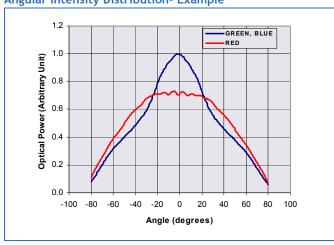
SUMMARY DATA SHEET

PhlatLight[™] PT121 Projection Chipset

PRELIMINARY DATA SHEET


Technology Overview

Luminus Devices' Projection Technology (PT) is an innovative solid-state light source created to replace arc lamps in projection systems, enabling a new category of lamp-free projectors. Enabled by unique use of Photonic Lattice technology, Phlat-Light chipsets represent a major breakthrough in brightness that delivers all the benefits of solid state light sources in projections applications:

- Wide color gamut for vivid colors, exceeds NTSC.
- Environmentally friendly technology Mercury-free.
- Instant start and re-start no more wait time.
- High reliability; no more lamp replacement.
- Electronic control of color points and light intensity on a frame by frame basis

PhlatLight products benefit from numerous innovations in the domain of packaging, thermal management and optical coupling that allow designers to achieve efficient light engine designs and deliver high screen brightness.

Angular Intensity Distribution- Example

PT121 Features

- Matched RGB Chipset with 12mm² emitting area per device designed for projection applications
- 4:3 aspect ratio matched with micro-display and screen aspect ratio
- Wide color gamut: RED 623 nm, GREEN 526 nm, BLUE 460nm typical dominant wavelength
- · Photonic lattice technology for very high surface brightness
- 100% surface emission for high collection efficiency and low optical losses
- Single emitting area per color allows for collection with single lens for simplified optics
- Over 3575 emitted white lumens at 8000K color temperature from single chipset (Continuous Wave Operation)
- Over 2300 emitted white lumens at 8000K color temperature from single chipset under Pulsed Operation
- Uniform surface emission
- Thermally efficient Type CX Common Anode package
- RoHS (lead-free) compliant

Applications

- Data front projectors and professional Rear-Projection Displays with 4:3 aspect ratio
- Optimized for Micro-Display diagonal sizes ranging from 0.7" to 0.96" with 4:3 aspect ratio.
- Suitable for DLP™(0.7"XGA, 0.96SXGA), LCoS, HTPS and 3LCD microdisplays

Optical and Electrical Characteristics

		Symbol	Red	Green	EP-Blue	Unit
Emitting Area			12	12	12	mm ²
Emitting Area Dimensions			4 x 3	4 x 3	4 x 3	mmxmm
Characteristics at recommended Pulsed	Drive Cur	rent I _F ^{1,2}				
Reference Duty Cycle ³			25	50	25	%
Recommended Peak Drive Current ⁴	typ	I _F	30	30	30	Α
Peak Luminous Flux ⁵	typ	Φ_{V}	1800	3500	750	lm
Peak Radiometric Power	typ	Φ_{r}	10.4	7.3	16.3	W
		$\lambda_{ ext{dmin}}$	619	516	450	nm
Dominant Wavelength	typ	λ_{d}	623	525	460	nm
		$\lambda_{ extsf{dmax}}$	630	535	468	nm
FWHM - Spectral bandwidth at 50% of $\Phi_{ m V}$	typ	$\Delta \lambda_{d}$	19	39	20	nm
Color Saturation ^{6,7}	typ		1.00	0.79	0.99	
Chromaticity Coordinates ^{6,7}	typ	х	0.697	0.171	0.154	
chromaticity coordinates	typ	у	0.303	0.702	0.024	
	min	V _{Fmin}	2.2	3.5	3.2	٧
Forward Voltage	typ	V _F	2.6	4.9	4.0	٧
	max	V_{Fmax}	3.4	5.9	5.2	٧
Dynamic Resistance	typ	Ω_{dyn}	0.02	0.03	0.02	Ω
Device Thermal Characteristics and Life	time					
Thermal Coefficient of Photometric Flux	typ		-1.1	-0.2	~0	% / °C
Thermal Coefficient of Radiometric Flux	typ		-0.7	-0.2	-0.2	% / °C
Forward Voltage Temperature Coefficient	typ		-3.0	-3.0	-3.0	mV / °C
Median Lifetime ⁸			>60,000	>60,000	>60,000	Hours

Optical and Electrical Characteristics

		Symbol	Red	Green	EP-Blue	Unit
Characteristics at Reference Continuous	s Drive Cui	rrent I _F (Con	tinuous Wavef	orm) ¹		
Reference Drive Current	typ	I _F	18	18	18	Α
Luminous Flux	typ	Φ_{V}	1010	2450	540	lm
Radiometric Flux	typ	Φ_{r}	5.8	4.7	10.8	W
Dominant Wavelength	typ	λ_{d}	624	528	462	nm
Color Saturation ^{6,7}	typ		1.00	0.83	0.99	
FWHM - Spectral bandwidth at 50% of $\Phi_{ m V}$	typ	$\Delta \lambda_{d}$	18	38	21	nm
Characterista Counting to 20.7	typ	х	0.698	0.183	0.153	
Chromaticity Coordinates ^{6,7}	typ	у	0.301	0.703	0.025	
	min	V_{Fmin}	2.0	3.1	2.8	٧
Forward Voltage	typ	V _F	2.3	4.4	3.6	٧
	max	V _{Fmax}	3.0	5.3	4.6	٧
Dynamic Resistance	typ	Ω_{dyn}	0.02	0.03	0.05	Ω

Note 1: All ratings are based on operation with a constant heat sink temperature $T_{hs} = 40^{\circ}C$. See Thermal Resistance section for T_{hs} definition.

Note 2: Parameters rated at typical duty cycle and Pulsed operation frequency f>240Hz; $DC=\frac{t}{T}$

Note 3: Duty Cycle used to specify device ratings under Pulsed operation. PhlatLight devices can operate at duty cycles ranging from 1% to 100%. At higher duty cycles, drive current should be adjusted to maintain the junction temperature at desired levels to meet the application lifetime requirements.

Note 4: In pulsed operation, rise time from 10 to 90% of forward current should be larger than 0.5 microseconds.

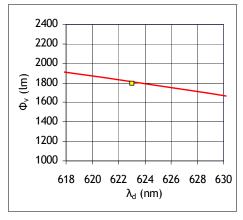
Note 5: For EP-Blue devices, total flux from emitting area at reference dominant wavelength at recommended peak drive current conditions. .

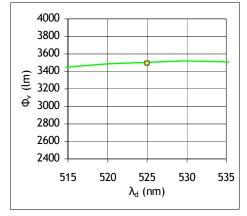
Note 6: In CIE 1931 chromaticity diagram coordinates, normalized to X+Y+Z=1

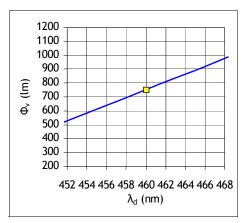
Note 7: For Reference only

Note 8: Assuming Tj<80°C for Red devices, Tj<115°C for Blue devices and Tj<125°C for Green devices.

Absolute Maximum Ratings

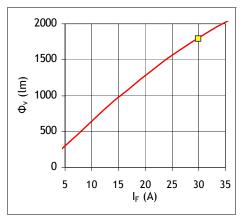

		Symbol	Red	Green	EP-Blue	Unit
Maximum Current ^{1,2}	Max		36	36	36	Α
Maximum Operating Junction Temperature ³	Max	T _{jmax}	110	170	170	°C
Storage Temperature Range			-40/+100	-40/+100	-40/+100	°C

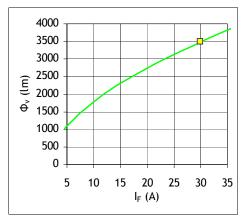

Note 1: Luminus PhlatLight LEDs are designed for operation to an absolute maximum forward drive current density of 2.5A/mm² cw, and 3A/mm² pulsed (f>240Hz, duty cycle < 60%). Please refer to absolute maximum rating table above for specific absolute maximum currents for the products covered in this datasheet. Product lifetime data is specified at recommended forward drive currents. Sustained operation at absolute maximum currents will result in a reduction of device lifetime compared to recommended forward drive currents. Actual device lifetimes will also depend on junction temperature. Refer to the lifetime derating curves (available from Luminus) for further information.

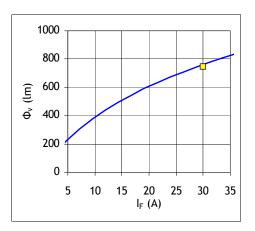

Note 2: In pulsed operation, rise time from 10 to 90% of forward current should be larger than 0.5 microseconds.

Note 3: Sustained operation at Maximum Operating Junction Temperature (T_{imax}) will result in reduced device life time.

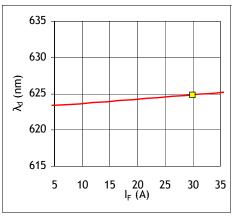
Luminous Flux variation with Wavelength: $\Phi_v = f(\lambda_d)$ at Recommended Operating Current I_F

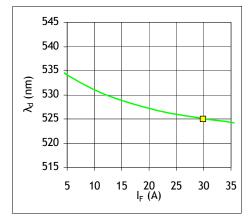


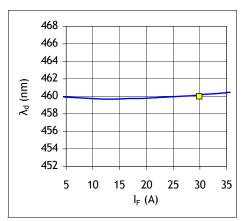

See note 1 on page 7.



Luminous Flux variation with Drive Current - $\Phi_{\rm V}$ = f (I_F) - Typical

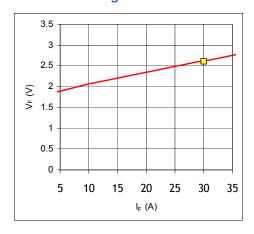


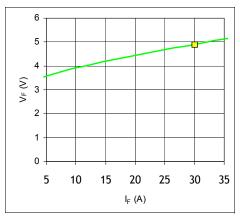


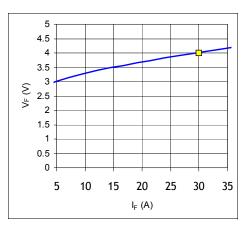


See notes 1,2 on page 6.

Dominant Wavelength variation with Forward Current - λ_d = $f(I_F)$ - Typical

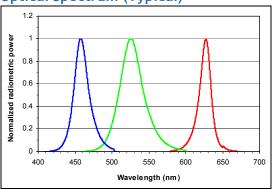






See notes 1,2 on page 6.

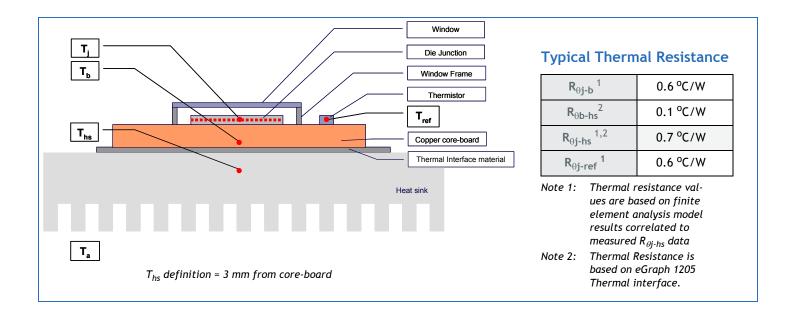
Forward Voltage variation with Drive current - $V_F = f(I_F)$ - Typical



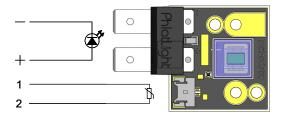
See notes 1,2 on page 6.

Optical Spectrum (Typical)

See note 3 on page 6.

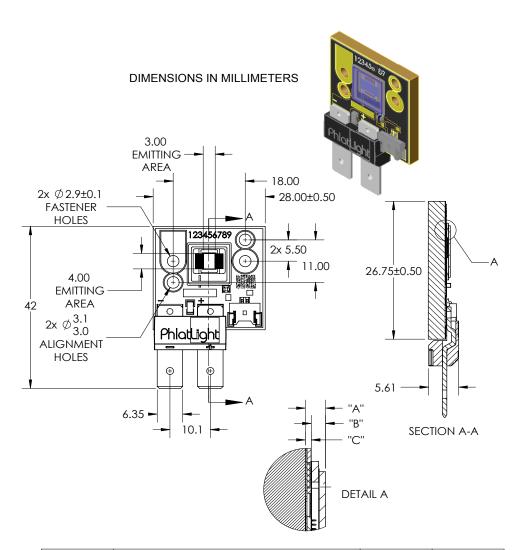

Chart Notes

- Note 1: For Pulsed operation, typical RGB duty cycles used are 25%, 50% and 25% respectively for pulsed operation ($T_{hs} = 40^{\circ}C$).
- Note 2: Yellow square indicate device operating point under recommended conditions listed in the Optical and Electrical Characteristics table.
- Note 3: Typical Spectrum at recommended peak drive current.


Thermal Resistance

Thermistor Information

The thermistor used in PhlatLight™ devices mounted on core-boards is from Murata Manufacturing Co. The global part number is NCP15XH103J03RC. Please see http://www.murata.com/ or http://www.murata.co.jp for details on calculating thermistor temperature


Electrical Pinout

Mechanical Dimensions Package: Type CX

DIMENS NAM	 DESCRIPTION	NOMINAL DIMENSION	TOLERANCE
"A"	TOP OF METAL SUBSTRATE TO TOP OF GLASS	0.95	±0.13
"B"	EMITTING AREA TO TOP OF GLASS	0.67	±0.16
"C"	TOP OF METAL SUBSTRATE TO EMITTING AREA	0.28	±0.05

Recommended connector for Anode and Cathode: Panduit Disco Lok™ Series P/N: DNG14-250FL-C or equivalent Thermistor Connector: MOLEX P/N 53780-0270. Recommended Female: MOLEX P/N 51146-0200 or equivalent For detailed drawing of the PT121 Type CX package, please refer to the DWG-001268document

Ordering Information

Device Part Number	Color	Description
PT-121-R-C11-MPB	Red	Red PhlatLight PT121 device consisting of a 12mm ² LED (4:3 aspect ratio), thermistor and connector mounted on a type CX copper-core PCB
PT-121-G-C11-MPB	Green	Green PhlatLight PT121 device consisting of a 12mm ² LED (4:3 aspect ratio), thermistor and connector mounted on a type CX copper-core PCB
PT-121-B-C11-EPA	Blue	Blue PhlatLight PT121 device consisting of a 12mm ² LED (4:3 aspect ratio), thermistor and connector mounted on a type CX copper-core PCB

www.luminus.com

The products, their specifications and other information appearing in this document are subject to change by Luminus Devices without notice. Luminus Devices assumes no liability for errors that may appear in this document, and no liability otherwise arising from the application or use of the product or information contained herein. None of the information provided herein should be considered to be a representation of the fitness or suitability of the product for any particular application or as any other form of warranty. Luminus Devices' product warranties are limited to only such warranties as accompany a purchase contract or purchase order for such products. Nothing herein is to be construed as constituting an additional warranty. No information contained in this publication may be considered as a waiver by Luminus Devices of any intellectual property rights that Luminus Devices may have in such information. PhlatLight[®] is a registered trademark of Luminus Devices, Inc., all rights reserved.

This product is protected by U.S. Patents 6,831,302; 7,074,631; 7,083,993; 7,084,434; 7,098,589; 7,105,861; 7,138,666; 7,166,870; 7,166,871; 7,170,100; 7,196,354; 7,211,831; 7,262,550; 7,274,043; 7,301,271; 7,341,880; 7,344,903; 7,345,416; 7,348,603; 7,388,233; 7,391,059 Patents Pending in the U.S. and other countries.

