



# Praetorian® L-C LCD and Camera EMI Filter Array with ESD Protection

# CM2006

#### Features

- Includes ESD protection, level-shifting, buffering and sync impedance matching
- VESA VSIS Version 1 Revision 2 compatible interface
- Supports optional NAVI signalling requirements
- 7 channels of ESD protection for all VGA port connector pins. All pins meet IEC-61000-4-2 Level 4 ESD requirements (±8kV contact discharge)
- Very low loading capacitance from ESD protection diodes on VIDEO lines (3pF maximum)
- Schmitt-triggered input buffers for HSYNC and VSYNC lines
- Bidirectional level shifting N-channel FETs provided for DDC\_CLK and DDC\_DATA channels
- Backdrive protection on all lines
- Compact 16-lead QSOP package
- RoHS-compliant, lead-free finishing

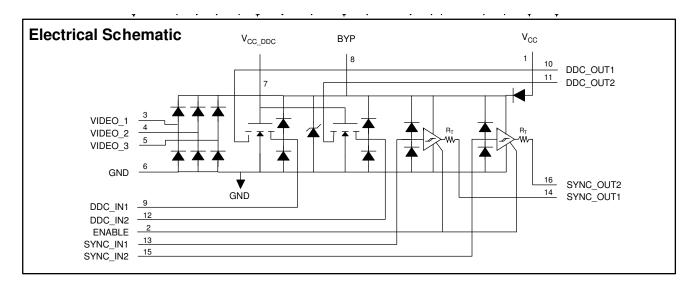
#### Applications

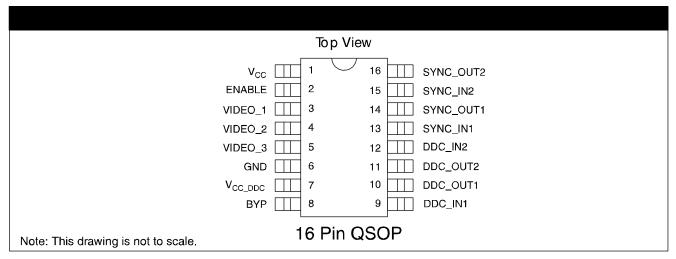
VGA and DVI-I ports in:

- Monitors
- TVs

#### **Product Description**

The CM2006 connects between the VGA or DVI-I port connector and the internal analog or digital flat panel controller logic. The CM2006 incorporates ESD protection for all signals, level shifting for the DDC signals and buffering for the SYNC signals. ESD protection for the video, DDC and SYNC lines is implemented with low-capacitance current steering diodes.


All connector interface pins are designed to safely handle the high current spikes specified by IEC-61000-4-2 Level 4 ( $\pm$ 8kV contact discharge). The ESD protection for the DDC, SYNC and VIDEO signal pins is designed to prevent "backdrive current" when the device is powered down while connected to a video source that is powered up.


Separate positive supply rails are provided for the VIDEO / SYNC signals and DDC signals to facilitate interfacing with low voltage video controller ICs and microcontrollers to provide design flexibility in multi-supply-voltage environments.

Two Schmitt-triggered non-inverting buffers redrive and condition the HSYNC and VSYNC signals from the video connector (SYNC1, SYNC2). These buffers accept VESA VSIS compliant TTL input signals and convert them to CMOS output levels that swing between ground and  $V_{cc}$ 

Two N-channel MOSFETs provide the level shifting function required when the DDC controller or EDID EEPROM is operated at a lower supply voltage than the monitor. The gate terminals for these MOSFETS ( $V_{CC_DDC}$ ) should be connected to the supply rail (typically 3.3V, 2.5V etc.) that supplies power to the transceivers of the DDC controller.

The CM1693 is housed in space saving, low profile, 0.40mm pitch uDFN packages in a RoHS compliant, lead-free format.





# CM2006

| PIN DESCRIPTIONS |                 |                                                                                                                                               |  |  |  |  |
|------------------|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| LEAD(s)          | NAME            | DESCRIPTION                                                                                                                                   |  |  |  |  |
| 1                | V <sub>cc</sub> | This is a supply input for the SYNC_1 and SYNC_2 level shifters, video protection and the DDC circuits.                                       |  |  |  |  |
| 2                | ENABLE          | Active high enable. Disables the Sync buffer outputs when low.                                                                                |  |  |  |  |
| 3                | VIDEO_1         | Video signal ESD protection channel. This pin is typically tied one of the video lines between the controller device and the video connector. |  |  |  |  |
| 4                | VIDEO_2         | Video signal ESD protection channel. This pin is typically tied one of the video lines between the controller device and the video connector. |  |  |  |  |
| 5                | VIDEO_3         | Video signal ESD protection channel. This pin is typically tied one of the video lines between the controller device and the video connector. |  |  |  |  |
| 6                | GND             | Ground reference supply pin.                                                                                                                  |  |  |  |  |
| 7                | $V_{CC\_DDC}$   | This is an isolated supply input for the DDC_1 and DDC_2 level-shifting N-FET gates.                                                          |  |  |  |  |
| 8                | BYP             | An external 0.22uF bypass capacitor is required on this pin.                                                                                  |  |  |  |  |
| 9                | DDC_IN1         | DDC signal input. Connects to the video connector side of one of the DDC lines.signal output.                                                 |  |  |  |  |
| 10               | DDC_OUT1        | DDC signal output. Connects to the monitor DDC logic.                                                                                         |  |  |  |  |
| 11               | DDC_OUT         | DDC signal output. Connects to the monitor DDC logic.                                                                                         |  |  |  |  |
| 12               | DDC_IN2         | DDC signal input. Connects to the video connector side of one of the DDC lines                                                                |  |  |  |  |
| 13               | SYNC_IN1        | Sync signal buffer input. Connects to the video connector side of one of the sync lines.                                                      |  |  |  |  |
| 14               | SYNC_OUT1       | Sync signal buffer output. Connects to the monitor SYNC logic.                                                                                |  |  |  |  |
| 15               | SYNC_IN2        | Sync signal buffer input. Connects to the video connector side of one of the sync lines.                                                      |  |  |  |  |
| 16               | SYNC_OUT2       | Sync signal buffer output. Connects to the monitor SYNC logic.                                                                                |  |  |  |  |

### **Ordering Information**

| PART NUMBERING INFORMATION |         |                                   |              |  |  |  |
|----------------------------|---------|-----------------------------------|--------------|--|--|--|
| Pins                       | Package | Ordering Part Number <sup>1</sup> | Part Marking |  |  |  |
| 16                         | QSOP    | CM2006-02QR                       | CM2006-02QR  |  |  |  |

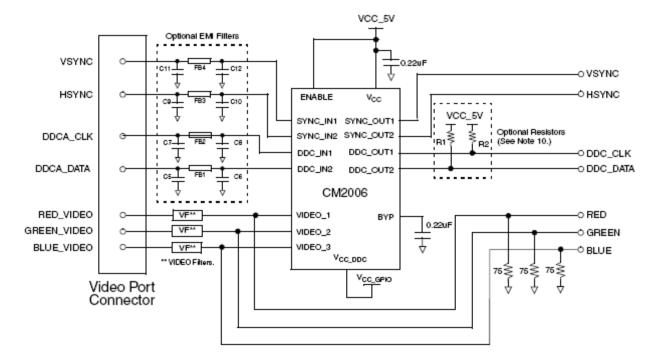
Note 1: Parts are shipped in Tape and Reel form unless otherwise specified.

## Specifications

| ABSOLUTE MAXIMUM RATINGS                                                                                                  |                                                                                                                              |                  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|------------------|--|--|--|
| PARAMETER                                                                                                                 | RATING                                                                                                                       | UNITS            |  |  |  |
| $V_{_{CC\_DDC}}$ and $V_{_{CC}}$ Supply Voltage Inputs                                                                    | [GND - 0.5] to +6.0                                                                                                          | V                |  |  |  |
| DC Voltage at Inputs<br>VIDEO_1, VIDEO_2, VIDEO_3<br>DDC_IN1, DDC_IN2<br>DDC_OUT1, DDC_OUT2<br>SYNC_IN1, SYNC_IN2, ENABLE | [GND - 0.5] to [V <sub>cc</sub> + 0.5]<br>[GND - 0.5] to 6.0<br>[GND - 0.5] to 6.0<br>[GND - 0.5] to [V <sub>cc</sub> + 0.5] | V<br>V<br>V<br>V |  |  |  |
| Operating Temperature Range                                                                                               | -40 to +85                                                                                                                   | °C               |  |  |  |
| Storage Temperature Range                                                                                                 | -40 to +150                                                                                                                  | °C               |  |  |  |
| Package Power Rating (T <sub>A</sub> =25℃)                                                                                | 500                                                                                                                          | mW               |  |  |  |

#### STANDARD OPERATING CONDITIONS

| PARAMETER                   | RATING     | UNITS |
|-----------------------------|------------|-------|
| Operating Temperature Range | -40 to +85 | S     |
| V <sub>cc</sub>             | 5          | V     |


| ELECTRICAL OPERATING CHARACTERISTICS (SEE NOTE 1) |                                                             |                                                                                                                          |     |     |      |       |  |  |
|---------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-----|-----|------|-------|--|--|
| SYMBOL                                            | PARAMETER                                                   | CONDITIONS                                                                                                               | MIN | ТҮР | МАХ  | UNITS |  |  |
|                                                   | V <sub>CC DDC</sub> Supply Current                          | $V_{cc\_DDC} = 5.0V$                                                                                                     |     |     | 10   | μA    |  |  |
| I <sub>cc</sub>                                   | $V_{cc}$ Supply Current                                     | $V_{cc}$ = 5V; SYNC inputs at GND or $V_{cc}$ ; SYNC outputs unloaded                                                    |     |     | 1    | mA    |  |  |
|                                                   |                                                             | $V_{cc}$ = 5V; SYNC inputs at 3.0V;<br>SYNC outputs unloaded                                                             |     |     | 2.0  | mA    |  |  |
| V <sub>F</sub>                                    | ESD Diode Forward Voltage                                   | I <sub>F</sub> = 10mA                                                                                                    |     |     | 1.0  | V     |  |  |
| V <sub>IH</sub>                                   | Logic High Input Voltage                                    | V <sub>cc</sub> = 5.0V; Note 2                                                                                           | 2.0 |     |      | V     |  |  |
| V <sub>IL</sub>                                   | Logic Low Input Voltage                                     | V <sub>cc</sub> = 5.0V; Note 2                                                                                           |     |     | 0.5  | V     |  |  |
| V <sub>HYS</sub>                                  | Hysteresis Voltage                                          | V <sub>cc</sub> = 5.0V; Note 2                                                                                           |     | 400 |      | mV    |  |  |
| V <sub>OH</sub>                                   | Logic High Output Voltage                                   | I <sub>OH</sub> = 0mA, V <sub>cc</sub> = 5.0V; Note 2                                                                    | 4.0 |     |      | V     |  |  |
| V <sub>ol</sub>                                   | Logic Low Output Voltage                                    | I <sub>oL</sub> = 0mA, V <sub>cc</sub> = 5.0V; Note 2                                                                    |     |     | 0.15 | V     |  |  |
| R <sub>out</sub>                                  | SYNC Driver Output Resistance                               | V <sub>cc</sub> = 5.0V; SYNC Inputs at GND or 3.0V                                                                       | 7   | 15  | 24   | Ω     |  |  |
| I <sub>IN</sub>                                   | Input Current<br>VIDEO Inputs                               | $V_{cc} = 5.0V; V_{IN} = V_{cc} \text{ or } GND$                                                                         |     |     | ±10  | μA    |  |  |
|                                                   | SYNC_IN1, SYNC_IN2 Inputs                                   | $V_{cc} = 5.0V; V_{iN} = V_{cc} \text{ or } GND$                                                                         |     |     | ±10  | μA    |  |  |
| I <sub>OFF</sub>                                  | Level Shifting N-MOSFET "OFF" State                         | $(V_{\text{CC}\_\text{DDC}} - V_{\text{DDC}\_\text{IN}})$ 0.4V; $V_{\text{DDC}\_\text{OUT}} = V_{\text{CC}\_\text{DDC}}$ |     |     | 10   | μA    |  |  |
|                                                   | Leakage Current                                             | $(V_{\text{CC}\_\text{DDC}} - V_{\text{DDC}\_\text{OUT}})$ 0.4V; $V_{\text{DDC}\_\text{IN}} = V_{\text{CC}\_\text{DDC}}$ |     |     | 10   | μA    |  |  |
| BACKDRIVE                                         | Current conducted from input pins when Vcc is powered down. | V <sub>cc</sub> < V <sub>INPUT_PIN</sub> , Note 5                                                                        |     | 10  |      | μΑ    |  |  |
| V <sub>on</sub>                                   | Voltage Drop Across Level-shifting<br>N-MOSFET when "ON"    | $V_{_{CC\_DDC}} = 2.5V; V_{_{S}} = GND; I_{_{DS}} = 3mA;$                                                                |     |     | 0.18 | V     |  |  |
| $\mathbf{C}_{IN\_VID}$                            | VIDEO Input Capacitance                                     | $V_{cc} = 5.0V; V_{iN} = 2.5V; f = 1MHz$                                                                                 |     |     | 3    | pF    |  |  |
|                                                   |                                                             | V <sub>cc</sub> = 2.5V; V <sub>IN</sub> = 1.25V; f = 1MHz                                                                |     |     | 3.5  | pF    |  |  |
| t <sub>PLH</sub>                                  | SYNC Driver L => H Propagation Delay                        | $C_{L} = 50 pF; V_{cc} = 5.0V; Input t_{R} and t_{F} 5ns$                                                                |     |     | 12   | ns    |  |  |
| t <sub>PHL</sub>                                  | SYNC Driver H => L Propagation Delay                        | $C_{_L}$ = 50pF; $V_{_{CC}}$ = 5.0V; Input $t_{_{\rm P}}$ and $t_{_{\rm F}}$ 5ns                                         |     |     | 12   | ns    |  |  |
| t <sub>r,</sub> t <sub>r</sub>                    | SYNC Driver Output Rise & Fall Times                        | $C_{_L}$ = 50pF; $V_{_{CC}}$ = 5.0V; Input $t_{_R}$ and $t_{_F}$ 5ns                                                     |     | 3   |      | ns    |  |  |
| $V_{\scriptscriptstyle ESD1}$                     | ESD Withstand Voltage, Sync_out pins only                   | $V_{cc} = 5V$ ; Notes 3 and 4                                                                                            | ±2  |     |      | kV    |  |  |
| $V_{\text{ESD}}$                                  | ESD Withstand Voltage                                       | $V_{cc} = 5V$ ; Notes 3 and 5                                                                                            | ±8  |     |      | kV    |  |  |

Note 1: All parameters specified over standard operating conditions unless otherwise noted.

Note 2: These parameters apply only to the SYNC drivers. Note that  $R_{out} = R_{T} + R_{BUFFER}$ .

- Note 3: Per the IEC-61000-4-2 International ESD Standard, Level 4 contact discharge method. BYP and V<sub>cc</sub> must be bypassed to GND via a low impedance ground plane with a 0.22μF, low inductance, chip ceramic capacitor at each supply pin. ESD pulse is applied between the applicable pins and GND. ESD pulses can be positive or negative with respect to GND. Applicable pins are: VIDEO\_1, VIDEO\_2, VIDEO\_3, SYNC\_IN1, SYNC\_IN2, DDC\_IN1 and DDC\_IN2. All pins are ESD protected to the industry standard ±2kV Human Body Model (MIL-STD-883, Method 3015).
- Note 4: This specification applies to the SYNC\_OUT pins only.

Note 5: Applicable pins are: VIDEO\_1, VIDEO\_2, VIDEO\_3, SYNC\_IN1, SYNC\_IN2, DDC\_IN1 and DDC\_IN2.



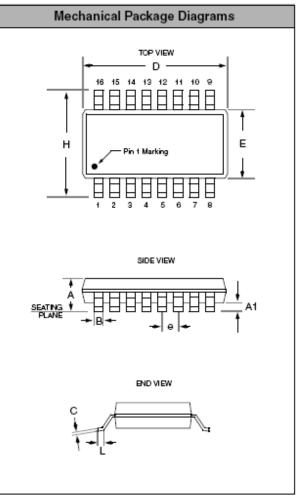
#### **Application Information**

Figure 1. Typical Application Connection Diagram

#### NOTES

- 1 The CM2006 should be placed as close to the VGA or DVI-I connector as possible.
- 2 The ESD protection channels VIDEO\_1, VIDEO\_2, VIDEO\_3 may be used interchangeably between the R, G, B signals.
- 3 If differential video signal routing is used, the RED, BLUE, and GREEN signal lines should be terminated with external 37.5 ohm resistors.
- 4 "VF" are external video filters for the RGB signals.
- 5 Supply bypass capacitors C1 and C2 must be placed immediately adjacent to the corresponding Vcc pins. Connections to the Vcc pins and ground plane must be made with minimal length copper traces (preferably less than 5mm) for best ESD protection.
- 6 The bypass capacitor for the BYP pin has been omitted in this diagram. This results in a reduction in the maximum ESD withstand voltage at the DDC\_OUT pins from ±8kV to ±2kV. If 8kV ESD protection is required, a 0.22μF ceramic bypass capacitor should be connected between BYP and ground.
- 7 The SYNC buffers may be used interchangeably between HSYNC and VSYNC.
- 8 The EMI filters at the SYNC\_OUT and DDC\_OUT pins (C5 to C12, and Ferrite Beads FB1 to FB4) are for reference only. The component values and filter configuration may be changed to suit the application.
- 9 The DDC level shifters DDC\_IN, DDC\_OUT, may be used interchangeably between DDCA\_CLK and DDCA\_DATA.
- 10 R1, R2 are optional. They may be used, if required, to pull the DDC\_CLK and DDC\_DATA lines to VCC\_5V when no VGA card is connected to the VGA monitor. If used, it should be noted that "back current" may flow between the DDC pins and VCC\_5V via these resistors when VCC\_5V is powered down.

## CM2006


#### **Mechanical Details**

#### **QSOP Mechanical Specifications**

CM2006 devices are packaged in 16-pin QSOP packages. Dimensions are presented below.

| PACKAGE DIMENSIONS            |          |                           |           |       |  |  |  |
|-------------------------------|----------|---------------------------|-----------|-------|--|--|--|
| Package                       | QS       | QSOP (JEDEC name is SSOP) |           |       |  |  |  |
| Pins                          |          | 1                         | 16        |       |  |  |  |
| Dimensions                    | Millir   | neters                    | Inches    |       |  |  |  |
|                               | Min      | Max                       | Min       | Max   |  |  |  |
| Α                             | 1.35     | 1.75                      | 0.053     | 0.069 |  |  |  |
| A1                            | 0.10     | 0.25                      | 0.004     | 0.010 |  |  |  |
| В                             | 0.20     | 0.30                      | 0.008     | 0.012 |  |  |  |
| С                             | 0.18     | 0.25                      | 0.007     | 0.010 |  |  |  |
| D                             | 4.80     | 5.00                      | 0.189     | 0.197 |  |  |  |
| E                             | 3.81     | 3.98                      | 0.150     | 0.157 |  |  |  |
| е                             | 0.64     | BSC                       | 0.025 BSC |       |  |  |  |
| н                             | 5.79     | 6.19                      | 0.228     | 0.244 |  |  |  |
| L                             | 0.40     | 1.27                      | 0.016     | 0.050 |  |  |  |
| # per tube                    | 100 pcs* |                           |           |       |  |  |  |
| # per tape<br>and reel        | 2500 pcs |                           |           |       |  |  |  |
| Controlling dimension: inches |          |                           |           |       |  |  |  |


\* This is an approximate number which may vary.



Package Dimensions for QSOP-16

#### **Tape and Reel Specifications**

| PART NUMBER | PACKAGE SIZE<br>(mm) | POCKET SIZE (mm)<br>B <sub>o</sub> X A <sub>o</sub> X K <sub>o</sub> | TAPE WIDTH<br>W | REEL<br>DIAMETER | QTY PER<br>REEL | P₀  | P₁  |
|-------------|----------------------|----------------------------------------------------------------------|-----------------|------------------|-----------------|-----|-----|
| CM2006      | 4.90 X 3.89 X 1.55   | 5.30 X 6.50 X 2.10                                                   | 12mm            | 330mm (13")      | 2500            | 4mm | 8mm |



#### CM2006

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use thre specific regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

#### PUBLICATION ORDERING INFORMATION

#### LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative