCΦ _V	-	- 0.4	-	%/K

Notes

⁽¹⁾ Forward voltages are tested at a current pulse duration of 1 ms and a tolerance of \pm 0.1 V. Luminous flux is measured at a current pulse duration of 25 ms and an accuracy of \pm 11 %.

⁽²⁾ Calculated based on single LED unit.

⁽³⁾ V_F classes are marked at the LED cluster and represent the technical classification only. The single groups cannot be specifically ordered.

OPTICAL AND ELECTRICAL CHARACTERISTICS ⁽¹⁾ ($T_{amb} = 25 \degree C$, unless otherwise specified) **VLSL5024A, COOL WHITE**

PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT
Luminous flux per row ⁽²⁾	I _F = 700 mA	Φ_V	760	870	-	lm
Luminous flux total ⁽²⁾	I _{board} = 4 x 700 mA	Φ_V	3040	3480	-	lm
Color temperature	I _F = 700 mA	TK	5000	-	7000	К
Forward voltage per row	I _F = 700 mA	V _F	19	20	23	V
Class A (V _{Fmax.} - V _{Fmin.}) all rows ⁽³⁾	I _F = 700 mA	ΔV_F	-	-	0.9	V
Temperature coefficient of V _F per row	I _F = 350 mA	TC _{VF}	-	- 20	-	mV/K
Temperature coefficient of Φ_V	I _F = 350 mA (per row)	TCΦ _V	-	- 0.4	-	%/K

Notes

⁽¹⁾ Forward voltages are tested at a current pulse duration of 1 ms and a tolerance of \pm 0.1 V. Luminous flux is measured at a current pulse duration of 25 ms and an accuracy of \pm 11 %.

⁽²⁾ Calculated based on single LED unit.

⁽³⁾ V_F classes are marked at the LED cluster and represent the technical classification only. The single groups cannot be specifically ordered.

OPTICAL AND ELECTRICAL CHARACTERISTICS ⁽¹⁾ ($T_{amb} = 25 \text{ °C}$, unless otherwise specified) VLSL5036A, COOL WHITE						
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT
Luminous flux per row ⁽²⁾	I _F = 700 mA	Φv	760	870	-	lm
Luminous flux total ⁽²⁾	I _{board} = 6 x 700 mA	Φv	4560	5220	-	lm
Color temperature	I _F = 700 mA	ТК	5000	-	7000	K
Forward voltage per row	I _F = 700 mA	VF	19	20	23	V
Class A (V _{Fmax.} - V _{Fmin.}) all rows ⁽³⁾	I _F = 700 mA	ΔV_F	-	-	0.9	V
Temperature coefficient of V _F per row	I _F = 350 mA	TC _{VF}	-	- 20	-	mV/K
Temperature coefficient of Φ_V	I _F = 350 mA (per row)	TCΦ _V	-	- 0.4	-	%/K

Notes

(1) Forward voltages are tested at a current pulse duration of 1 ms and a tolerance of ± 0.1 V. Luminous flux is measured at a current pulse duration of 25 ms and an accuracy of ± 11 %.

⁽²⁾ Calculated based on single LED unit.

⁽³⁾ V_F classes are marked at the LED cluster and represent the technical classification only. The single groups cannot be specifically ordered.

This document is subject to change without notice.

High Brightness LED Power Module Vishay Semiconductors

SPECIFICATION OF SINGLE LEDs USED FOR THE MODULES

VLSL5012A, VLSL5024A, VLSL5036A: LED: VLMW92KYKZ6P7R

LUMINOUS FLUX CLASSIFICATION FOR THE SINGLE LED					
GROUP	LUMINOUS FLUX Φ_V (mim) CORRELATION TABLE				
STANDARD	MIN. MAX.				
КҮ	82 000	97 000			
KZ	97 000	112 000			

COLOR RANGE AND COLOR BINNING

VLSL5012A, VLSL5024A, VLSL5036A: 5000 K to 7000 K group 6P to7R

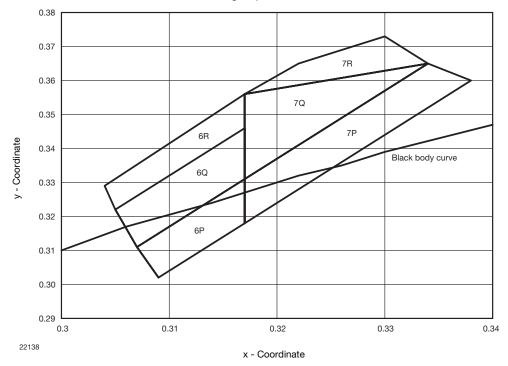
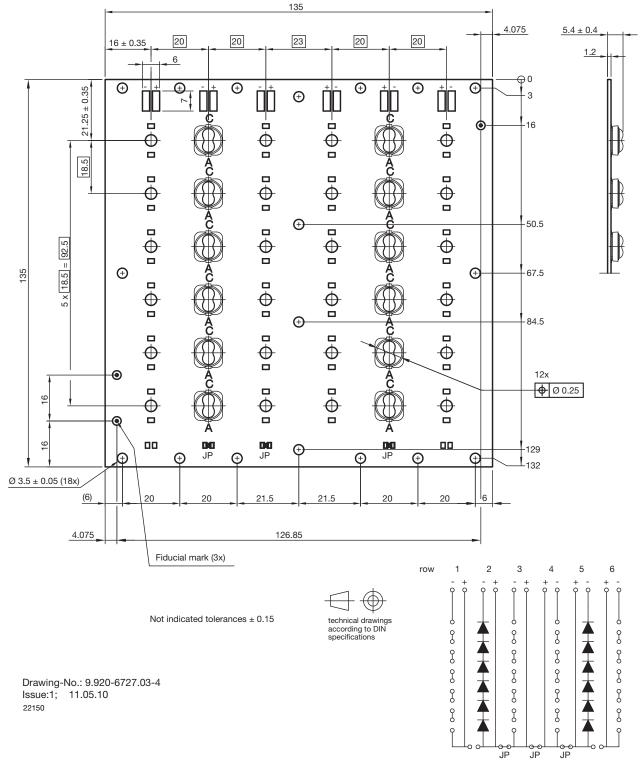



Fig. 1 - Chromaticity Coordinates of Colorgroups

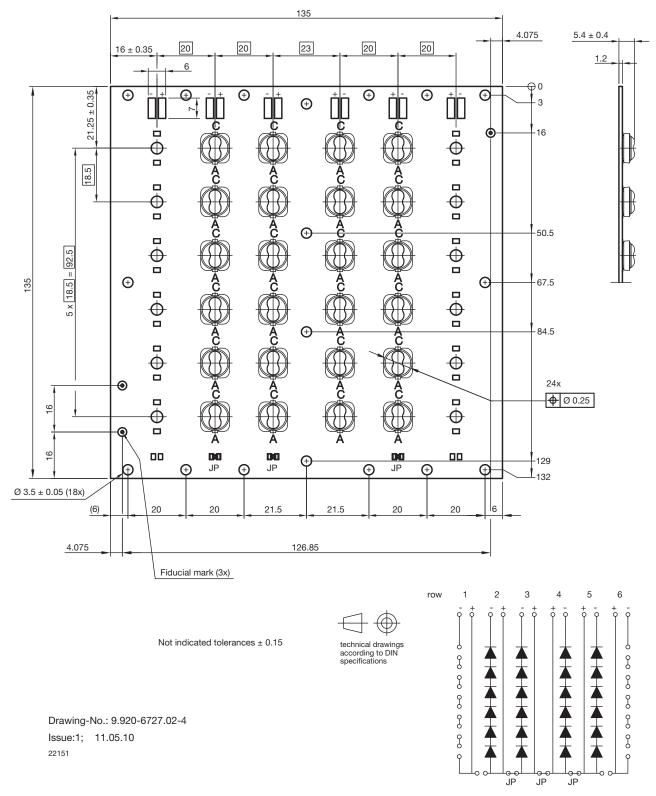
VLSL5012A, VLSL5024A, VLSL5036A

Vishay Semiconductors High Brightness LED Power Module

Assembled with all jumpers. Jumpers can be removed according driver design

For technical questions, contact: LED@vishay.com

Document Number: 83353 Rev. 1.2, 13-Apr-11

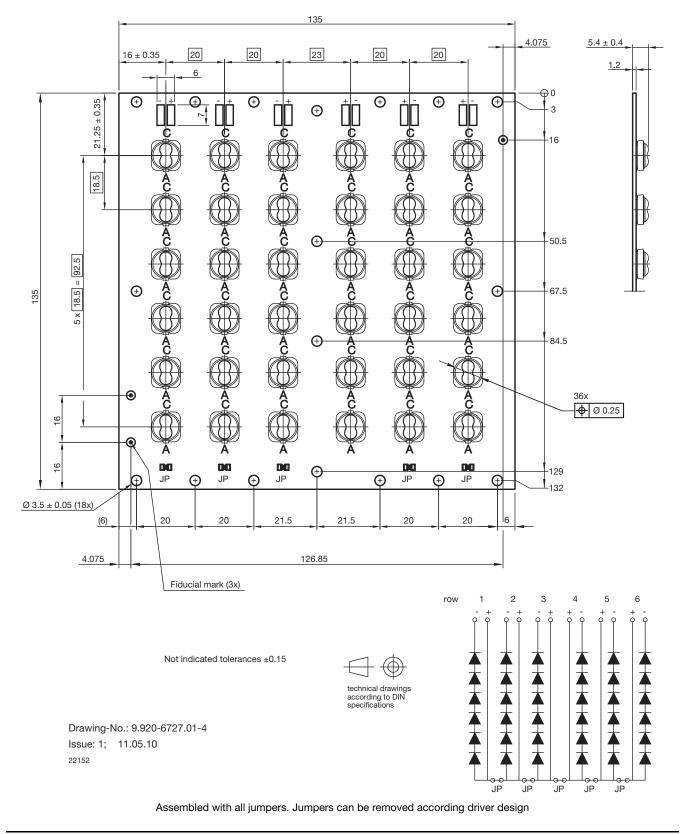

This document is subject to change without notice. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 Downloaded from Elcodis.com electronic components distributor

High Brightness LED Power Module Vishay Semiconductors

PCB BASIC DESIGN VLSL5024A Dimensions in millimeters

Assembled with all jumpers. Jumpers can be removed according driver design

Document Number: 83353 Rev. 1.2, 13-Apr-11


For technical questions, contact: LED@vishay.com

This document is subject to change without notice. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u> Downloaded from Elcodis.com electronic components distributor

VLSL5012A, VLSL5024A, VLSL5036A

Vishay Semiconductors High Brightness LED Power Module

For technical questions, contact: LED@vishay.com

Document Number: 83353 Rev. 1.2, 13-Apr-11

This document is subject to change without notice. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u> Downloaded from Elcodis.com electronic components distributor

High Brightness LED Power Module Vishay Semiconductors

PCB CHARACTERISTICS

- Metal core PCB with typical AI thickness of 800 µm
- Prepreg thickness typical 127 μm
- Conductive pattern Cu typical 25 µm
- Total board thickness: 1 mm ± 15 %
- Warpage max. 0.75 % of board dimension
- · Solder resist on top side
- · Shiny white surface
- Galvanic of solder pads pure matte Sn (≥ 0.8 µm), immersion plated
- Assembled with 12, 24 or 36 VLMW92xxx LED's. LED position accuracy ± 0.125 mm from middle axis, horizontal tilt max. 2°

EMISSION CHARACTERISTIC

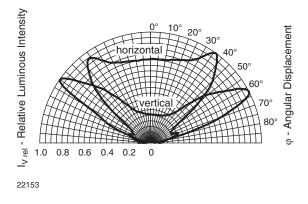
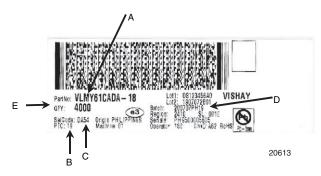



Fig. 2 - Rel. Luminous Intensity vs. Angular Displacement

BAR CODE PRODUCT LABEL

- A. Type of component
- B. Manufacturing plant
- C. SEL selection code (bin): e.g.: code for V_F class (A, B, C)
- D. Batch: 200707 = year 2007, week 07 PH19 = plant code
- E. Total quantity

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk and agree to fully indemnify and hold Vishay and its distributors harmless from and against any and all claims, liabilities, expenses and damages arising or resulting in connection with such use or sale, including attorneys fees, even if such claim alleges that Vishay or its distributor was negligent regarding the design or manufacture of the part. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.