Infrared Light Emitting Diode in SMD Plastic Package

OP270 Series

- 890nm Wavelength
- Narrow Beam Angle
- High Power
- 1.9mm Water Clear Plastic Package
- Four Lead Configurations

Description:

The OP270 series are GaAIAs infrared LEDs mounted in a clear plastic SMT packages. The devices incorporate an integral molded lens which enables a narrow beam angle and provides an even emission pattern. This series is available with four lead configurations and is compatible with most automated mounting equipment. The OP270 Series LEDs are mechanically and spectrally matched to the OP570 series phototransistors.

Applications

- Non-Contact Position Sensing
- Datum detection
- Machine automation
- Optical encoders
- IrDA
- Reflective and Transmissive Sensors

RoHS

Absolute Maximum Ratings ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETER	SYMBOL	MAXIMUM	UNITS
Continuous Forward Current	$\mathrm{I}_{\text {F }}$	50	mA
Power Dissipation	P_{d}	130	mW
Reverse Voltage	I_{R}	2	V
Peak Forward Current ($1 \mu \mathrm{~s}$ pulse width, 300 pps)	$\mathrm{I}_{\text {FP }}$	1	A
Lead Soldering Temperature	Tsol	260°	C
(1.6 mm to epoxy for 5 sec .)			
Operating Temperature Range	Topr	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	
Storage Temperature Range	$\mathrm{T}_{\text {STG }}$	$-40^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$	

Notes:

1. Solder time less than 5 seconds at temperature extreme.
2. De-rate linearly at $2.17 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.

Electrical Characteristics ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	CONDITIONS
$\mathrm{E}_{\text {e(APT) }}$	Apertured Radiant Incidence	1.5			$\mathrm{mW} / \mathrm{cm}^{2}$	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}{ }^{(3)}$
$V_{\text {F }}$	Forward Voltage			1.5	V	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
I_{R}	Reverse Current			100	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{R}}=2.0 \mathrm{~V}$
λ_{P}	Peak Emission Wavelength		890		nm	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$
$\Theta_{\text {нр }}$	Emission Angle at Half Power Points		25		Deg.	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Rise and Fall Time			500	ns	$\mathrm{I}_{\text {(PEAK })}=100 \mathrm{~mA}, \mathrm{PW}=10 \mu \mathrm{~s}, 10 \%$ D.C.

3. $\mathrm{E}_{\mathrm{e} \text { (APT) }}$ is a measurement of the apertured radiant incidence upon a sensing area $0.081^{\prime \prime}(2.06 \mathrm{~mm})$ in diameter, perpendicular to and centered on the mechanical axis of the lens, and 0.590 " $(14.99 \mathrm{~mm})$ from the measurement surface. $\mathrm{E}_{\text {e(APT) }}$ is not necessarily uniform within the measured area.

Relative Radiant Intensity vs. Forward Current vs. Temperature

Forward Voltage vs. Forward Current vs. Temperature

