32-Channel Vacuum-Fluorescent Display Driver

Features

- 32 output lines
- 90 V output swing
- Active pull-down
- Latches on all outputs
- Up to $6.0 \mathrm{MHz} @ \mathrm{~V}_{\mathrm{DD}}=5.0 \mathrm{~V}$
- $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ operation

Applications

- Vacuum flourescent displays
- DC plasma displays

General Description

The HV518 is designed for vacuum fluorescent or DC plasma applications, where it can serve as a segment, digit or matrix display driver. Each device has 32 outputs, 32 latches and a 32-bit cascadable shift register.

Serial data enters the shift register on the LOW-to-HIGH transition of the clock input. With latch enable ($\overline{\mathrm{LE}}$) HIGH, parallel data is transferred to the output buffers through a 32-bit latch. When $\overline{\mathrm{LE}}$ is low the data is stored in the latch. When STROBE is LOW, all outputs are enabled; if STROBE is HIGH, all outputs are LOW.

Block Diagram

Ordering Information

Device	Package Options	
	40-Lead PDIP	44-Lead PLCC
	1.980x.600in body (max)	.653x.653in body
	.250in height (max)	
	.100in pitch	.180in height (max)
HV518	HV518P-G	HV518PJ-G

-G indicates package is RoHS compliant ('Green')

Absolute Maximum Ratings

Parameter	Value
Supply voltage, V_{DD}	-0.5 V to +6.0 V
Supply voltage, V_{PP}	-0.5 V to +90 V
Logic input levels	-0.5 V to $\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}$
Continuous total power dissipation ${ }^{1,2}$	1200 mW
Operating temperature	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Soldering temperature ${ }^{3}$	$260^{\circ} \mathrm{C}$

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied. Continuous operation of the device at the absolute rating level may affect device reliability. All voltages are referenced to GND.

Notes:

1. Duty cycle is limited by the total power dissipated in the package.
2. For operation above $25^{\circ} \mathrm{C}$ ambient, derate linearly to $85^{\circ} \mathrm{C}$ at $20 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
3. Distance of 1.6 mm from case for 10 seconds.

Pin Configurations

40-Lead PDIP (P) (top view)

Product Markings

44-Lead PLCC (PJ)

Recommended Operating Conditions $\left(T_{A}=25^{\circ} \mathrm{C}\right.$, unless otherwise noted)

Sym	Parameter	Min	Max	Unit	Conditions
V_{DD}	Logic supply voltage	4.5	5.5	V	---
V_{PP}	High voltage supply	8.0	80	V	---
V_{IH}	High-level input voltage	3.5	-	V	$\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}$, See Figure 1
$\mathrm{~V}_{\mathrm{IL}}$	Low-level input voltage	-	1.0	V	$\mathrm{~V}_{\mathrm{DD}}=4.5 \mathrm{~V}$, See Figure 1
I_{OH}	High-level output current	-25	-	mA	---
I_{LL}	Low-level output current	-	2.0	mA	---
$\mathrm{f}_{\mathrm{CLK}}$	Clock frequency	-	6.0	MHz	$\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}$, See Figure 1
$\mathrm{t}_{\mathrm{w}(\mathrm{CKH})}$	Pulse duration, clock high	83	-	ns	$\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}$
$\mathrm{t}_{\mathrm{w}(\mathrm{CKL}}$	Pulse duration, clock low	83	-	ns	$\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}$
t_{su}	Setup time, data before clock	75	-	ns	$\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}$
t_{n}	Hold time, data after clock	75	-	ns	$\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}$
$\mathrm{~T}_{\mathrm{A}}$	Operating ambient temperature	-40	85	${ }^{\circ} \mathrm{C}$	---

Electrical Characteristics (over recommended ranges of operating ambient temperature unless otherwise noted.)

Sym	Parameter		Min	Typ	Max	Units	Conditions
I_{DD}	Supply current		-	-	10	mA	$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}, \mathrm{f}_{\mathrm{CH}}=6.0 \mathrm{MHz}$
$\mathrm{I}_{\text {DDQ }}$	Quiescent supply current		-	-	0.5	mA	$\mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}$
I_{PP}	Supply current		-	-	12	mA	Outputs high, $\mathrm{T}_{\mathrm{A}}=-40^{\circ}$
			-	7.0	10	mA	Outputs high, $\mathrm{T}_{\mathrm{A}}=0$ to $+85^{\circ}$
			-	-	500	$\mu \mathrm{A}$	Outputs low
V_{OH}	$\mathrm{HV}_{\text {IN }}$ operating current	HV output	70	-	-	V	$\mathrm{I}_{\mathrm{OH}}=-25 \mathrm{~mA}$
		Serial output	4.5	4.9	5.0		$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=-20 \mu \mathrm{~A}$
V_{OL}	$\mathrm{LV}_{\text {IN }}$ operating current	HV output	-	-	5.0	V	$\mathrm{I}_{\mathrm{OL}}=1.0 \mathrm{~mA}$
		Serial output	-	0.06	0.8		$\mathrm{I}_{\mathrm{OL}}=20 \mu \mathrm{~A}$
I_{H}	Logic input current high		-	0.1	1.0	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{DD}}$
IIL	Logic input current low		-	-0.1	-1.0	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}$

Note:
The total number of ON outputs times the duty cycle must not exceed the allowable package power disspation.
Switching Characteristics ($V_{P P}=80 \mathrm{~V}, C_{L}=50 \rho F, T_{A}=25^{\circ}$, unless otherwise noted)

Sym	Parameter		Min	Typ	Max	Unit	Conditions
t_{d}	Delay time, clock to data output		-	-	600	ns	$C_{L}=15 \mathrm{pF}$, See Figure 2
$\mathrm{t}_{\text {DHL }}$	Delay time, high-to-lowlevel, HV output	From latch enable	-	-	1.5	$\mu \mathrm{s}$	$\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}$, See Figure 3
		From strobe	-	-	1.0		$V_{D D}=4.5 \mathrm{~V}$, See Figure 4
$\mathrm{t}_{\text {DLH }}$	Delay time, low-to-highlevel, HV output	From latch enable	-	-	1.5	$\mu \mathrm{s}$	$V_{D D}=4.5 \mathrm{~V}$, See Figure 3
		From strobe	-	-	1.0		$\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}$, See Figure 4
$\mathrm{t}_{\text {THL }}$	Transition time, high-to-low-level, HV output		-	-	3.0	$\mu \mathrm{s}$	$V_{D D}=4.5 \mathrm{~V}$, See Figure 4
$\mathrm{t}_{\text {TLH }}$	Transition time, low-to-high-level, HV output		-	-	2.5	$\mu \mathrm{s}$	$V_{D D}=4.5 \mathrm{~V}$, See Figure 4

Power-Up/ Power-Down Sequences

Power-up sequence should be the following:

1. Connect ground.
2. Apply V_{DD}.
3. Set all inputs (Data, CLK, Enable, etc.) to a known state.
4. Apply V_{PP}.

The $V_{P P}$ should not drop below $V_{D D}$ or float during operation.
Power-down sequence should be the reverse of the above.

Input and Output Equivalent Circuits

Parameter Measurement Information

Figure 1: Input Timing Voltage Waveforms

Figure 3

Figure 2

Figure 4: Switching-Time Voltage Waveforms

Note:
For testing purposes, all input pulses have maximum rise and fall times of 30 nsec.

Truth Tables

Input		
Data In	CLK	Data Out
H	S	H
L	S	L
X	No Change	$*$

* Previous state.

Output

Data $\mathbf{I n}$	$\overline{\text { LE }}$	STB	HV Outputs
X	X	H	All Low
H	H	L	High
L	H	L	Low
X	L	L	$*$

* Previous state.

Typical Operating Sequence

Data In

	VALID	IRRELEVANT

SR Contents	INVALID	VALID

\qquad

	Latch Contents			PREVIOUSLY STORED DATA	NEW DATA VALID

Strobe \square

HV Output \qquad

Pin Descriptions

40-Lead PDIP (P)

Pin \#	Function
1	VPP
2	SERIAL OUT
3	$\mathrm{HV}_{\text {out }} 32$
4	$\mathrm{HV}_{\text {out }} 31$
5	$\mathrm{HV}_{\text {out }} 30$
6	$\mathrm{HV}_{\text {out }} 29$
7	$\mathrm{HV}_{\text {out }} 28$
8	$\mathrm{HV}_{\text {out }} 27$
9	$\mathrm{HV}_{\text {out }} 26$
10	$\mathrm{HV}_{\text {out }} 25$
11	$\mathrm{HV}_{\text {out }} 24$
12	$\mathrm{HV}_{\text {out }} 23$
13	$\mathrm{HV}_{\text {out }} 22$
14	$\mathrm{HV}_{\text {out }} 21$

Pin \#	Function
15	$\mathrm{HV}_{\text {out }} 20$
16	$\mathrm{HV}_{\text {out }} 19$
17	$\mathrm{HV}_{\text {out }} 18$
18	$\mathrm{HV}_{\text {out }} 17$
19	STROBE
20	GND
21	CLOCK
22	$\overline{\text { LE }}$
23	$\mathrm{HV}_{\text {out }} 16$
24	$\mathrm{HV}_{\text {out }} 15$
25	$\mathrm{HV}_{\text {out }} 14$
26	$\mathrm{HV}_{\text {out }} 13$
27	$\mathrm{HV}_{\text {out }} 12$
28	$\mathrm{HV}_{\text {out }} 11$

Pin \#	Function
29	HV ${ }_{\text {OUT }} 10$
30	$\mathrm{HV}_{\text {out }} 9$
31	$\mathrm{HV}_{\text {OUT }} 8$
32	$\mathrm{HV}_{\text {OUT }} 7$
33	$\mathrm{HV}_{\mathrm{ouT}} 6$
34	$\mathrm{HV}_{\text {OUT }} 5$
35	$\mathrm{HV}_{\text {OUT }} 4$
36	$\mathrm{HV}_{\text {OUT }} 3$
37	$\mathrm{HV}_{\text {out }}{ }^{2}$
38	HV ${ }_{\text {OUT }} 1$
39	DATA IN
40	VDD

44-Lead PLCC (PJ)

Pin \#	Function
1	VPP
2	SERIAL OUT
3	$\mathrm{HV}_{\text {out }} 32$
4	$\mathrm{HV}_{\text {out }} 31$
5	$\mathrm{HV}_{\text {out }} 30$
6	NC
7	$\mathrm{HV}_{\text {out }} 29$
8	$\mathrm{HV}_{\text {out }} 28$
9	$\mathrm{HV}_{\text {out }} 27$
10	$\mathrm{HV}_{\text {out }} 26$
11	$\mathrm{HV}_{\text {out }} 25$
12	$\mathrm{HV}_{\text {out }} 24$
13	$\mathrm{HV}_{\text {out }} 23$
14	$\mathrm{HV}_{\text {out }} 22$
15	$\mathrm{HV}_{\text {out }} 21$

Pin \#	Function
16	HV ${ }_{\text {out }} 20$
17	HV ${ }_{\text {out }} 19$
18	N/C
19	HV ${ }_{\text {out }} 18$
20	HV ${ }_{\text {OUT }} 17$
21	STROBE
22	GND
23	CLOCK
24	$\overline{\text { LE }}$
25	HV ${ }_{\text {OUT }} 16$
26	$\mathrm{HV}_{\text {OUT }} 15$
27	HV ${ }_{\text {out }} 14$
28	N/C
29	N/C
30	HV ${ }_{\text {out }} 13$

Pin \#	Function
31	$\mathrm{HV}_{\text {Out }} 12$
32	HV ${ }_{\text {Out }} 11$
33	$\mathrm{HV} \mathrm{OUT}^{10}$
34	$\mathrm{HV}_{\text {out }} 9$
35	$\mathrm{HV}_{\text {OUT }} 8$
36	$\mathrm{HV}_{\text {OUT }} 7$
37	$\mathrm{HV}_{\text {OUT }} 6$
38	$\mathrm{HV}_{\text {OUT }} 5$
39	$\mathrm{HV}_{\text {OUT }} 4$
40	$\mathrm{HV}_{\text {OUT }} 3$
41	$\mathrm{HV}_{\text {out }}{ }^{2}$
42	HV ${ }_{\text {out }} 1$
43	DATA IN
44	VDD

40-Lead PDIP (.600in Row Spacing) Package Outline (P) 2.095x. 580in body (max), .250in height (max), .100in pitch

View B

Note:

1. A Pin 1 identifier must be located in the index area indicated. The Pin 1 Identifier can be: a molded mark/identifier; an embedded metal marker; or a printed indicator.

Symbol		A	A1	A2	b	b1	D	D1	E	E1	e	eA	eB	L
Dimension (inches)	MIN	.140*	. 015	. 125	. 014	. 030	1.980	. 065^{+}	.590 ${ }^{+}$. 485	$\begin{aligned} & .100 \\ & \text { BSC } \end{aligned}$	$\begin{aligned} & .600 \\ & \text { BSC } \end{aligned}$.600*	. 115
	NOM	-	-	-	-	-	-		-	-			-	-
	MAX	. 250	.055*	. 195	.023 ${ }^{+}$. 070	2.095	.085*	. 625	. 580			. 700	. 200

JEDEC Registration MS-011, Variation AC, Issue B, June, 1988.

* This dimension is not specified in the original JEDEC drawing. The value listed is for reference only.
\dagger This dimension is a non-JEDEC dimension.
Drawings not to scale.
Supertex Doc. \#: DSPD-40DIPP, Version B090608.

44-Lead PLCC Package Outline (PJ)
 .653x.653in body, .180in height (max), .050in pitch

Notes:

1. A Pin 1 identifier must be located in the index area indicated. The Pin 1 identifier can be: a molded mark/identifier; an embedded metal marker; or a printed indicator.
2. Actual shape of this feature may vary.

Symbol		A	A1	A2	b	b1	D	D1	E	E1	e
Dimension (inches)	MIN	. 165	. 090	. 062	. 013	. 026	. 685	. 650	. 685	. 650	$\begin{aligned} & .050 \\ & \text { BSC } \end{aligned}$
	NOM	. 172	. 105	-	-	-	. 690	. 653	. 690	. 653	
	MAX	. 180	. 120	. 083	. 021	.036 ${ }^{+}$. 695	. 656	. 695	. 656	

[^0](The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to http://www.supertex.com/packaging.html.)

[^1]
[^0]: JEDEC Registration MS-018, Variation AC, Issue A, June, 1993.
 \dagger This dimension is a non-JEDEC dimension.
 Drawings not to scale.
 Supertex Doc. \#: DSPD-44PLCCPJ, Version D092408.

[^1]: Supertex inc. does not recommend the use of its products in life support applications, and will not knowingly sell them for use in such applications unless it receives an adequate "product liability indemnification insurance agreement." Supertex inc. does not assume responsibility for use of devices described, and limits its liability to the replacement of the devices determined defective due to workmanship. No responsibility is assumed for possible omissions and inaccuracies. Circuitry and specifications are subject to change without notice. For the latest product specifications refer to the Supertex inc. website: http//www.supertex.com.

