

Vishay Semiconductors

Low Current 13 mm Seven Segment Display

DESCRIPTION

The TDSL51.0 series are 13 mm character seven segment low current LED displays in a very compact package.

The displays are designed for a viewing distance up to 7 m and available in high efficiency red. The grey package surface and the evenly lighted untinted segments provide an optimum on-off contrast.

All displays are categorized in luminous intensity groups. That allows users to assemble displays with uniform appearence.

Typical applications include instruments, panel meters, point-of-sale terminals and household equipment.

FEATURES

- Low power consumption
- Suitable for DC and multiplex operation
- Evenly lighted segments
- · Grey package surface
- Untinted segments
- · Luminous intensity categorized
- Wide viewing angle
- Compliant to RoHS directive 2002/95/EC and in accordance to WEEE 2002/96/EC

ROHS COMPLIAN

APPLICATIONS

- Panel meters
- Test- and measure-equipment
- Point-of-sale terminals
- Control units

PRODUCT GROUP AND PACKAGE DATA

• Product group: display

• Package: 13 mm

Product series: low current
Angle of half intensity: ± 50°

PARTS TABLE			
PART	COLOR	LUMINOUS INTENSITY at 2 mA	CIRCUITRY
TDSL5150	Red	I _V = 400 μcd (typ.)	Common anode
TDSL5150-GH	Red	I _V = (450 to 1400) μcd	Common anode
TDSL5160	Red	I _V = 400 μcd (typ.)	Common cathode
TDSL5160-GH	Red	I _V = (450 to 1400) μcd	Common cathode

ABSOLUTE MAXIMUM RATINGS (1) TDSL5150, TDSL5160				
PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT
Reverse voltage per segment		V_{R}	6	V
DC forward current per segment		I _F	15	mA
Peak forward current per segment		I _{FM}	45	mA
Surge forward current per segment	$t_p \le 10 \ \mu s$ (non repetitive)	I _{FSM}	100	mA
Power dissipation	T _{amb} ≤ 45 °C	P _V	320	mW
Junction temperature		Tj	100	°C
Operating temperature range		T _{amb}	- 40 to + 85	°C
Storage temperature range		T _{stg}	- 40 to + 85	°C
Soldering temperature	$t \leq 3 \ s$ 2 mm below seating plane	T _{sd}	260	°C
Thermal resistance LED junction/ambient		R _{thJA}	180	K/W

Note

 $^{(1)}$ $T_{amb} = 25$ °C, unless otherwise specified

Vishay Semiconductors Low Current 13 mm Seven Segment Display

OPTICAL AND ELECTRICAL CHARACTERISTICS (1) TDSL5150, TDSL5160, RED							
PARAMETER	TEST CONDITION	PART	SYMBOL	MIN.	TYP.	MAX.	UNIT
Luminous intensity per segment ⁽²⁾ (digit average)	I _F = 2 mA	TDSL5150	l _V	280	400	-	μcd
		TDSL5150-GH	Ι _V	450	-	1400	
		TDSL5160	I _V	280	400	-	
		TDSL5160-GH	I _V	450	-	1400	
	$I_F = 5 \text{ mA}$		Ι _V	-	1600	-	
	$I_F = 20 \text{ mA}, t_p/T = 0.25$		I _V	-	2000	-	
Dominant wavelength	$I_F = 2 \text{ mA}$		λ_{d}	612	-	625	nm
Peak wavelength	$I_F = 2 \text{ mA}$		λ_{p}	-	635	-	nm
Angle of half intensity	I _F = 2 mA	TDSL5150, TDSL5160	φ	-	± 50	-	deg
Forward voltage per segment	I _F = 2 mA	15013100	V _F	-	1.8	2.4	V
	I _F = 20 mA		V_{F}	-	2.7	3	V
Reverse voltage per segment	I _F = 10 μA		V _R	6	20	-	V
Junction capacitance	V _R = 0 V, f = 1 MHz		C _j	-	30	-	pF

Notes

⁽²⁾ I_{Vmin.} and I_V groups are mean values of all segments (a to g, D1 to D4), matching factor within segments is ≥ 0.5, excluding decimal points and colon.

LUMINOUS INTENSITY CLASSIFICATION			
GROUP	LIGHT INTENSITY (µcd)		
STANDARD	MIN.	MAX.	
E	180	360	
F	280	560	
G	450	900	
Н	700	1400	
I	1100	2200	
К	1800	3600	

BASIC CHARACTERISTICS

 T_{amb} = 25 °C, unless otherwise specified

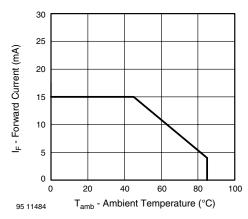


Fig. 1 - Forward Current vs. Ambient Temperature

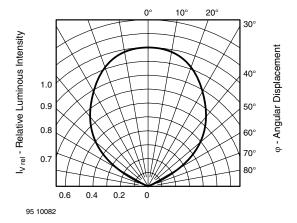


Fig. 2 - Rel. Luminous Intensity vs. Angular Displacement

 $^{^{(1)}}$ $T_{amb} = 25$ °C, unless otherwise specified

Low Current 13 mm Seven Segment Display Vishay Semiconductors

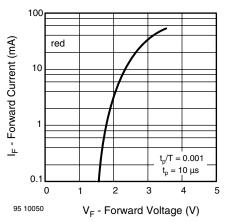


Fig. 3 - Forward Current vs. Forward Voltage

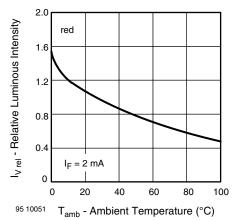


Fig. 4 - Rel. Luminous Intensity vs. Ambient Temperature

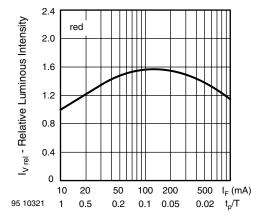


Fig. 5 - Rel. Lumin. Intensity vs. Forw. Current/Duty Cycle

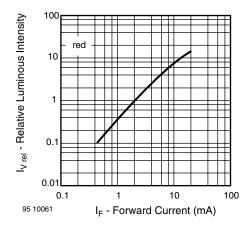
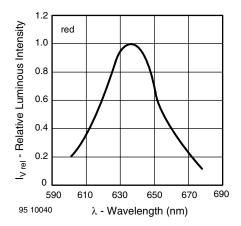
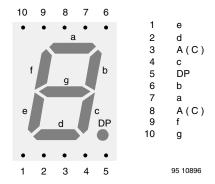
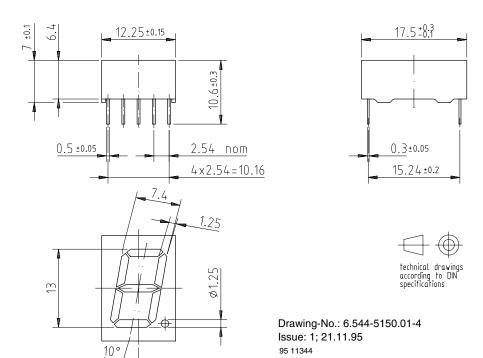


Fig. 6 - Relative Luminous Intensity vs. Forward Current


Fig. 7 - Relative Intensity vs. Wavelength

Vishay Semiconductors Low Current 13 mm Seven Segment Display

PACKAGE DIMENSIONS in millimeters

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk and agree to fully indemnify and hold Vishay and its distributors harmless from and against any and all claims, liabilities, expenses and damages arising or resulting in connection with such use or sale, including attorneys fees, even if such claim alleges that Vishay or its distributor was negligent regarding the design or manufacture of the part. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Document Number: 91000 www.vishay.com
Revision: 11-Mar-11 1