TM
4.25 Gbps, 16×16, Digital Crosspoint Switch ADN4604

FEATURES

DC to 4.25 Gbps per port NRZ data rate
Programmable receive equalization
12 dB boost at 2 GHz
Compensates 40 inches of FR4 at 4.25 Gbps
Programmable transmit preemphasis/deemphasis
Up to 12 dB boost at 4.25 Gbps
Compensates 40 inches of FR4 at 4.25 Gbps
Low power: 130 mW per channel at 3.3 V (outputs enabled)
16×16, fully differential, nonblocking array
Double rank connection programming with dual connection maps
Low jitter, typically 20 ps
Flexible I/O supply range
DC- or ac-coupled differential CML inputs
Programmable CML output levels
Per-lane input P / N pair inversion for routing ease
50Ω on-chip I/O termination
Supports 8b/10b, scrambled or uncoded NRZ data
Serial (${ }^{2} \mathrm{C}$ slave or SPI) control interface
100-lead TQFP, Pb-free package

APPLICATIONS

Fiber optic network switching
High speed serial backplane routing to OC-48 with FEC
XAUI: 10GBASE-KX4
Gigabit Ethernet over backplane: 1000BASE-KX
1×, 2×, and $4 \times$ Fibre Channel
InfiniBand ${ }^{\oplus}$
Digital video (HDMI, DVI, DisplayPort, 3G-/HD-/SD-SDI)
Data storage networks

GENERAL DESCRIPTION

The ADN4604 is a 16×16 asynchronous, protocol agnostic, digital crosspoint switch, with 16 differential PECL-/CMLcompatible inputs and 16 differential CML outputs.

The ADN4604 is optimized for nonreturn-to-zero (NRZ) signaling with data rates of up to 4.25 Gbps per port. Each port offers a fixed level of input equalization and programmable output swing and output preemphasis.

FUNCTIONAL BLOCK DIAGRAM

Figure 1.

The ADN4604 nonblocking switch core implements a 16×16 crossbar and supports independent channel switching through the serial control interface. The ADN4604 has low latency and very low channel-to-channel skew.
An $I^{2} \mathrm{C}^{\otimes}$ or SPI interface is used to control the device and provide access to advanced features, such as additional levels of preemphasis and output disable.

The ADN4604 is packaged in a 100 -lead TQFP package and operates from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

Rev. 0
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

ADN4604

TABLE OF CONTENTS

Features 1
Applications. 1
Functional Block Diagram 1
General Description 1
Revision History 2
Specifications 3
Electrical Specifications 3
$I^{2} \mathrm{C}$ Timing Specifications 4
SPI Timing Specifications 5
Absolute Maximum Ratings 6
ESD Caution6
Pin Configuration and Function Descriptions 7
Typical Performance Characteristics 10
Theory of Operation 16
Introduction 16
Receivers 16
Switch Core 17
Transmitters 19
Termination 23
$\mathrm{I}^{2} \mathrm{C}$ Serial Control Interface 24
Reset 24
$I^{2} \mathrm{C}$ Data Write 24
$I^{2} \mathrm{C}$ Data Read. 25
SPI Serial Control Interface 26
Register Map 28
Applications Information 32
Supply Sequencing 34
Power Dissipation. 34
Output Compliance 34
Printed Circuit Board (PCB) Layout Guidelines 36
Outline Dimensions 38
Ordering Guide 38

REVISION HISTORY

10/09—Revision 0: Initial Version

SPECIFICATIONS

ELECTRICAL SPECIFICATIONS

$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{TTIx}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{TT}}=3.3 \mathrm{~V}, \mathrm{DV} \mathrm{CC}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega$, data rate $=4.25 \mathrm{Gbps}$, ac-coupled inputs and outputs, differential input swing $=800 \mathrm{mV}$ p-p, $\mathrm{T}_{\mathrm{A}}=27^{\circ} \mathrm{C}$, unless otherwise noted.

Table 1.

Parameter	Conditions	Min	Typ	Max	Unit
DYNAMIC PERFORMANCE Data Rate (DR) per Channel (NRZ) Deterministic Jitter Random Jitter Residual Deterministic Jitter with Receive Equalization Residual Deterministic Jitter with Transmit Preemphasis Propagation Delay Channel-to-Channel Skew Switching Time Output Rise/Fall Time	Data rate $=4.25 \mathrm{Gbps}$, no channel RMS, no channel Data rate $=4.25 \mathrm{Gbps}, 20 \mathrm{in}$. $\mathrm{FR} 4, \mathrm{EQ}$ boost $=12 \mathrm{~dB}$ Data rate $=4.25 \mathrm{Gbps}, 30 \mathrm{in}$. FR4, EQ boost $=12 \mathrm{~dB}$ Data rate $=4.25 \mathrm{Gbps}, 40 \mathrm{in}$. FR4, EQ boost $=12 \mathrm{~dB}$ Data rate $=4.25 \mathrm{Gbps}, 20 \mathrm{in}$. FR4, PE boost $=4.2 \mathrm{~dB}$ Data rate $=4.25 \mathrm{Gbps}, 30 \mathrm{in}$. FR4, PE boost $=6 \mathrm{~dB}$ Data rate $=4.25 \mathrm{Gbps}, 40 \mathrm{in}$. FR4, PE boost $=6 \mathrm{~dB}$ Input to output, EQ boost $=12 \mathrm{~dB}$ Update logic switching to 50% output data 20\% to 80\%	DC	$\begin{aligned} & 20 \\ & 1 \\ & 27 \\ & 43 \\ & 70 \\ & 23 \\ & 25 \\ & 35 \\ & 800 \\ & \hline 150 \\ & 100 \\ & 75 \end{aligned}$	4.25	Gbps ps p-p ps rms ps p-p psp-p ps p-p ps p-p psp-p ps p-p ps ps ns ps
INPUT CHARACTERISTICS Differential Input Voltage Swing Input Voltage Range	$\mathrm{V}_{\text {IcM }}{ }^{1}=\mathrm{V}_{\text {CC }}-0.6 \mathrm{~V} ; \mathrm{V}_{\text {CC }}=\mathrm{V}_{\text {MIN }}$ to $\mathrm{V}_{\text {MAX, }}, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ Single-ended absolute voltage level, V_{L} Single-ended absolute voltage level, V_{H}	$\begin{aligned} & 200 \\ & \mathrm{~V}_{\mathrm{EE}}+1.1 \end{aligned}$		$\begin{aligned} & 2000 \\ & \mathrm{~V}_{\mathrm{cc}}+0.3 \end{aligned}$	$m V p-p$ diff V V
OUTPUT CHARACTERISTICS Output Voltage Swing Output Voltage Range Per-Port Output Current	Differential, PE boost $=0 \mathrm{~dB}$, default output level, at dc Single-ended absolute voltage level, V_{L} Single-ended absolute voltage level, V_{H} PE boost $=0 \mathrm{~dB}$, default output level PE boost $=6 \mathrm{~dB}$, default output level	$\begin{aligned} & 600 \\ & V_{\text {cc }}-1.3 \end{aligned}$	$\begin{aligned} & 800 \\ & 16 \\ & 32 \end{aligned}$	$\begin{aligned} & 900 \\ & v_{c c}+0.2 \end{aligned}$	$m V p$-p diff V V $m A$ $m A$
TERMINATION CHARACTERISTICS Resistance Temperature Coefficient	Single-ended, $\mathrm{V}_{c c}=2.7 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{TI}}=2.2 \mathrm{~V}$ to 3.6 V , $\mathrm{V}_{\text {тO }}=2.2 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {Min }}$ to $\mathrm{T}_{\text {MAX; }}$	44	50 0.025	56	Ω $\Omega /{ }^{\circ} \mathrm{C}$
POWER SUPPLY Operating Range Vcc DV ${ }_{\text {cc }}$ $\mathrm{V}_{\text {TIIE, }} \mathrm{V}_{\text {tiw }}$ $\mathrm{V}_{\text {ток, }} \mathrm{V}_{\text {тог }}$ Supply Current Icc Idvce $I_{\text {TTIE }}+I_{\text {Ttiw }}+I_{\text {tTon }}+I_{\text {ttos }}$ Supply Current Icc Iovce $I_{\text {ITIE }}+I_{\text {Itiw }}+I_{\text {mon }}+I_{\text {tios }}$ Supply Current Icc lovce $I_{\text {TIE }}+I_{\text {miw }}+I_{\text {TToN }}+I_{\text {tios }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V} \end{aligned}$ Outputs disabled All outputs enabled, ac-coupled I/O, $400 \mathrm{mV} \mathrm{I} / \mathrm{O}$ swings (800 mV p-p differential), PE boost $=0 \mathrm{~dB}$, 50Ω far-end terminations All outputs enabled, ac-coupled I/O, $400 \mathrm{mV} \mathrm{I} / \mathrm{O}$ swings (800 mV p-p differential), PE boost $=6 \mathrm{~dB}$, 50Ω far-end terminations	$\begin{aligned} & 2.7 \\ & 2.7 \\ & 1.3 \\ & 2.2^{2} \end{aligned}$	$\begin{aligned} & 3.3 \\ & 3.3 \\ & 3.3 \\ & 3.3 \\ & \\ & 95 \\ & 20 \\ & 0 \\ & \\ & 342 \\ & 20 \\ & 256 \\ & \\ & 486 \\ & 20 \\ & 512 \end{aligned}$	$\begin{aligned} & 3.6 \\ & 3.6 \\ & V_{c c}+0.3 \\ & V_{c c}+0.3 \\ & 110 \\ & 35 \\ & 10 \\ & \\ & 370 \\ & 35 \\ & 280 \\ & \\ & 540 \\ & 35 \\ & 540 \\ & \hline \end{aligned}$	V V V mA

ADN4604

Parameter	Conditions	Min	Typ	Max	Unit
THERMAL CHARACTERISTICS Operating Temperature Range θ_{JA} $\theta_{\text {лв }}$ θ јс	Still air; JEDEC 4-layer test board Still air At the exposed pad	-40	$\begin{aligned} & 24.9 \\ & 11.6 \\ & 0.95 \end{aligned}$	+85	${ }^{\circ} \mathrm{C}$ ${ }^{\circ} \mathrm{C} / \mathrm{W}$ ${ }^{\circ} \mathrm{C} / \mathrm{W}$ ${ }^{\circ} \mathrm{C} / \mathrm{W}$
LOGIC CHARACTERISTICS Input High Voltage Threshold $\left(\mathrm{V}_{\mathrm{H}}\right)$ Input Low Voltage Threshold (V) Output High Voltage (Vон) Output Low Voltage (Vol)	$\begin{aligned} & \mathrm{DV} \mathrm{Cc}_{\mathrm{cc}}=3.3 \mathrm{~V} \\ & \mathrm{DV}=3.3 \mathrm{~V} \end{aligned}$ $2 \mathrm{k} \Omega$ pull-up resistor to $\mathrm{DV}_{c c}$ $\mathrm{I}_{\mathrm{OL}}=3 \mathrm{~mA}$	$\begin{aligned} & 0.7 \times \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{~V}_{\mathrm{EE}} \\ & \\ & \mathrm{~V}_{\mathrm{EE}} \end{aligned}$	DV.cc	$\begin{aligned} & V_{\mathrm{cc}} \\ & 0.3 \times V_{\mathrm{cc}} \\ & 0.4 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$

${ }^{1} V_{\text {Ісм }}$ is the input common-mode voltage.
${ }^{2}$ Minimum $\mathrm{V}_{\text {то }}$ is only applicable for a limited range of output current settings. Refer to the Power Dissipation section.

I²C TIMING SPECIFICATIONS

Figure 2. 1^{2} C Timing Diagram

Table 2. $\mathrm{I}^{2} \mathrm{C}$ Timing Specifications

Parameter	Symbol	Min	Max	Unit
SCL Clock Frequency	$\mathrm{f}_{\text {cle }}$	0	400+	kHz
Hold Time for a Start Condition	thd; STA	0.6		$\mu \mathrm{s}$
Setup Time for a Repeated Start Condition	$\mathrm{t}_{\text {su; }}$ STA	0.6		$\mu \mathrm{s}$
Low Period of the SCL Clock	toow	1.3		$\mu \mathrm{s}$
High Period of the SCL Clock	thIGH	0.6		$\mu \mathrm{s}$
Data Hold Time	thdidat	0		$\mu \mathrm{s}$
Data Setup Time	$\mathrm{t}_{\text {Su; }}$ Dat	10		ns
Rise Time for Both SDA and SCL	tr_{r}	1	300	ns
Fall Time for Both SDA and SCL	t_{f}	1	300	ns
Setup Time for Stop Condition	$\mathrm{t}_{\text {su;so }}$	0.6		$\mu \mathrm{s}$
Bus-Free Time Between a Stop Condition and a Start Condition	$\mathrm{t}_{\text {BuF }}$	1		ns
Bus Idle Time After a Reset		10		ns
Reset Pulse Width		10		ns

SPI TIMING SPECIFICATIONS

Figure 4. SPI Read Timing Diagram

Table 3. SPI Timing Specifications

Parameter	Symbol	Min	Max	Unit
SCK Clock Frequency	fsck	0	10	MHz
$\overline{\mathrm{CS}}$ to SCK Setup Time	t_{1}	10		ns
SCK High Pulse Width	t_{2}	40		ns
SCK Low Pulse Width	t_{3}	40		ns
Data Access Time After SCK Falling Edge	t_{4}		35	ns
Data Setup Time Prior to SCK Rising Edge	t_{5}	20		ns
Data Hold Time After SCK Rising Edge	t_{6}	10		ns
$\overline{C S}$ to SCK Hold Time	t_{7}	10		ns
$\overline{\mathrm{CS}}$ to SDO High Impedance	t_{8}		40	ns
$\overline{\mathrm{CS}}$ High Pulse Width	t9	10		ns

ADN4604

ABSOLUTE MAXIMUM RATINGS

Table 4.

Parameter	Rating
V_{CC} to V_{EE}	3.7 V
$\mathrm{DV}_{\mathrm{CC}}$ to V_{EE}	3.7 V
$\mathrm{~V}_{\mathrm{TTIE}}, \mathrm{V}_{\mathrm{TT}}$	$\mathrm{V}_{\mathrm{CC}}+0.6 \mathrm{~V}$
$\mathrm{~V}_{\text {TToN }}, \mathrm{V}_{\mathrm{TTTOS}}$	$\mathrm{V}_{\mathrm{CC}}+0.6 \mathrm{~V}$
Internal Power Dissipation ${ }^{1}$	4.9 W
Differential Input Voltage	2.0 V
Logic Input Voltage	$\mathrm{V}_{\mathrm{EE}}-0.3 \mathrm{~V}<\mathrm{V}_{\mathrm{IN}}<\mathrm{V}_{\mathrm{CC}}+0.6 \mathrm{~V}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Lead Temperature Range	$300^{\circ} \mathrm{C}$
Junction Temperature	$150^{\circ} \mathrm{C}$

[^0]Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ESD CAUTION

	ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Figure 5. Pin Configuration

ADN4604

Table 5. Pin Function Descriptions

Pin No.	Mnemonic	Type	Description
1	$\overline{\text { RESET }}$	Control	Configuration Registers Reset, Active Low. This pin is normally pulled up to $\mathrm{DV}_{\text {cc }}$.
2	IPO	Input	High Speed Input.
3	INO	Input	High Speed Input Complement.
$\begin{aligned} & 4,13,22,35,41,54,63, \\ & 72,85,91 \end{aligned}$	Vcc	Power	Positive Supply.
5	IP1	Input	High Speed Input.
6	IN1	Input	High Speed Input Complement.
7,19	$\mathrm{V}_{\text {TTIW }}$	Power	Input Termination Supply (West). These pins are normally tied to the $\mathrm{V}_{\text {TTIE }}$ pins.
8	IP2	Input	High Speed Input.
9	IN2	Input	High Speed Input Complement.
$\begin{aligned} & 10,16,29,38,47,60,66, \\ & 79,88,97, \text { EPAD } \end{aligned}$	$V_{\text {EE }}$	Power	Negative Supply.
11	IP3	Input	High Speed Input.
12	IN3	Input	High Speed Input Complement.
14	IP4	Input	High Speed Input.
15	IN4	Input	High Speed Input Complement.
17	IP5	Input	High Speed Input.
18	IN5	Input	High Speed Input Complement.
20	IP6	Input	High Speed Input.
21	IN6	Input	High Speed Input Complement.
23	IP7	Input	High Speed Input.
24	IN7	Input	High Speed Input Complement.
25	$\overline{\text { UPDATE }}$	Control	Second Rank Write Enable, Active Low. This pin is normally pulled up to $\mathrm{DV}_{\mathrm{cc}}$.
26	$\overline{12 \mathrm{C}} / \mathrm{SPI}$	Control	$1^{2} \mathrm{C} /$ SPI Control Interface Selection, $I^{2} \mathrm{C}$ Active Low.
27	OPO	Output	High Speed Output.
28	ONO	Output	High Speed Output Complement.
30	OP1	Output	High Speed Output.
31	ON1	Output	High Speed Output Complement.
32,44	$\mathrm{V}_{\text {TTOS }}$	Power	Output Termination Supply (South). These pins are normally tied to the $\mathrm{V}_{\text {TTON }}$ pins.
33	OP2	Output	High Speed Output.
34	ON2	Output	High Speed Output Complement.
36	OP3	Output	High Speed Output.
37	ON3	Output	High Speed Output Complement.
39	OP4	Output	High Speed Output.
40	ON4	Output	High Speed Output Complement.
42	OP5	Output	High Speed Output.
43	ON5	Output	High Speed Output Complement.
45	OP6	Output	High Speed Output.
46	ON6	Output	High Speed Output Complement.
48	OP7	Output	High Speed Output.
49	ON7	Output	High Speed Output Complement.
50	ADDR1/SDI	Control	$1^{2} \mathrm{C}$ Slave Address Bit 1 (MSB) or SPI Data Input.
51	ADDRo/CS	Control	$1^{2} \mathrm{C}$ S Slave Address Bit 0 (LSB) or SPI Chip Select (Active Low).
52	IP8	Input	High Speed Input.
53	IN8	Input	High Speed Input Complement.
55	IP9	Input	High Speed Input.
56	IN9	Input	High Speed Input Complement.

Rev. $0 \mid$ Page 8 of 40

Pin No.	Mnemonic	Type	Description
57, 69	$\mathrm{V}_{\text {TTIE }}$	Power	Input Termination Supply (East). These pins are normally tied to the $\mathrm{V}_{\text {TTw }}$ pins.
58	IP10	Input	High Speed Input.
59	IN10	Input	High Speed Input Complement.
61	IP11	Input	High Speed Input.
62	IN11	Input	High Speed Input Complement.
64	IP12	Input	High Speed Input.
65	IN12	Input	High Speed Input Complement.
67	IP13	Input	High Speed Input.
68	IN13	Input	High Speed Input Complement.
70	IP14	Input	High Speed Input.
71	IN14	Input	High Speed Input Complement.
73	IP15	Input	High Speed Input.
74	IN15	Input	High Speed Input Complement.
75	SDA/SDO	Control	$1^{2} \mathrm{C}$ Data or SPI Data Output.
76	SCL/SCK	Control	$1^{2} \mathrm{C}$ Clock or SPI Clock.
77	OP8	Output	High Speed Output.
78	ON8	Output	High Speed Output Complement.
80	OP9	Output	High Speed Output.
81	ON9	Output	High Speed Output Complement.
82, 94	$V_{\text {tton }}$	Power	Output Termination Supply (North). These pins are normally tied to the $\mathrm{V}_{\text {tTos }}$ pins.
83	OP10	Output	High Speed Output.
84	ON10	Output	High Speed Output Complement.
86	OP11	Output	High Speed Output.
87	ON11	Output	High Speed Output Complement.
89	OP12	Output	High Speed Output.
90	ON12	Output	High Speed Output Complement.
92	OP13	Output	High Speed Output.
93	ON13	Output	High Speed Output Complement.
95	OP14	Output	High Speed Output.
96	ON14	Output	High Speed Output Complement.
98	OP15	Output	High Speed Output.
99	ON15	Output	High Speed Output Complement.
100	DV ${ }_{\text {cc }}$	Power	Digital Positive Supply.

ADN4604

TYPICAL PERFORMANCE CHARACTERISTICS

$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{TTIx}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{TTOx}}=3.3 \mathrm{~V}, \mathrm{DV}$ CC $=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega$, data rate $=4.25 \mathrm{Gbps}$, ac-coupled inputs and outputs, differential input swing $=800 \mathrm{mV}$ p-p, $\mathrm{T}_{\mathrm{A}}=27^{\circ} \mathrm{C}$, unless otherwise noted.

Figure 6. Standard Test Circuit

Figure 7. 3.25 Gbps Input Eye (TP1 from Figure 6)

Figure 8. 4.25 Gbps Input Eye (TP1 from Figure 6)

Figure 9. 3.25 Gbps Output Eye (TP2 from Figure 6)

Figure 10. 4.25 Gbps Output Eye (TP2 from Figure 6)

0.167IUIDIV

REFERENCE EYE DIAGRAM AT TP1

Figure 11. Equalization Test Circuit

Figure 12. 4.25 Gbps Input Eye, 20 Inch FR4 Input Channel (TP2 from Figure 11)

Figure 13. 4.25 Gbps Input Eye, 40-Inch FR4 Input Channel (TP2 from Figure 11)

Figure 14.4.25 Gbps Output Eye, 20-Inch FR4 Input Channel, $E Q=12 d B$ (TP3 from Figure 11)

Figure 15. 4.25 Gbps Output Eye, 40-Inch FR4 Input Channel, EQ = 12 dB (TP3 from Figure 11)

ADN4604

REFERENCE EYE DIAGRAM AT TP1
Figure 16. Preemphasis Test Circuit

Figure 17.4.25 Gbps Output Eye, 20-Inch FR4 Output Channel, $P E=0 d B$ (TP3 from Figure 16)

Figure 18.4.25 Gbps Output Eye, 40-Inch FR4 Input Channel, $P E=0 \mathrm{~dB}$ (TP3 from Figure 16)

Figure 19. 4.25 Gbps Output Eye, 20-Inch FR4 Input Channel, $P E=4.2 \mathrm{~dB}$ (TP3 from Figure 16)

Figure 20. 4.25 Gbps Output Eye, 40-Inch FR4 Input Channel, $P E=6 \mathrm{~dB}$ (TP3 from Figure 16)

Figure 21. Deterministic Jitter vs. Data Rate

Figure 22. Deterministic Jitter vs. Supply Voltage

Figure 23. Deterministic Jitter vs. Temperature

Figure 24. Eye Height vs. Data Rate

Figure 25. Eye Height vs. Supply Voltage

Figure 26. Eye Height vs. Temperature

ADN4604

Figure 27. Deterministic Jitter vs. Input FR4 Channel Length

Figure 28. Deterministic Jitter vs. Differential Input Swing

Figure 29. Deterministic Jitter vs. Output Termination Voltage ($V_{\text {то }}$)

Figure 30. Deterministic Jitter vs. Output FR4 Channel Length

Figure 31. Deterministic Jitter vs. Input Common-Mode Voltage

Figure 32. S21 Test Traces

Figure 33. Rise/Fall Time vs. Temperature

Figure 34. Propagation Delay vs. Supply Voltage

Figure 35. Propagation Delay Histogram

Figure 36. Random Jitter Histogram

Figure 37. Propagation Delay vs. Temperature

Figure 38. Return Loss (S11, S22)

ADN4604

THEORY OF OPERATION
 INTRODUCTION

The ADN4604 is a 16×16, buffered, asynchronous crosspoint switch that provides input equalization, output preemphasis, and output level programming capabilities. The receivers integrate an equalizer that is optimized to compensate for typical backplane losses. The switch supports multicast and broadcast operation, allowing the ADN4604 to work in redundancy and port-replication applications. The part offers extensively programmable output levels and preemphasis settings.

Figure 39. Block Diagram
The configuration of the crosspoint is controlled through a serial interface. This interface supports both $\mathrm{I}^{2} \mathrm{C}$ and SPI protocols, which can be selected using the $\overline{\mathrm{I} 2 \mathrm{C}} /$ SPI dedicated control pin. There are two $\mathrm{I}^{2} \mathrm{C}$ address pins available as described in Table 6.

Table 6. Serial Interface Control Modes

Pin No.	$\overline{\mathbf{1 2 C}} / \mathrm{SPI}=0$		$\overline{12 C} / \mathrm{SPI}=1$	
	Pin Name	Pin Function	Pin Name	Pin Function
50	ADDR1	${ }^{12} \mathrm{C}$ Address MSB	SDI	SPI Data Input
51	ADDR0	${ }^{12} \mathrm{C}$ Address LSB	$\overline{C S}$	SPI Chip Select
75	SDA	$1^{2} C$ Data	SDO	SPI Data Output
76	SCL	$1^{2} \mathrm{C}$ Clock	SCK	SPI Clock

RECEIVERS

Input Structure and Input Levels

The ADN4604 receiver inputs incorporate 50Ω termination resistors, ESD protection, and a fixed equalizer that is optimized for operation over long backplane traces. Each receive channel also provides a positive/negative $(\mathrm{P} / \mathrm{N})$ inversion function, which allows the user to swap the sign of the input signal path to eliminate the need for board-level crossovers in the receiver channel.

Equalization

The ADN4604 receiver incorporates a continuous time equalizer (EQ) that provides 12 dB of high frequency boost to compensate up to 40 inches of FR4 at 4.25 Gbps . Each input has an equalizer control bit. By default, the programmable boost is set to 12 dB . The boost can be set to 0 dB by programming a Logic 0 to the respective register bit for the corresponding channel.

Table 7. Equalization Control Registers

EQ[15:0]	Equalization Boost
0	0 dB
1	12 dB (default)

Lane Inversion

The receiver P / N inversion is a feature intended to allow the user to implement the equivalent of a board-level crossover in a much smaller area and without additional via impedance discontinuities that degrade the high frequency integrity of the signal path. The P / N inversion is available independently for each of the 16 input channels and is controlled by writing to the SIGN bit of the RX control registers (Addresses 0x12 and Address 0x13). Note that using this feature to account for signal inversions downstream of the receiver requires additional attention when switching connectivity.

Table 8. Signal Path Polarity Control

SIGN[15:0]	Signal Path Polarity
0	Noninverting (default)
1	Inverting

SWITCH CORE

The ADN4604 switch core is a fully nonblocking 16×16 array that allows multicast and broadcast configurations. The configuration of the switch core is programmed through the serial control interface. The crosspoint configuration map controls the connectivity of the switch core. The crosspoint configuration map consists of a double-rank register architecture where each rank consists of an 8-byte configuration map as shown in Figure 41. The second rank registers contain the current state of the crosspoint. The first rank registers contain the next state. Each entry in the connection map stores four bits per output, which indicates which of the 16 inputs are connected to a given output. An entire connectivity matrix can be programmed at once by passing data from the first rank registers into the second rank registers.
The first rank registers are two separate volatile 8-byte memory banks which store connection configurations for the crosspoint. Map 0 is the default map and is located at Address 0x90 to Address 0x97. By default, Map 0 contains a diagonal connection configuration whereby Input 15 is connected to Output 0, Input 14 to Output 1, Input 13 to Output 2, and so on. Similarly, by default, Map 1 contains the opposite diagonal connection configuration where Input 0 is connected to output 0 , Input 1 to Output 1 , and so on. Both maps are read/write accessible registers. The active map is selected by writing to the XPT table select register (Address 0x81).

FIRST RANK REGISTERS

The crosspoint is configured by addressing the register assigned to the desired output and writing the desired connection data into the first rank of latches in either Map 0 or Map 1. The connection data is equivalent to the binary coded value of the input number. This process is repeated until each of the desired connections is programmed.
In situations where multiple outputs are to be programmed to a single input, a broadcast command is available. A broadcast command is issued by writing the binary value of the desired input to the XPT broadcast register (Address 0x82). The broadcast is applied to the selected map as selected in the map table select register (Address 0x81).
All output connections are updated simultaneously by passing the data from the first rank of latches into the second rank by writing 0×01 to the XPT update register (Address 0×80). This is a write-only register. Alternatively, the UPDATE pin can be strobed low. Otherwise, this pin should be left high.
The current state of the crosspoint connectivity is available by reading the XPT status registers (Address 0xB0 to Address 0xB7). Register descriptions for the Map 0, Map 1 and XPT status registers are provided in Table 9. A complete register map is provided in Table 18.

ADN4604

Table 9. XPT Control Registers

Register Name	Address	Bit	Bit Name	Description	Default
Update	0x80	0	UPDATE	Updates XPT switch core (active high, write only)	N/A
Map Table Select	0x81	0	MAP TABLE SELECT	0 : Map 0 is selected 1: Map 1 is selected	0x00
XPT Broadcast	0x82	3:0	BROADCAST[3:0]	All outputs connection assignment, write only	N/A
XPT Map 0 Control 0	0x90	$\begin{aligned} & \hline 7: 4 \\ & 3: 0 \end{aligned}$	$\begin{aligned} & \text { OUT1[3:0] } \\ & \text { OUTO[3:0] } \end{aligned}$	Output 1 connection assignment Output 0 connection assignment	0xEF
XPT Map 0 Control 1	0x91	$\begin{aligned} & 7: 4 \\ & 3: 0 \end{aligned}$	$\begin{aligned} & \text { OUT3[3:0] } \\ & \text { OUT2[3:0] } \end{aligned}$	Output 3 connection assignment Output 2 connection assignment	$0 \times C D$
XPT Map 0 Control 2	0x92	$\begin{aligned} & 7: 4 \\ & 3: 0 \end{aligned}$	$\begin{aligned} & \text { OUT5[3:0] } \\ & \text { OUT4[3:0] } \end{aligned}$	Output 5 connection assignment Output 4 connection assignment	$0 \times A B$
XPT Map 0 Control 3	0x93	$\begin{aligned} & \hline 7: 4 \\ & 3: 0 \end{aligned}$	$\begin{aligned} & \hline \text { OUT7[3:0] } \\ & \text { OUT6[3:0] } \end{aligned}$	Output 7 connection assignment Output 6 connection assignment	0x89
XPT Map 0 Control 4	0x94	$\begin{aligned} & 7: 4 \\ & 3: 0 \end{aligned}$	$\begin{aligned} & \hline \text { OUT9[3:0] } \\ & \text { OUT8[3:0] } \end{aligned}$	Output 9 connection assignment Output 8 connection assignment	0x67
XPT Map 0 Control 5	0x95	$\begin{aligned} & \hline 7: 4 \\ & 3: 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { OUT11[3:0] } \\ & \text { OUT10[3:0] } \\ & \hline \end{aligned}$	Output 11 connection assignment Output 10 connection assignment	0x45
XPT Map 0 Control 6	0x96	$\begin{aligned} & 7: 4 \\ & 3: 0 \end{aligned}$	$\begin{aligned} & \hline \text { OUT13[3:0] } \\ & \text { OUT12[3:0] } \\ & \hline \end{aligned}$	Output 13 connection assignment Output 12 connection assignment	0×23
XPT Map 0 Control 7	0x97	$\begin{aligned} & 7: 4 \\ & 3: 0 \end{aligned}$	$\begin{aligned} & \text { OUT15[3:0] } \\ & \text { OUT14[3:0] } \\ & \hline \end{aligned}$	Output 15 connection assignment Output 14 connection assignment	0x01
XPT Map 1 Control 0	0x98	$\begin{aligned} & 7: 4 \\ & 3: 0 \end{aligned}$	$\begin{aligned} & \hline \text { OUT1[3:0] } \\ & \text { OUT0[3:0] } \end{aligned}$	Output 1 connection assignment Output 0 connection assignment	0x10
XPT Map 1 Control 1	0x99	$\begin{aligned} & 7: 4 \\ & 3: 0 \end{aligned}$	$\begin{aligned} & \hline \text { OUT3[3:0] } \\ & \text { OUT2[3:0] } \end{aligned}$	Output 3 connection assignment Output 2 connection assignment	0x32
XPT Map 1 Control 2	0x9A	$\begin{aligned} & \hline 7: 4 \\ & 3: 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { OUT5[3:0] } \\ & \text { OUT4[3:0] } \\ & \hline \end{aligned}$	Output 5 connection assignment Output 4 connection assignment	0x54
XPT Map 1 Control 3	0x9B	$\begin{aligned} & \hline 7: 4 \\ & 3: 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { OUT7[3:0] } \\ & \text { OUT6[3:0] } \\ & \hline \end{aligned}$	Output 7 connection assignment Output 6 connection assignment	0x76
XPT Map 1 Control 4	0x9C	$\begin{aligned} & 7: 4 \\ & 3: 0 \end{aligned}$	$\begin{aligned} & \text { OUT9[3:0] } \\ & \text { OUT8[3:0] } \end{aligned}$	Output 9 connection assignment Output 8 connection assignment	0x98
XPT Map 1 Control 5	0x9D	$\begin{aligned} & \hline 7: 4 \\ & 3: 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { OUT11[3:0] } \\ & \text { OUT10[3:0] } \\ & \hline \end{aligned}$	Output 11 connection assignment Output 10 connection assignment	0xBA
XPT Map 1 Control 6	0x9E	$\begin{aligned} & \hline 7: 4 \\ & 3: 0 \end{aligned}$	$\begin{aligned} & \hline \text { OUT13[3:0] } \\ & \text { OUT12[3:0] } \end{aligned}$	Output 13 connection assignment Output 12 connection assignment	0xDC
XPT Map 1 Control 7	0x9F	$\begin{aligned} & \hline 7: 4 \\ & 3: 0 \end{aligned}$	$\begin{aligned} & \hline \text { OUT15[3:0] } \\ & \text { OUT14[3:0] } \\ & \hline \end{aligned}$	Output 15 connection assignment Output 14 connection assignment	0xFE
XPT Status 0	$0 \times B 0$	$\begin{aligned} & 7: 4 \\ & 3: 0 \end{aligned}$	$\begin{aligned} & \text { OUT1[3:0] } \\ & \text { OUT0[3:0] } \end{aligned}$	Output 1 connection status, read only Output 0 connection status, read only	0xEF
XPT Status 1	$0 \times B 1$	$\begin{aligned} & 7: 4 \\ & 3: 0 \end{aligned}$	$\begin{aligned} & \text { OUT3[3:0] } \\ & \text { OUT2[3:0] } \end{aligned}$	Output 3 connection status, read only Output 2 connection status, read only	$0 \times C D$
XPT Status 2	0xB2	$\begin{aligned} & \hline 7: 4 \\ & 3: 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { OUT5[3:0] } \\ & \text { OUT4[3:0] } \\ & \hline \end{aligned}$	Output 5 connection status, read only Output 4 connection status, read only	$0 \times A B$
XPT Status 3	0xB3	$\begin{aligned} & \hline 7: 4 \\ & 3: 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { OUT7[3:0] } \\ & \text { OUT6[3:0] } \\ & \hline \end{aligned}$	Output 7 connection status, read only Output 6 connection status, read only	0x89
XPT Status 4	0xB4	$\begin{aligned} & \hline 7: 4 \\ & 3: 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { OUT9[3:0] } \\ & \text { OUT8[3:0] } \\ & \hline \end{aligned}$	Output 9 connection status, read only Output 8 connection status, read only	0x67
XPT Status 5	0xB5	$\begin{aligned} & 7: 4 \\ & 3: 0 \end{aligned}$	$\begin{aligned} & \hline \text { OUT11[3:0] } \\ & \text { OUT10[3:0] } \end{aligned}$	Output 11 connection status, read only Output 10 connection status, read only	0x45
XPT Status 6	0xB6	$\begin{aligned} & 7: 4 \\ & 3: 0 \end{aligned}$	$\begin{aligned} & \text { OUT13[3:0] } \\ & \text { OUT12[3:0] } \end{aligned}$	Output 13 connection status, read only Output 12 connection status, read only	0x23
XPT Status 7	$0 \times B 7$	$\begin{aligned} & 7: 4 \\ & 3: 0 \end{aligned}$	$\begin{aligned} & \text { OUT15[3:0] } \\ & \text { OUT14[3:0] } \\ & \hline \end{aligned}$	Output 15 connection status, read only Output 14 connection status, read only	0x01

TRANSMITTERS

Output Structure and Output Levels

The ADN4604 transmitter outputs incorporate 50Ω termination resistors, ESD protection, and output current switches. Each channel provides independent control of both the absolute output level and the preemphasis output level. Note that the choice of output level affects the output common-mode level.

Figure 42. Simplified TX Output Circuit

Preemphasis

Transmission line attenuation can be equalized at the transmitter using preemphasis. The transmit equalizer setting can be chosen by matching the channel loss to the amount of boost provided by the preemphasis.

Basic Settings

In the basic mode of operation, predefined preemphasis settings are available through a lookup table. Each table entry requires two bytes of memory. The amount of preemphasis provided is independent of the full-scale current output. Transmitter preemphasis levels, as well as dc output levels, can be set through the serial control interface. The output level and amount of preemphasis can be independently programmed through advanced registers. By default, however, the total output amplitude and preemphasis setting space is reduced to a single table of basic settings that provides eight levels of output equalization to ease programming for typical FR4 channels.
Table 10 summarizes the absolute output level, preemphasis level, and high frequency boost for control setting. The full resolution of eight settings is available through the serial interface by writing to Bits[2:0] (the TX PE[2:0] bits) of the Basic TX Control registers shown in Table 11. A single setting is programmed to all outputs simultaneously by writing to the 0x18 broadcast address.
The TX has four possible output enable states (disabled, standby, squelched, and enabled) controlled by the TX EN[1:0] bits as shown in Table 11. Disabled is the lowest power-down state. When squelched, the output voltage at both P and N outputs will be the common-mode voltage as defined by the output current settings. In standby, the output level of both P and N outputs will be pulled up to the termination supply ($\mathrm{V}_{\text {tton }}$ or $\mathrm{V}_{\text {ttos }}$).

The TX CTL SELECT bit (Bit 6) in the TX[15:0] basic control register determines whether the preemphasis and output current controls for the channel of interest are selected from the predefined lookup table or directly from the TX[15:0] Drive Control[1:0] registers (per channel). Figure 43 is an illustration of the TX control circuit. Setting the TX CTL SELECT bit low (default setting) selects preemphasis control from the predefined, optimized lookup table (Address 0x60 to Address 0x6F).

Figure 43. Transmitter Control Block Diagram
In applications where the default preemphasis settings in the lookup table are not sufficient, the lookup table entries can be modified by programming the TX lookup table registers (0x60 to 0x6F) shown in Table 12. In applications where the eight table entries are insufficient, each output can be programmed individually.
Table 10. Preemphasis Boost and Overshoot vs. Setting

PE Setting	Main Tap Current $(\mathbf{m A})$	Delayed Tap Current (mA)	Boost (dB)	Overshoot (\%)	DC Swing $(\mathbf{m V ~ p - p})$
0	16	0	0.0	0	800
1	16	2	2.0	25	800
2	16	5	4.2	62.5	800
3	16	8	6.0	100	800
4	11	8	7.8	145	550
5	8	8	9.5	200	400
6	4	6	12.0	300	300
7	4	6	12.0	300	300

ADN4604

Table 11 displays the TX Basic Control register. The TX Basic Control register consists of one byte (8 bits) for each of the 16 output channels. Each TX Basic Control register has the same functionality. The mapping of register address to output channel is shown in the first column.

Table 11. TX Basic Control Register

\begin{tabular}{|c|c|c|c|c|c|}
\hline Address: Channel \& Default \& Register Name \& Bit \& Bit Name \& Description

\hline 0x18: Broadcast, 0×20 : Output 0 , 0×21 : Output 1, 0×22 : Output 2, 0×23 : Output 3, 0×24 : Output 4, 0×25 : Output 5 , 0×26 : Output 6, 0×27 : Output 7 , 0×28 : Output 8 , 0×29 : Output 9 , 0x2A: Output 10, 0x2B: Output 11, $0 \times 2 \mathrm{C}$: Output 12, 0x2D: Output 13, 0x2E: Output 14, 0x2F: Output 15 \& 0x00 \& TX basic control \& 5:4

3

$2: 0$ \& | TX CTL SELECT |
| :--- |
| TX EN[1:0] |
| Reserved |
| PE[2:0] | \& | 0 : PE and output level control is derived from common lookup table |
| :--- |
| 1: PE and output level control is derived from per port drive control registers |
| 00: TX disabled, lowest power state |
| 01:TX standby. |
| 10: TX squelched. |
| 11:TX enabled |
| Reserved. Set to 0 . |
| If TX CTL SELECT $=0$, see Table 10 |
| 000: Table Entry 0 |
| 001: Table Entry 1 |
| 010: Table Entry 2 |
| 011: Table Entry 3 |
| 100: Table Entry 4 |
| 101: Table Entry 5 |
| 110: Table Entry 6 |
| 111:Table Entry 7 |
| If TX CTL SELECT = 1, PE[2:0] are ignored |

\hline
\end{tabular}

Table 12 displays the TX lookup table register. The TX lookup table register consists of two bytes (16 bits) for each of the eight possible table entries selected by the PE[2:0] field in Table 11. The mapping of table entry to register address is shown in the first column. By default, the TX Lookup Table register contains the preemphasis settings listed in Table 10, however, these values can be changed for a flexible selection of output levels and preemphasis boosts. Table 13 lists a variety of possible output level and preemphasis boost settings and the corresponding TX Drive 0 and TX Drive 1 codes.

Table 12. TX Lookup Table Registers

Address: Channel	Default	Register Name	Bit	Bit Name	Description
0x60: Table Entry 0	0xFF	TX Lookup Table Drive 0	7	DRV EN1	0: Driver 1 disabled
0x62: Table Entry 1	0xFF				1: Driver 1 enabled
0x64: Table Entry 2	0xFF		6:4	DRV LV1[2:0]	Driver 1 current $=$ decimal (DRV LV1[2:0]) +1
0x66: Table Entry 3	0xFF				
0x68: Table Entry 4	0xDC		3	DRV ENO	0 : Driver 0 disabled
0x6A:Table Entry 5	$0 \times B B$				1: Driver 0 enabled
0x6C: Table Entry 6	0x99		2:0	DRV LV0[2:0]	Driver 0 current = decimal(DRV LV0[2:0]) + 1
0x6E:Table Entry 7	0x99				
0x61:Table Entry 0	0x00	TX Lookup Table Drive 1	7	DRV END	0: Driver D disabled
0x63:Table Entry 1	0x99				1: Driver D enabled
0x65: Table Entry 2	$0 \times C C$		6:4	DRV LVD[2:0]	Driver D Current $=$ decimal (DRV LVD[2:0]) +1
0x67:Table Entry 3	0xFF				
0x69: Table Entry 4	0xFF		3	DRV EN2	0 : Driver 2 disabled
0x6B: Table Entry 5	0xFF				1: Driver 2 enabled
0x6D:Table Entry 6	0xDD		2:0	DRV LV2[2:0]	Driver 2 current = decimal(DRV LV2[2:0]) + 1
0x6F:Table Entry 7	0xDD				

Advanced Settings

In addition to the basic settings provided in the TX basic control registers, advanced settings are available in TX Drive 0 Control and TX Drive 1 Control registers (Address 0x30 to Address $0 \times 4 \mathrm{~F}$). The advanced settings are useful in applications where each output requires an individually programmed preemphasis or output level setting beyond what is available in the lookup table in basic mode. To enable these advanced settings, set the TX CTL SELECT bit in the TX basic control register to a logic high. Next, program the TX Drive 0 control and Drive 1 control registers (Address 0×30 to Address $0 \times 4 F$) to the desired output level and boost values. A subset of possible settings is provided in Table 13. An expanded list of available settings is shown in Table 19 in the Applications Information section. These advanced settings can also be used to modify the TX lookup table settings (Address 0×60 to Address 0x6F). The advanced settings register map is shown in Table 15.
The preemphasis boost equation follows.

$$
\begin{equation*}
\operatorname{Gain}[\mathrm{dB}]=20 \times \log _{10}\left(1+\frac{V_{S W-P E}-V_{S W-D C}}{V_{S W-D C}}\right) \tag{1}
\end{equation*}
$$

Figure 44. Signal Level Definitions

Table 13. TX Preemphasis and Output Swing Advanced Settings

Single-Ended Output Levels and PE Boost				Register Settings		Output Current
$\begin{aligned} & \mathbf{V}_{S W-D C^{1}} \\ & (\mathrm{mV}) \end{aligned}$	$\begin{aligned} & \mathbf{V}_{\mathrm{SW}-\mathrm{PE}}{ }^{1} \\ & (\mathrm{mV}) \end{aligned}$	PE Boost \%	PE (dB)	TX Drive 0	TX Drive 1	$I_{\text {Tro }}{ }^{1}$ (mA)
200	200	0.00	0.00	0xBB	0x00	8
200	300	50.00	3.52	$0 \times B B$	0x99	12
200	350	75.00	4.86	$0 \times B B$	0xAA	14
200	400	100.00	6.02	$0 \times B B$	0xBB	16
200	450	125.00	7.04	$0 \times B B$	$0 x C C$	18
200	500	150.00	7.96	$0 \times B B$	0xDD	20
200	600	200.00	9.54	$0 \times B B$	0xFF	24
300	300	0.00	0.00	0xDD	0x00	12
300	400	33.33	2.50	0xDD	0x99	16
300	450	50.00	3.52	0xDD	0xAA	18
300	500	66.67	4.44	0xDD	$0 \times B B$	20
300	550	83.33	5.26	0xDD	$0 \times C C$	22
300	600	100.00	6.02	$0 x D D$	0xDD	24
300	700	133.33	7.36	0xDD	0xFF	28
400	400	0.00	0.00	0xFF	0x00	16
400	500	25.00	1.94	0xFF	0x99	20
400	550	37.50	2.77	0xFF	0xAA	22
400	600	50.00	3.52	0xFF	$0 \times B B$	24
400	650	62.50	4.22	0xFF	$0 \times C C$	26
400	700	75.00	4.86	0xFF	0xDD	28
400	800	100.00	6.02	0xFF	0xFF	32
500	500	0.00	0.00	0xFF	0x0B	20
600	600	0.00	0.00	0xFF	0x0F	24

[^1]Table 14. Symbol Definitions

Symbol	Formula	Definition
loc	Programmable	Output current that sets output level
IPE	Programmable	Output current for PE delayed tap
$I_{\text {то }}$	$\mathrm{l}_{\mathrm{DC}}+\mathrm{I}_{\text {PE }}$	Total transmitter output current
$\mathrm{T}_{\text {PE }}$		Preemphasis pulse width
V DPP-DC	$25 \Omega \times \operatorname{ldC} \times 2$	Peak-to-peak differential voltage swing of nonpreemphasized waveform
$V_{\text {DPP-PE }}$	$25 \Omega \times 1$ то $\times 2$	Peak-to-peak differential voltage swing of preemphasized waveform
$V_{\text {SW-DC }}$	$\mathrm{V}_{\text {DPP-DC }} / 2=\mathrm{V}_{\text {H-DC }}-\mathrm{V}_{\text {L-DC }}$	DC single-ended voltage swing
$\mathrm{V}_{\text {SW-PE }}$	$\mathrm{V}_{\text {DPP-PE }} / 2=\mathrm{V}_{\text {H-PE }}-\mathrm{V}_{\text {L-PE }}$	Preemphasized single-ended voltage swing
$\Delta V_{\text {ocm_decoupled }}$	$25 \Omega \times 1 \mathrm{mo} / 2$	Output common-mode shift, dc-coupled outputs
Δ Vocm_ac-coupled	$50 \Omega \times 1$ то/2	Output common-mode shift, ac-coupled outputs
Vocm	$\mathrm{V}_{\text {Tо }}-\Delta \mathrm{V}_{\text {OCM }}=\left(\mathrm{V}_{\text {H-DC }}+\mathrm{V}_{\text {L-dC }}\right) / 2$	Output common-mode voltage
$V_{\text {H-DC }}$	$\mathrm{V}_{\text {то }}-\Delta \mathrm{V}_{\text {OCM }}+\mathrm{V}_{\text {DPP-DC/ }} / 2$	DC single-ended output high voltage
$V_{\text {L-dC }}$	$\mathrm{V}_{\text {то }}-\Delta \mathrm{V}_{\text {осм }}-\mathrm{V}_{\text {dpp-di/2 }}$	DC single-ended output low voltage
$V_{\text {H-PE }}$	$\mathrm{V}_{\text {TTo }}-\Delta \mathrm{V}_{\text {ocm }}+\mathrm{V}_{\text {DPP-PE/ }} / 2$	Maximum single-ended output voltage
$V_{\text {L-PE }}$	$\mathrm{V}_{\text {TO- }}-\Delta \mathrm{V}_{\text {OCM }}-\mathrm{V}_{\text {DPPP-PE }} / 2$	Minimum single-ended output voltage
$V_{\text {то }}$		Output termination voltage

ADN4604

Table 15 displays the TX advanced control registers. The TX advanced control registers consist of two bytes (16 bits) for each of the 16 output channels. The mapping of register address to output channel is shown in the first column. The TX advanced control registers provides ultimate flexibility of per port output level and preemphasis boost. Table 13 lists a variety of possible output levels and preemphasis boost settings and the corresponding TX Drive 0 and TX Drive 1 codes.
Table 15. TX Advanced Control Registers

Address: Channel	Default	Register Name	Bit	Bit Name	Description
0x30: Output 0, 0x32: Output 1, 0x34: Output 2, 0x36: Output 3, 0×38 : Output 4, $0 \times 3 A:$ Output 5, 0x3C: Output 6, 0x3E: Output 7, 0×40 : Output 8 , 0×42 : Output 9, 0×44 : Output 10, 0×46 : Output 11, 0×48 : Output 12, $0 \times 4 \mathrm{~A}$: Output 13, $0 \times 4 \mathrm{C}$: Output 14, $0 \times 4 \mathrm{E}$: Output 15	0xFF	TX Drive 0 control	7 6:4 3 2:0	DRV EN1 DRV LV1[2:0] DRV ENO DRV LVO[2:0]	0: Driver 1 disabled 1: Driver 1 enabled Driver 1 current $=$ decimal(DRV LV1[2:0]) +1 0 : Driver 0 disabled 1: Driver 0 enabled Driver 0 current $=$ decimal $($ DRV LVO[2:0] $)+1$
0x31: Output 0, 0×33 : Output 1, 0×35 : Output 2, 0x37: Output 3, 0x39: Output 4, 0x3B: Output 5, 0x3D: Output 6, 0x3F: Output 7, 0×41 : Output 8 , 0×43 : Output 9, 0×45 : Output 10, 0x47: Output 11, 0×49 : Output 12, $0 \times 4 \mathrm{~B}$: Output 13, 0x4D: Output 14, 0x4F: Output 15	0x00	TX Drive 1 control	7 6:4 3 2:0	DRV END DRV LVD[2:0] DRV EN2 DRV LV2[2:0]	0: Driver D disabled 1: Driver D enabled Driver D current $=$ decimal $($ DRV LVD[2:0] $)+1$ 0 : Driver 2 disabled 1: Driver 2 enabled Driver 2 current $=$ decimal $($ DRV LV2[2:0] $)+1$

TERMINATION

The inputs and outputs include integrated 50Ω termination resistors. For applications that require external termination resistors, the internal resistors can be disabled. For example, disabling the integrated 50Ω termination resistors allows alternative termination values such as 75Ω as shown in Figure 45.
Note that the integrated 50Ω termination resistors are optimal for high data rate digital signaling. Disabling the terminations can reduce the overall performance.

Figure 45.75Ω to 50Ω Impedance Translator.
Table 16. Termination Control Register

Address	Default	Register Name	Bit	Bit Name	Description
0xF0	0x00	Termination control	3	TXN_TERM	Output[15:8] (North) termination control 0 : Terminations enabled 1:Terminations disabled
			2	TXS_TERM	Output[7:0] (South) termination control 0 : Terminations enabled 1:Terminations disabled
			1	RXE_TERM	Input[15:8] (East) termination control 0 : Terminations enabled 1:Terminations disabled
			0	RXW_TERM	Input[7:0] (West) termination control 0 : Terminations enabled 1:Terminations disabled

ADN4604

I²C SERIAL CONTROL INTERFACE

The ADN4604 register set is controlled through a 2 -wire $\mathrm{I}^{2} \mathrm{C}$ interface. The ADN4604 acts only as an $I^{2} \mathrm{C}$ slave device. Therefore, the $\mathrm{I}^{2} \mathrm{C}$ bus in the system needs to include an $\mathrm{I}^{2} \mathrm{C}$ master to configure the ADN4604 and other $\mathrm{I}^{2} \mathrm{C}$ devices that may be on the bus.

The ADN4604 $\mathrm{I}^{2} \mathrm{C}$ interface can be run in the standard $(100 \mathrm{kHz})$ and fast $(400 \mathrm{kHz})$ modes. The SDA line only changes value when the SCL pin is low with two exceptions. To indicate the beginning or continuation of a transfer, the SDA pin is driven low while the SCL pin is high; to indicate the end of a transfer, the SDA line is driven high while the SCL line is high. Therefore, it is important to control the SCL clock to toggle only when the SDA line is stable unless indicating a start, repeated start, or stop condition.

Table 17. $\mathrm{I}^{2} \mathrm{C}$ Device Address Assignment

ADDR1 Pin	ADDR0 Pin	$I^{2} \mathbf{C}$ Device Address
0	0	0×90
0	1	0×92
1	0	0×94
1	1	0×96

RESET

On initial power-up, or at any point in operation, the ADN4604 register set can be restored to the default values by pulling the $\overline{\text { RESET }}$ pin to low according to the specification in Table 2. During normal operation, however, the $\overline{\text { RESET }}$ pin must be pulled up to $\mathrm{DV}_{\mathrm{Cc}}$. A software reset is available by writing the value $0 x 01$ to the Reset register at Address 0×00. This register is write only.

I^{2} C DATA WRITE

To write data to the ADN4604 register set, a microcontroller, or any other $\mathrm{I}^{2} \mathrm{C}$ master, must send the appropriate control signals to the ADN4604 slave device. The steps to be followed are listed below; the signals are controlled by the $\mathrm{I}^{2} \mathrm{C}$ master, unless otherwise specified. A diagram of the procedure is shown in Figure 46.

1. Send a start condition (while holding the SCL line high, pull the SDA line low).
2. Send the ADN4604 part address (seven bits) whose upper four bits are the static value b10010 and whose lower three bits are controlled by the input pins I2C_A [1:0]. This transfer should be MSB first.
3. Send the write indicator bit (0).
4. Wait for the ADN4604 to acknowledge the request.
5. Send the register address (eight bits) to which data is to be written. This transfer should be MSB first.
6. Wait for the ADN4604 to acknowledge the request.
7. Send the data (eight bits) to be written to the register whose address was set in Step 5. This transfer should be MSB first.
8. Wait for the ADN4604 to acknowledge the request.
9. Do one or more of the following:
a. Send a stop condition (while holding the SCL line high, pull the SDA line high) and release control of the bus.
b. Send a repeated start condition (while holding the SCL line high, pull the SDA line low) and continue with Step 2 of the write procedure to perform a write.
c. Send a repeated start condition (while holding the SCL line high, pull the SDA line low) and continue with Step 2 of this procedure to perform a read from another address.
d. Send a repeated start condition (while holding the SCL line high, pull the SDA line low) and continue with Step 8 of the read procedure (in the I2C Data Read section) to perform a read from the same address set in Step 5.

The ADN4604 write process is shown in Figure 46. The SCL signal is shown along with a general write operation and a specific example. In the example, data 0 x 92 is written to Address 0x6D of an ADN4604 part with a part address of 0x4B. It is important to note that the SDA line only changes when the SCL line is low, except for the case of sending a start, stop, or repeated start condition, Step 1 and Step 9 in this case.

Figure 46. ${ }^{2}$ C Write Diagram

$I^{2} C$ DATA READ

To read data from the ADN4604 register set, a microcontroller, or any other $\mathrm{I}^{2} \mathrm{C}$ master must send the appropriate control signals to the ADN4604 slave device. The steps are listed below; the signals are controlled by the $\mathrm{I}^{2} \mathrm{C}$ master, unless otherwise specified. A diagram of the procedure is shown in Figure 47.

1. Send a start condition (while holding the SCL line high, pull the SDA line low).
2. Send the ADN4604 part address (seven bits) whose upper five bits are the static value b10010 and whose lower two bits are controlled by the input pins ADDR1 and ADDR0. This transfer should be MSB first.
3. Send the write indicator bit (0).
4. Wait for the ADN4604 to acknowledge the request.
5. Send the register address (eight bits) from which data is to be read. This transfer should be MSB first. The register address is kept in memory in the ADN4604 until the part is reset or the register address is written over with the same procedure (Step 1 to Step 6).
6. Wait for the ADN4604 to acknowledge the request.
7. Send a repeated start condition (while holding the SCL line high, pull the SDA line low).
8. Send the ADN4604 part address (seven bits) whose upper five bits are the static value b10010 and whose lower two bits are controlled by the input pins ADDR1 and ADDR0. This transfer should be MSB first.
9. Send the read indicator bit (1).
10. Wait for the ADN4604 to acknowledge the request.
11. The ADN4604 then serially transfers the data (eight bits) held in the register indicated by the address set in Step 5.
12. Acknowledge the data.
13. Do one or more of the following:
a. Send a stop condition (while holding the SCL line high pull the SDA line high) and release control of the bus.
b. Send a repeated start condition (while holding the SCL line high, pull the SDA line low) and continue with Step 2 of the write procedure (see the $\mathrm{I}^{2} \mathrm{C}$ Data Write section) to perform a write.
c. Send a repeated start condition (while holding the SCL line high, pull the SDA line low) and continue with Step 2 of this procedure to perform a read from another address.
d. Send a repeated start condition (while holding the SCL line high, pull the SDA line low) and continue with Step 8 of this procedure to perform a read from the same address.

The ADN4604 read process is shown in Figure 47. The SCL signal is shown along with a general read operation and a specific example. In the example, Data 0x49 is read from Address 0x6D of an ADN4604 part with a part address of 0x4B. The part address is seven bits wide and is composed of the ADN4604 static upper five bits (b10010) and the pin programmable lower two bits (ADDR1 and ADDR0). In this example, the ADDR1 and ADDR0 bits are set to b01. In Figure 47, the corresponding step number is visible in the circle under the waveform. The SCL line is driven by the $\mathrm{I}^{2} \mathrm{C}$ master and never by the ADN4604 slave. As for the SDA line, the data in the shaded polygons is driven by the ADN4604, whereas the data in the nonshaded polygons is driven by the $\mathrm{I}^{2} \mathrm{C}$ master. The end phase case shown is that of 13 a .
Note that the SDA line only changes when the SCL line is low, except for the case of sending a start, stop, or repeated start condition, as in Step 1, Step 7, and Step 13. In Figure 47, A is the same as ACK in Figure 46. Equally, Sr represents a repeated start where the SDA line is brought high before SCL is raised. SDA is then dropped while SCL is still high.

Figure 47. I^{2} C Read Diagram

ADN4604

SPI SERIAL CONTROL INTERFACE

The SPI serial interface of the ADN4604 consists of four wires: $\overline{\mathrm{CS}}$, SCK, SDI, and SDO. $\overline{\mathrm{CS}}$ is used to select the device when more than one device is connected to the serial clock and data lines. $\overline{\mathrm{CS}}$ is also used to distinguish between read and write commands (see Figure 48). SCK is used to clock data in and out of the part. Data can either contain eight bits of register address or data.

The SDI line is used to write to the registers, and the SDO line is used to read data back from the registers. Data on SDI is clocked on the rising edge of SCK. Data on SDO changes on the falling edge of SCK. The recommended pull-up resistor value is between 500Ω and $1 \mathrm{k} \Omega$. Strong pull-ups are needed when serial clock speeds that are close to the maximum limit are used or when the SPI interface lines are experiencing large capacitive loading. Larger resistor values can be used for pull-up resistors when the serial clock speed is reduced.

The part operates in slave mode and requires an externally applied serial clock to the SCLK input. The serial interface is designed to allow the part to be interfaced to systems that provide a serial clock that is synchronized to the serial data.

Write Operation

Figure 48 shows the diagram for a write operation to the ADN4604. Data is clocked into the registers on the rising edge of SCK. When the $\overline{\mathrm{CS}}$ line is high, the SDI and SDO lines are in
three-state mode. Only when the $\overline{\mathrm{CS}}$ goes from high to low does the part accept any data on the SDI line. To allow continuous writes, the address pointer register auto-increments by one without having to load the address pointer register each time. Subsequent data bytes are written into sequential registers. Note that not all registers in the 256-byte address space exist and not all registers are writable. Zeroes should be entered for nonexisting address fields when implementing a continuous write operation. Address 0 xD 0 to Address 0 xEF are reserved and should not be overwritten. A continuous write sequence is shown in Figure 49.

Read Operation

Figure 48 shows the diagram for a write operation to the ADN4604. To read back from a register, first write to the address pointer register with the desired starting address. A read command is distinguished from a write command by the occurrence of $\overline{\mathrm{CS}}$ going high after the address pointer is written. Subsequent clock cycles with $\overline{\mathrm{CS}}$ asserted low stream data starting from the desired register address onto SDO, MSB first. SDO changes on the falling edge of SCK.

Multiple data reads are possible in SPI interface mode as the address pointer register is auto-incremented. A continuous read sequence is shown in Figure 50.

Figure 48. SPI—Correct Use of $\overline{C S}$ During SPI Communications

ADN4604

REGISTER MAP

Registers repeated per port or per table entry are grouped together. Register address mapping is shown in the first column.
Table 18. Register Map

Address: Channel	Default	Register Name	Bit	Bit Name	Description
0x00	N/A	RESET	0	Reset	Software reset. Write only.
0x10	0xFF	RX EQ Control 0	$\begin{aligned} & 6 \\ & 5 \\ & 4 \\ & 3 \\ & 2 \\ & 1 \\ & 0 \end{aligned}$	EQ[7] EQ[6] EQ[5] EQ[4] EQ[3] EQ[2] EQ[1] EQ[0]	Equalizer boost control for input 7 $0: 0 \mathrm{~dB}$ 1: 12 dB Equalizer boost control for Input 6 Equalizer boost control for Input 5 Equalizer boost control for Input 4 Equalizer boost control for Input 3 Equalizer boost control for Input 2 Equalizer boost control for Input 1 Equalizer boost control for Input 0
0x11	0xFF	RX EQ Control 1	$\begin{aligned} & \hline 15 \\ & \\ & 14 \\ & 13 \\ & 12 \\ & 12 \\ & 11 \\ & 10 \\ & 9 \\ & 8 \end{aligned}$	$\begin{aligned} & \hline \mathrm{EQ}[15] \\ & \mathrm{EQ}[14] \\ & \mathrm{EQ}[13] \\ & \mathrm{EQ}[12] \\ & \mathrm{EQ}[11] \\ & \mathrm{EQ}[10] \\ & \mathrm{EQ}[9] \\ & \mathrm{EQ}[8] \\ & \hline \end{aligned}$	Equalizer boost control for Input 15 $0: 0 \mathrm{~dB}$ 1: 12 dB Equalizer boost control for Input 14 Equalizer boost control for Input 13 Equalizer boost control for Input 12 Equalizer boost control for Input 11 Equalizer boost control for Input 10 Equalizer boost control for Input 9 Equalizer boost control for Input 8
0×12	0x00	RX Control 0	$\begin{aligned} & \hline 7 \\ & \\ & 6 \\ & 5 \\ & 4 \\ & 3 \\ & 2 \\ & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & \hline \text { SIGN[7] } \\ & \\ & \text { SIGN[6] } \\ & \text { SIGN[5] } \\ & \text { SIGN[4] } \\ & \text { SIGN[3] } \\ & \text { SIGN[2] } \\ & \text { SIGN[1] } \\ & \text { SIGN[0] } \end{aligned}$	Signal path polarity inversion for Input 7 0 : Noninverting 1: Inverting Signal path polarity inversion for Input 6 Signal path polarity inversion for Input 5 Signal path polarity inversion for Input 4 Signal path polarity inversion for Input 3 Signal path polarity inversion for Input 2 Signal path polarity inversion for Input 1 Signal path polarity inversion for Input 0
0×13	0x00	RX Control 1	$\begin{aligned} & \hline 15 \\ & \\ & 14 \\ & 13 \\ & 12 \\ & 12 \\ & 11 \\ & 10 \\ & 9 \\ & 8 \end{aligned}$	SIGN[15] SIGN[14] SIGN[13] SIGN[12] SIGN[11] SIGN[10] SIGN[9] SIGN[8]	Signal path polarity inversion for Input 15 0 : Noninverting 1: Inverting Signal path polarity inversion for Input 14 Signal path polarity inversion for Input 13 Signal path polarity inversion for Input 12 Signal path polarity inversion for Input 11 Signal path polarity inversion for Input 10 Signal path polarity inversion for Input 9 Signal path polarity inversion for Input 8

Address: Channel	Default	Register Name	Bit	Bit Name	Description
0x18: Broadcast, 0x20: Output 0, 0×21 : Output 1, 0x22: Output 2, 0×23 : Output 3, 0x24: Output 4, 0×25 : Output 5, 0x26: Output 6, 0×27 : Output 7, 0x28: Output 8, 0x29: Output 9, $0 \times 2 \mathrm{~A}$: Output 10, $0 \times 2 \mathrm{~B}$: Output 11, $0 \times 2 \mathrm{C}$: Output 12, 0x2D: Output 13, 0×2 E: Output 14, $0 \times 2 \mathrm{~F}$: Output 15	0x00	TX basic control	6 5:4 3 2:0	TX CTL SELECT TX EN[1:0] Reserved PE[2:0]	0 : PE and output level control is derived from common lookup table 1: PE and output level control is derived from per port drive control registers 00: TX disabled, lowest power state 01:TX standby 10: TX squelched 11:TX enabled Reserved. Set to 0 . If TX CTL SELECT $=0$, see Table 10 Selected table entry = decimal(PE[2:0]) If TX CTL SELECT $=1, \mathrm{PE}[2: 0]$ are ignored
0x30: Output 0, 0x32: Output 1, 0x34: Output 2, 0x36: Output 3, 0×38 : Output 4, $0 \times 3 A$: Output 5, 0x3C: Output 6, $0 \times 3 \mathrm{E}$: Output 7, 0×40 : Output 8 , 0x42: Output 9, 0×44 : Output 10, 0×46 : Output 11, 0×48 : Output 12, $0 \times 4 \mathrm{~A}$: Output 13, $0 \times 4 \mathrm{C}$: Output 14, $0 \times 4 \mathrm{E}$: Output 15	0xFF	TX Drive 0 control	$\begin{aligned} & 7 \\ & 6: 4 \\ & 3 \\ & 2: 0 \end{aligned}$	DRV EN1 DRV LV1[2:0] DRV ENO DRV LVO[2:0]	0: Driver 1 disabled 1: Driver 1 enabled Driver 1 current = decimal(DRV LV1[2:0]) +1 0 : Driver 0 disabled 1: Driver 0 enabled Driver 0 current $=$ decimal(DRV LVO[2:0]) +1
0×31: Output 0, 0x33: Output 1, 0×35 : Output 2, 0x37: Output 3, 0x39: Output 4, 0x3B: Output 5, 0x3D: Output 6, 0x3F: Output 7, 0×41 : Output 8 , 0x43: Output 9, 0×45 : Output 10, 0×47 : Output 11, 0×49 : Output 12, $0 \times 4 \mathrm{~B}$: Output 13, 0x4D: Output 14, 0x4F: Output 15	0x00	TX Drive 1 control	$\begin{aligned} & 7 \\ & \text { 6:4 } \\ & 3 \\ & \text { 2:0 } \end{aligned}$	DRV END DRV LVD[2:0] DRV EN2 DRV LV2[2:0]	0: Driver D disabled 1: Driver D enabled Driver D current $=$ decimal(DRV LVD[2:0]) +1 0 : Driver 2 disabled 1: Driver 2 enabled Driver 2 current $=$ decimal $($ DRV LV2[2:0] $)+1$
0x60:Table Entry 0 0x62:Table Entry 1 0x64:Table Entry 2 0x66: Table Entry 3 0x68: Table Entry 4 0x6A: Table Entry 5 0x6C: Table Entry 6 0x6E:Table Entry 7	0xFF 0xFF 0xFF 0xFF 0xDC 0xBB 0x99 0×99	TX Lookup Table 0	7 6:4 3 2:0	DRV EN1 DRV LV1[2:0] DRV ENO DRV LVO[2:0]	0: Driver 1 disabled 1: Driver 1 enabled Driver 1 current $=$ decimal(DRV LV1[2:0] $)+1$ 0 : Driver 0 disabled 1: Driver 0 enabled Driver 0 current $=$ decimal(DRV LVO[2:0]) +1

ADN4604

Address: Channel	Default	Register Name	Bit	Bit Name	Description
0x61:Table Entry 0	0x00	TX Lookup Table 1	7	DRV END	0: Driver D disabled 1: Driver D enabled
0x63:Table Entry 1	0x99				
0x65:Table Entry 2	0xCC		6:4	DRV LVD[2:0]	Driver D current = decimal (DRV LVD[2:0]) +1
0x67: Table Entry 3	0xFF				
0x69:Table Entry 4	0xFF		3	DRV EN2	0 : Driver 2 disabled 1: Driver 2 enabled
0x6B:Table Entry 5	0xFF				
0x6D: Table Entry 6	0xDD		2:0	DRV LV2[2:0]	Driver 2 current $=$ decimal(DRV LV2[2:0] $^{\text {a }}$ + 1
0x6F: Table Entry 7	0xDD				
0x80	Write only	Update	0	UPDATE	Updates XPT switch core (active high, write only)
0x81	0x00	Map table select	0	MAP TABLE SELECT	0 : Map 0 is selected 1: Map 1 is selected
0x82	Write only	XPT broadcast	3:0	BROADCAST[3:0]	All outputs connection assignment
0x90	0xEF	XPT Map 0 Control 0	7:4	OUT1[3:0]	Output 1 connection assignment Output 0 connection assignment
			3:0	OUTO[3:0]	
0×91	$0 \times C D$	XPT Map 0 Control 1	7:4	OUT3[3:0]	Output 3 connection assignment
			3:0	OUT2[3:0]	
0×92	$0 \times A B$	XPT Map 0 Control 2	$\begin{aligned} & 7: 4 \\ & 3: 0 \end{aligned}$	OUT5[3:0] OUT4[3:0]	Output 5 connection assignment
					Output 4 connection assignment
0x93	0x89	XPT Map 0 Control 3	$\begin{aligned} & 7: 4 \\ & 3: 0 \end{aligned}$	OUT7[3:0] OUT6[3.0]	Output 7 connection assignment
					Output 6 connection assignment
0×94	0x67	XPT Map 0 Control 4	$\begin{aligned} & 7: 4 \\ & 3: 0 \end{aligned}$	OUT9[3:0]	Output 9 connection assignment
					Output 11 connection assignment
0×95	0x45	XPT Map 0 Control 5	$\begin{aligned} & 7: 4 \\ & 3: 0 \end{aligned}$	OUT11[3:0]	
				OUT13[3:0]	Output 10 connection assignment
0×96	0×23	XPT Map 0 Control 6	7:4		Output 13 connection assignment
			3:0	OUT12[3:0]	Output 12 connection assignment
0×97	0×01	XPT Map 0 Control 7	$\begin{aligned} & 7: 4 \\ & 3: 0 \end{aligned}$	OUT15[3:0]	Output 15 connection assignment Output 14 connection assignment
				OUT14[3:0]	
0x98	0x10	XPT Map 1 Control 0	7:4	OUT1[3:0]	Output 1 connection assignment
			3:0	OUTO[3:0]	Output 0 connection assignment
0x99	0x32	XPT Map 1 Control 1	$\begin{aligned} & \text { 7:4 } \\ & \text { 3:0 } \end{aligned}$	OUT3[3:0] OUT2[3:0]	Output 3 connection assignment
$0 \times 9 \mathrm{~A}$	0x54	XPT Map 1 Control 2	$\begin{aligned} & 7: 4 \\ & 3: 0 \end{aligned}$	OUT5[3:0] OUT4[3:0]	Output 5 connection assignment
$0 \times 9 \mathrm{~B}$	0x76	XPT Map 1 Control 3	$\begin{aligned} & \text { 7:4 } \\ & \text { 3:0 } \end{aligned}$	OUT7[3:0] OUT6[3:0]	Output 7 connection assignment Output 6 connection assignment
0x9C	0x98	XPT Map 1 Control 4	$\begin{aligned} & \text { 7:4 } \\ & \text { 3:0 } \end{aligned}$	OUT9[3:0] OUT8[3:0]	Output 9 connection assignment Output 8 connection assignment
0x9D	0xBA	XPT Map 1 Control 5	$\begin{aligned} & 7: 4 \\ & 3: 0 \end{aligned}$	OUT11[3:0] OUT10[3:0]	Output 11 connection assignment Output 10 connection assignment
0x9E	0xDC	XPT Map 1 Control 6	7:4	$\begin{aligned} & \text { OUT13[3:0] } \\ & \text { OUT12[3:0] } \end{aligned}$	Output 13 connection assignment Output 12 connection assignment
0x9F	0xFE	XPT Map 1 Control 7	$\begin{aligned} & 7: 4 \\ & 3: 0 \end{aligned}$	$\begin{aligned} & \text { OUT15[3:0] } \\ & \text { OUT14[3:0] } \end{aligned}$	Output 15 connection assignment Output 14 connection assignment

Address: Channel	Default	Register Name	Bit	Bit Name	Description
0xBO	0xEF	XPT Status 0	7:4	OUT1[3:0]	Output 1 connection status
			3:0	OUT0[3:0]	Output 0 connection status
$0 \times B 1$	$0 \times C D$	XPT Status 1	7:4	OUT3[3:0]	Output 3 connection status
			3:0	OUT2[3:0]	Output 2 connection status
$0 \times B 2$	$0 \times A B$	XPT Status 2	7:4	OUT5[3:0]	Output 5 connection status
			3:0	OUT4[3:0]	Output 4 connection status
$0 \times B 3$	0x89	XPT Status 3	7:4	OUT7[3:0]	Output 7 connection status
			3:0	OUT6[3:0]	Output 6 connection status
0xB4	0x67	XPT Status 4	7:4	OUT9[3:0]	Output 9 connection status
			3:0	OUT8[3:0]	Output 8 connection status
0xB5	0x45	XPT Status 5	7:4	OUT11[3:0]	Output 11 connection status
			3:0	OUT10[3:0]	Output 10 connection status
0xB6	0×23	XPT Status 6	7:4	OUT13[3:0]	Output 13 connection status
			3:0	OUT12[3:0]	Output 12 connection status
$0 \times B 7$	0x01	XPT Status 7	7:4	OUT15[3:0]	Output 15 connection status
			3:0	OUT14[3:0]	Output 14 connection status
0xF0	0x00	Termination control	3	TXN_TERM	Output[15:8] (North) termination control 0 : Terminations enabled 1:Terminations disabled
			2	TXS_TERM	Output[7:0] (South) termination control
			1	RXE_TERM	Input[15:8] (East) termination control
			0	RXW_TERM	Input[7:0] (West) termination control
0xFE		Revision	7:0	REV[7:0]	Read-only
0xFF	0x04	Device ID	7:0	ID[7:0]	Read-only

ADN4604

APPLICATIONS INFORMATION

The ADN4604 is an asynchronous and protocol agnostic digital switch and, therefore, is applicable to a wide range of applications including network routing and digital video switching. The ADN4604 supports the data rates and signaling levels of HDMI ${ }^{\circ}$, DVI ${ }^{\circledR}$, DisplayPort and SD-, HD-, and 3G-SDI digital video. The ADN4604 can be used to create matrix switches. An example block diagram of a 16×16 matrix switch is shown in

Figure 51. Since HDMI, DVI, and DisplayPort are quad lane protocols, four ADN4604s are used to create a full 16×16 matrix switch. Smaller arrays, such as 4×4 and 8×8, require one and two ADN4604 devices, respectively. Proper high speed PCB design techniques should be used to maintain the signal integrity of the high data rate signals. It is important to minimize the lane-to-lane skew and crosstalk in these applications.

Figure 51. ADN4604 Digital Video (DVI, HDMI, DisplayPort) Matrix Switch Block Diagram

Figure 52. ADN4604 Networking Switch Application Block Diagram

Figure 53. Multi-Lane Signal Conditioning Application Diagram

ADN4604

SUPPLY SEQUENCING

Ideally, all power supplies should be brought up to the appropriate levels simultaneously (power supply requirements are set by the supply limits in Table 1 and the absolute maximum ratings listed in Table 4). If the power supplies to the ADN4604 are brought up separately, the supply power-up sequence is as follows: $D V_{C C}$ powered first, followed by V_{CC}, and, last the termination supplies ($\mathrm{V}_{\text {titie }}, \mathrm{V}_{\text {ttiw }}, \mathrm{V}_{\text {tton }}$, and $\mathrm{V}_{\text {ttos }}$). The power-down sequence is reversed with termination supplies being powered off first. The termination supplies contain ESD protection diodes to the VCC power domain. To avoid a sustained high current condition in these devices ($\mathrm{I}_{\text {sustained }}<100 \mathrm{~mA}$), the $\mathrm{V}_{\text {тTI }}$ and $\mathrm{V}_{\text {тто }}$ supplies should be powered on after V_{CC} and should be powered off before V_{cc}.
If the system power supplies have a high impedance in the powered off state, then supply sequencing is not required provided the following limits are observed:

- Peak current from $V_{\text {TTIx }}$ or $V_{\text {TTox }}$ to $V_{C C}<200 \mathrm{~mA}$
- Sustained current from $\mathrm{V}_{\text {TTix }}$ or $\mathrm{V}_{\text {TTox }}$ to $\mathrm{V}_{\mathrm{CC}}<100 \mathrm{~mA}$

POWER DISSIPATION

The power dissipation of the ADN4604 depends on the supply voltages, I/O coupling type, and device configuration. The input termination resistors dissipate power depending on the differential input swing and common-mode voltage. When accoupled, the common-mode voltage is equal to the termination supply voltage ($\mathrm{V}_{\text {TtiE }}$ or $\mathrm{V}_{\text {Ttiw }}$). While the current drawn from the input termination supply is effectively zero, there is still power and heat dissipated in the termination resistors as a result of the differential signal swing. The core supply current and output termination current are strongly dependent on device configuration, such as the number of channels enabled, output level setting, and output preemphasis setting.
In high ambient temperature operating conditions, it is important to avoid exceeding the maximum junction temperature of the device. Limiting the total power dissipation can be achieved by the following:

- Reducing the output swing
- Reducing the preemphasis level
- Decreasing the supply voltages within the allowable ranges defined in Table 1
- Disabling unused channels

Alternatively, the thermal resistance can be reduced by

- Adding an external heat-sink
- Increasing the airflow

Refer to the Printed Circuit Board (PCB) Layout Guidelines section for recommendations for proper thermal stencil layout and fabrication.

OUTPUT COMPLIANCE

In low voltage applications, users must pay careful attention to both the differential and common-mode signal level. The choice of output voltage swing, preemphasis setting, supply voltages (V_{CC} and $\mathrm{V}_{\text {тто }}$), and output coupling (ac or dc) affect peak and settled single-ended voltage swings and the commonmode shift measured across the output termination resistors. These choices also affect output current and, consequently, power consumption. Table 19 shows the change in output common mode ($\Delta \mathrm{V}_{\text {OCM }}=\mathrm{V}_{\text {CC }}-\mathrm{V}_{\text {осм }}$) with output level and preemphasis setting. Single-ended output levels are calculated for $\mathrm{V}_{\text {тто }}$ supplies of 3.3 V and 2.5 V to illustrate practical challenges of reducing the supply voltage. The minimum $V_{L}(\min$ V_{L}) cannot be below the absolute minimum level specified in Table 1. The combinations of output level, preemphasis, supply voltage, and output coupling for which the minimum V_{L} specification is violated are listed as N/A in Table 1.
Since the absolute minimum output voltage specified in Table 1 is relative to V_{CC}, decreasing V_{CC} is required to maintain the output levels within the specified limits when lower output termination voltages are required. $\mathrm{V}_{\text {тто }}$ voltages as low as 1.8 V are allowable for output swings less than or equal to 400 mV (single-ended). Figure 54 illustrates an application where the ADN4604 is used as a dc-coupled level translator to interface a 3.3 V CML driver to an ASIC with 1.8 V I/Os. The diode in series with V_{CC} reduces the voltage at V_{CC} for improved output compliance.

Figure 54. DC-Coupled Level Translator Application Circuit

Table 19. Output Voltage Range and Output Common-Mode Shift vs. Output Level and PE Setting

Single-Ended Output Levels and PE Boost				Register Settings		Output Current Itто 1 (mA)	AC-Coupled Outputs					DC-Coupled Outputs					
					$\mathrm{V}_{\mathrm{cc}}=\mathrm{V}_{\text {то }}=3.3 \mathrm{~V}$		$\begin{aligned} & \mathbf{V}_{\mathrm{cc}}=2.7 \mathrm{~V} \\ & \mathbf{V}_{\text {тTO }}=2.5 \mathrm{~V} \\ & \hline \end{aligned}$			$\mathrm{V}_{\text {cc }}=\mathrm{V}_{\text {tro }}=3.3 \mathrm{~V}$		$\begin{aligned} & V_{\mathrm{cC}}=2.7 \mathrm{~V} \\ & \mathrm{~V}_{\text {TTO }}=2.5 \mathrm{~V} \end{aligned}$					
$\begin{aligned} & V_{\text {Sw-DC }}{ }^{1} \\ & (\mathrm{mV}) \end{aligned}$	$\mathbf{V}_{\text {sw-PE }}{ }^{1}$ (mV)	PE Boost \%	PE (dB)			TX Drive 0	TX Drive 1	$\Delta \mathbf{V o c m}^{1}$ (mV)	$\begin{array}{\|l} \hline \mathbf{V}_{\mathrm{H}-\mathrm{PE}}{ }^{1} \\ \mathbf{(V)} \\ \hline \end{array}$	$\begin{aligned} & \begin{array}{l} \mathbf{V}_{\text {LPEE }}{ }^{1} \\ (\mathbf{V}) \end{array} \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline \mathbf{V}_{\mathrm{H}-\mathrm{PE}}{ }^{1} \\ \text { (V) } \\ \hline \end{array}$	$\begin{array}{\|l} \hline \mathbf{V}_{\mathrm{L}-\mathrm{PE}}{ }^{1} \\ \mathbf{(\mathbf { V })} \\ \hline \end{array}$	$\begin{aligned} & \Delta V_{o c m}^{1} \\ & (\mathrm{mV}) \end{aligned}$	$\begin{array}{\|l\|l\|} \hline \mathbf{V}_{\mathrm{H}-\mathrm{DC}}{ }^{1} \\ \mathrm{(V)} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \mathbf{V}_{\text {L-dc }}{ }^{1} \\ (\mathbf{V}) \\ \hline \end{array}$	$\begin{array}{\|l} \hline \mathbf{V}_{\mathrm{H}-\mathrm{PE}}{ }^{1} \\ \mathbf{(V)} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \mathbf{V}_{\text {L-PE }}{ }^{1} \\ \mathbf{(V)} \\ \hline \end{array}$
100	100	0.00	0.00	0x99	0x00		4	100	3.25	3.15	2.45	2.35	50	3.3	3.2	2.5	2.4
100	150	50.00	3.52	0x99	0x88		6	150	3.225	3.075	2.425	2.275	75	3.3	3.15	2.5	2.35
100	200	100.00	6.02	0x99	0x99	8	200	3.2	3	2.4	2.2	100	3.3	3.1	2.5	2.3	
100	250	150.00	7.96	0x99	0xAA	10	250	3.175	2.925	2.375	2.125	125	3.3	3.05	2.5	2.25	
100	300	200.00	9.54	0x99	0xBB	12	300	3.15	2.85	2.35	2.05	150	3.3	3	2.5	2.2	
100	350	250.00	10.88	0x99	0xCC	14	350	3.125	2.775	2.325	1.975	175	3.3	2.95	2.5	2.15	
100	400	300.00	12.04	0x99	0xDD	16	400	3.1	2.7	2.3	1.9	200	3.3	2.9	2.5	2.1	
100	450	350.00	13.06	0x99	OxEE	18	450	3.075	2.625	2.275	1.825	225	3.3	2.85	2.5	2.05	
100	500	400.00	13.98	0x99	0xFF	20	500	3.05	2.55	2.25	1.75	250	3.3	2.8	2.5	2	
200	200	0.00	0.00	0xBB	0x00	8	200	3.2	3	2.4	2.2	100	3.3	3.1	2.5	2.3	
200	250	25.00	1.94	$0 \times B B$	0x88	10	250	3.175	2.925	2.375	2.125	125	3.3	3.05	2.5	2.25	
200	300	50.00	3.52	$0 \times B B$	0x99	12	300	3.15	2.85	2.35	2.05	150	3.3	3	2.5	2.2	
200	350	75.00	4.86	$0 \times B B$	0xAA	14	350	3.125	2.775	2.325	1.975	175	3.3	2.95	2.5	2.15	
200	400	100.00	6.02	$0 \times B B$	0xBB	16	400	3.1	2.7	2.3	1.9	200	3.3	2.9	2.5	2.1	
200	450	125.00	7.04	$0 \times B B$	0xCC	18	450	3.075	2.625	2.275	1.825	225	3.3	2.85	2.5	2.05	
200	500	150.00	7.96	$0 \times B B$	0xDD	20	500	3.05	2.55	2.25	1.75	250	3.3	2.8	2.5	2	
200	550	175.00	8.79	$0 \times B B$	OxEE	22	550	3.025	2.475	2.225	1.675	275	3.3	2.75	2.5	1.95	
200	600	200.00	9.54	$0 \times B B$	0xFF	24	600	3	2.4	2.2	1.6	300	3.3	2.7	2.5	1.9	
300	300	0.00	0.00	0xDD	0x00	12	300	3.15	2.85	2.35	2.05	150	3.3	3	2.5	2.2	
300	350	16.67	1.34	$0 x D D$	0x88	14	350	3.125	2.775	2.325	1.975	175	3.3	2.95	2.5	2.15	
300	400	33.33	2.50	0xDD	0x99	16	400	3.1	2.7	2.3	1.9	200	3.3	2.9	2.5	2.1	
300	450	50.00	3.52	$0 x D D$	0xAA	18	450	3.075	2.625	2.275	1.825	225	3.3	2.85	2.5	2.05	
300	500	66.67	4.44	$0 \times D D$	0xBB	20	500	3.05	2.55	2.25	1.75	250	3.3	2.8	2.5	2	
300	550	83.33	5.26	0xDD	0xCC	22	550	3.025	2.475	2.225	1.675	275	3.3	2.75	2.5	1.95	
300	600	100.00	6.02	$0 x D D$	0xDD	24	600	3	2.4	2.2	1.6	300	3.3	2.7	2.5	1.9	
300	650	116.67	6.72	0xDD	OxEE	26	650	2.975	2.325	2.175	1.525	325	3.3	2.65	2.5	1.85	
300	700	133.33	7.36	0xDD	0xFF	28	700	2.95	2.25	2.15	1.45	350	3.3	2.6	2.5	1.8	
400	400	0.00	0.00	0xFF	0x00	16	400	3.1	2.7	2.3	1.9	200	3.3	2.9	2.5	2.1	
400	450	12.50	1.02	0xFF	0x88	18	450	3.075	2.625	2.275	1.825	225	3.3	2.85	2.5	2.05	
400	500	25.00	1.94	0xFF	0x99	20	500	3.05	2.55	2.25	1.75	250	3.3	2.8	2.5	2	
400	550	37.50	2.77	0xFF	0xAA	22	550	3.025	2.475	2.225	1.675	275	3.3	2.75	2.5	1.95	
400	600	50.00	3.52	0xFF	0xBB	24	600	3	2.4	2.2	1.6	300	3.3	2.7	2.5	1.9	
400	650	62.50	4.22	0xFF	0xCC	26	650	2.975	2.325	2.175	1.525	325	3.3	2.65	2.5	1.85	
400	700	75.00	4.86	0xFF	0xDD	28	700	2.95	2.25	2.15	1.45	350	3.3	2.6	2.5	1.8	
400	750	87.50	5.46	0xFF	0xEE	30	750	2.925	2.175	N/A ${ }^{2}$	N/A ${ }^{2}$	375	3.3	2.55	2.5	1.75	
400	800	100.00	6.02	0xFF	0xFF	32	800	2.9	2.1	N/A ${ }^{2}$	N/A ${ }^{2}$	400	3.3	2.5	2.5	1.7	
450	450	0.00	0.00	0xFF	0x09	18	450	3.075	2.625	2.275	1.825	225	3.3	2.85	2.5	2.05	
450	650	44.44	3.19	0xFF	0xBD	26	650	2.975	2.325	2.175	1.525	325	3.3	2.65	2.5	1.85	
500	500	0.00	0.00	0xFF	OxOB	20	500	3.05	2.55	N/A ${ }^{2}$	N/A ${ }^{2}$	250	3.3	2.8	2.5	2	
500	700	40.00	2.92	0xFF	0xBF	28	700	2.95	2.25	2.15	1.45	350	3.3	2.6	2.5	1.8	
550	550	0.00	0.00	0xFF	0x0D	22	550	3.025	2.475	2.225	1.675	275	3.3	2.75	2.5	1.95	
550	650	18.18	1.45	0xFF	0x9F	26	650	2.975	2.325	2.175	1.525	325	3.3	2.65	2.5	1.85	
600	600	0.00	0.00	0xFF	0x0F	24	600	3	2.4	N/A ${ }^{2}$	N/A ${ }^{2}$	300	3.3	2.7	2.5	1.9	

[^2]
ADN4604

PRINTED CIRCUIT BOARD (PCB) LAYOUT GUIDELINES

The high speed differential inputs and outputs should be routed with 100Ω controlled impedance differential transmission lines. The transmission lines, either microstrip or stripline, should be referenced to a solid low impedance reference plane. An example of a PCB cross-section is shown in Figure 55. The trace width (W), differential spacing (S), height above reference plane (H), and dielectric constant of the PCB material determine the characteristic impedance. Adjacent channels should be kept apart by a distance greater than 3 W to minimize crosstalk.

Figure 55. Example of a PCB Cross-Section

Thermal Paddle Design

The TQFP is designed with an exposed thermal paddle to conduct heat away from the package and into the PCB. By incorporating thermal vias into the PCB thermal paddle, heat is dissipated more effectively into the inner metal layers of the PCB. To ensure device performance at elevated temperatures, it is important to have a sufficient number of thermal vias incorporated into the design. An insufficient number of thermal vias results in a θ_{JA} value larger than specified in Table 1.
It is recommended that a via array of 4×4 or 5×5 with a diameter of 0.3 mm to 0.33 mm be used to set a pitch between 1.0 mm and 1.2 mm . A representative of these arrays is shown in Figure 56.

Figure 56. PCB Thermal Paddle and Via

Stencil Design for the Thermal Paddle

To effectively remove heat from the package and to enhance electrical performance, the thermal paddle must be soldered (bonded) to the PCB thermal paddle, preferably with minimum voids. However, eliminating voids may not be possible because of the presence of thermal vias and the large size of the thermal paddle for larger size packages. Also, outgassing during the reflow process may cause defects (splatter, solder balling) if the solder paste coverage is too big.
It is recommended that smaller multiple openings in the stencil be used instead of one big opening for printing solder paste on the thermal paddle region. This typically results in 50% to 80% solder paste coverage. Figure 57 shows how to achieve these levels of coverage.

Voids within solder joints under the exposed paddle can have an adverse affect on high speed and RF applications, as well as on thermal performance. Because the package incorporates a large center paddle, controlling solder voiding within this region can be difficult. Voids within this ground plane can increase the current path of the circuit. The maximum size for a void should be less than via pitch within the plane. This assures that any one via is not rendered ineffectual when any void increases the current path beyond the distance to the next available via.

Figure 57. Typical Thermal Paddle Stencil Design

Large voids in the thermal paddle area should be avoided. To control voids in the thermal paddle area, solder masking may be required for thermal vias to prevent solder wicking inside the via during reflow, thus displacing the solder away from the interface between the package thermal paddle and thermal paddle land on the PCB. There are several methods employed for this purpose, such as via tenting (top or bottom side), using dry film solder mask; via plugging with liquid photo-imagible (LPI) solder mask from the bottom side; or via encroaching. These options are depicted in Figure 58. In case of via tenting, the solder mask diameter should be 100 microns larger than the via diameter.

Figure 58. Solder Mask Options for Thermal Vias: (A) Via Tenting from the Top; (B) Via Tenting from the Bottom; (C) Via Plugging, Bottom; and (D) Via Encroaching, Bottom

ADN4604

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MS-026-AED-HD

Figure 59. 100-Lead Thin Quad Flat Package, Exposed Pad [TQFP_EP]
(SV-100-1)
Dimensions shown in millimeters

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option	Ordering Quantity
ADN4604ASVZ ${ }^{1}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	100 -Lead Thin Quad Flat Package [TQFP_EP]	SV-100-1	
ADN4604ASVZ-RL 1	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$100-$ Lead Thin Quad Flat Package [TQFP_EP],	SV-100-1	1000
		$13^{\prime \prime}$ Tape \& Reel		
ADN4604-EVALZ 1		Evaluation Board		

[^3]NOTES

ADN4604

NOTES

[^0]: ${ }^{1}$ Internal power dissipation is for the device in free air.
 $\mathrm{T}_{\mathrm{A}}=27^{\circ} \mathrm{C} ; \theta_{\mathrm{JA}}=24.9^{\circ} \mathrm{C} / \mathrm{W}$ in still air.

[^1]: ${ }^{1}$ Symbol definitions are shown in Table 14.

[^2]: ${ }^{1}$ Symbol definitions are shown in Table 14.
 ${ }^{2}$ This setting is not allowed when ac-coupled with $\mathrm{V}_{c \mathrm{Cc}}=2.7 \mathrm{~V}$ and $\mathrm{V}_{\text {TоN }}=2.5 \mathrm{~V}$ or $\mathrm{V}_{\text {Tоs }}=2.5 \mathrm{~V}$.

[^3]: ${ }^{1} Z=$ RoHS Compliant Part.

