

EFM32TG Reference Manual

"Tiny Gecko" Series

Preliminary

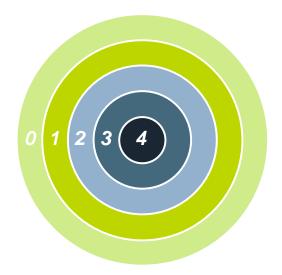
32-bit high performance at 8-bit ultra low power consumption and cost

- 32-bit ARM Cortex-M3 processor running at up to 32 MHz
- Up to 32 KB Flash and 4 KB RAM memory
- Energy efficient and fast autonomous peripherals
- Ultra low power Energy Modes

The EFM32TG microcontroller family revolutionizes the 8- to 32-bit market with a combination of unmatched performance and ultra low power consumption in both active- and sleep modes. EFM32TG devices consume as little as 180 μ A/MHz in run mode.

EFM32TG's low energy consumption outperforms any other available 8-, 16-, and 32-bit solution. The EFM32TG includes autonomous and very energy efficient peripherals, high overall chip- and analog integration, and the performance of the industry standard 32-bit ARM Cortex-M3 processor.

Innovative and ultra efficient low energy modes with sub μA operation further enhance EFM32TG's ultra low power behaviour and makes the EFM32TG microcontrollers perfect for long-lasting battery operated applications, adding decades to a system's battery lifetime.


1 Energy Friendly Microcontrollers

1.1 EFM32TG Typical Applications

The EFM32TG Tiny Gecko is the superior choice for demanding 8-, 16-, and 32-bit low energy applications. Portable and battery operated systems benefit from the 8-bit power consumption and cost combined with a high-performance 32-bit CPU. Based on the ARM Cortex-M3 processor the EFM32TG family is an excellent migration path for existing 8- or 16-bit embedded applications looking for future opportunities and enhanced energy budget without the cost penalty.

Ultra low energy EFM32TG Flash microcontrollers are perfect for:

- Portable battery applications
- · Long-life battery systems
- · Medical applications
- Energy metering
- · Climate monitoring
- · Home and building control
- · Industrial control and automation

1.2 EFM32TG Development

Because EFM32TG use the Cortex-M3 CPU, embedded designers benefit from a large existing ecosystem of industry standard development. The development suite spans the whole design process and includes powerful debug tools and some of the world's top brand compilers. Libraries with documentation and user examples shorten time from idea to market release.

The range of EFM32TG devices ensures easy migration and feature upgrade possibilities.

2 About This Document

This document contains reference material for the EFM32TG Tiny Gecko series of Microcontrollers. All modules and peripherals in the Tiny Gecko series devices are described in general terms. Not all modules are present in all devices and the feature set for each device might vary. Such differences, including pinout, are covered in the device-specific datasheets.

2.1 Conventions

Register Names

Register names are given with a module name prefix followed by the short register name:

TIMERn CTRL - Control Register

The "n" denotes the module number for modules which can exist in more than one instance.

Some registers are grouped which leads to a group name following the module prefix:

GPIO_Px_DOUT - Port Data Out Register

The "x" denotes the port instance (A,B,...)

Bit Fields

Registers contain one or more bit fields which can be 1 to 32 bits wide. Bit fields wider than 1 bit are given with start and stop bit (x:y).

Address

The address for each register can be found by adding the modules base address (found in Memory Map), with the offset address for the register (found in module Register Map).

Access Type

The register access types used in the register descriptions are explained in Table 2.1 (p. 3).

Table 2.1. Register Access Types

Access Type	Description
R	Read only. Writes are ignored
RW	Readable and writable
RW1	Readable and writable. Only writes to 1 have effect
W1	Read value undefined. Only writes to 1 have effect
W	Write only. Read value undefined.
RWH	Readable, writable and updated by hardware

Number format

0x prefix is used for hexadecimal numbers

0b prefix is used for binary numbers

Numbers without prefix are in decimal representation.

Reserved

Registers and bit fields marked with *reserved* are reserved for future use. These should be written to 0 unless otherwise stated in the Register Description. Reserved bits might be read as 1 in future devices.

Reset Value

The reset value denotes the value after reset.

Registers denoted with X have unknown value out of reset and need to be initialized before use. Note that read-modify-write operations on these registers before they are initialized results in undefined register values.

Pin Connections

Pin connections are given with a module prefix followed by a short pin name:

USn_TX (USART n TX pin)

The location for the pin names given in the module documentation can be found in the device-specific datasheet.

2.2 Related Documentation

Further documentation on the EFM32TG family and the ARM Cortex-M3 can be found at the Energy Micro and ARM web pages:

www.energymicro.com

www.arm.com

3 System Overview

3.1 Introduction

The EFM32 MCUs are the world's most energy friendly microcontrollers. With a unique combination of the powerful 32-bit ARM Cortex-M3, innovative low energy techniques, short wake-up time from energy saving modes, and a wide selection of peripherals, the EFM32TG microcontroller is well suited for any battery operated application as well as other systems requiring high performance and low-energy consumption, see Figure 3.1 (p. 7).

3.2 Features

ARM Cortex-M3 CPU platform

- High Performance 32-bit processor @ up to 32 MHz
- Wake-up Interrupt Controller

Flexible Energy Management System

- 20 nA @ 3 V Shutoff Mode
- 0.6 µA @ 3 V Stop Mode, including Power-on Reset, Brown-out Detector, RAM and CPU retention
- 0.9 μA @ 3 V Deep Sleep Mode, including Real Time Clock with 32.768 kHz oscillator, Power-on Reset, Brown-out Detector, RAM and CPU retention
- 45 µA/MHz @ 3 V Sleep Mode
- 180 µA/MHz @ 3 V Run Mode, with code executed from flash
- 32/16/8 KB Flash
- 4/2/1 KB RAM
- Up to 56 General Purpose I/O pins
 - · Configurable Push-pull, Open-drain, pull-up/down, input filter, drive strength
 - Configurable peripheral I/O locations
 - 16 asynchronous external interrupts
 - · Output state retention and wakeup from Shutoff Mode

• 8 Channel DMA Controller

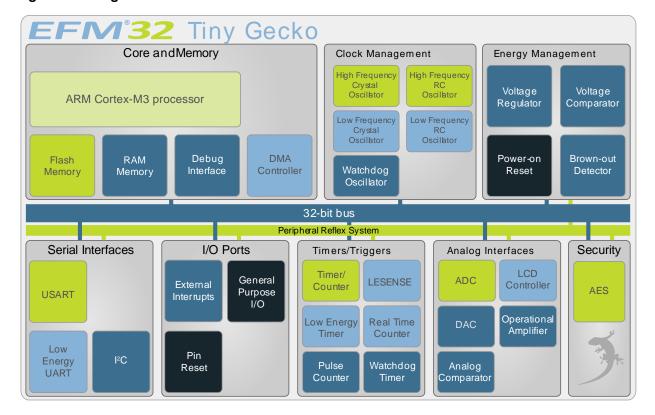
- · Alternate/primary descriptors with scatter-gather/ping-pong operation
- 8 Channel Peripheral Reflex System for autonomous inter-peripheral signaling
- Integrated LCD Controller for up to 8x20 segments
 - Voltage boost, adjustable contrast adjustment and autonomous animation feature
- Hardware AES with 128/256-bit keys in 54/75 cycles
- Communication interfaces
 - 2x Universal Synchronous/Asynchronous Receiver/Transmitter
 - SPI/SmartCard (ISO 7816)/IrDA (USART0)/I2S (USART1)
 - Triple buffered full/half-duplex operation
 - 4-16 data bits
 - 1x Low Energy UART
 - · Autonomous operation with DMA in Deep Sleep Mode
 - I²C Interface with SMBus support
 - · Address recognition in Stop Mode

Timers/Counters

- 2x 16-bit Timer/Counter
 - 3 Compare/Capture/PWM channels
 - Dead-Time Insertion on TIMER0
- 16-bit Low Energy Timer
- 24-bit Real-Time Counter
- 1x 16-bit Pulse Counter

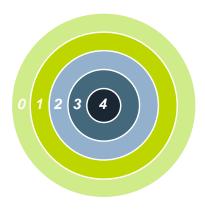
- Asynchronous pulse counting/quadrature decoding
- · Watchdog Timer with dedicated RC oscillator @ 50 nA

Ultra low power precision analog peripherals


- 12-bit 1 Msamples/s Analog to Digital Converter
 - · 8 input channels and on-chip temperature sensor
 - · Single ended or differential operation
 - Conversion tailgating for predictable latency
- 12-bit 500 ksamples/s Digital to Analog Converter
 - 2 single ended channels/1 differential channel
- · Up to 3 Operational Amplifiers
 - · Supports rail-to-rail inputs and outputs
 - Programmable gain
- 2x Analog Comparator
 - · Programmable speed/current
 - · Capacitive sensing with up to 8 inputs
- Supply Voltage Comparator
- Ultra low power sensor interface
 - · Autonomous sensor monitoring in Deep Sleep Mode
 - Wide range of sensors supported, including LC sensors and capacitive buttons
- Ultra efficient Power-on Reset and Brown-Out Detector
- 2-pin Serial Wire Debug interface
 - 1-pin Serial Wire Viewer
- Temperature range -40 85°C
- Single power supply 1.8 3.8 V
- Packages
 - QFN24
 - QFN32
 - QFN64

3.3 Block Diagram

A block diagram of EFM32TG is shown in Figure 3.1 (p. 7). The color indicates peripheral availability in energy modes as described in Section 3.4 (p. 7).


Figure 3.1. Diagram of EFM32TG

Note

In the block diagram, color indicates availability in different energy modes.

Figure 3.2. Energy Mode indicator

Note

In the energy mode indicator, the number n indicates Energy Mode n.

3.4 Energy Modes

There are five different Energy Modes (EM0-EM4) in the EFM32TG, see Table 3.1 (p. 8). The EFM32TG is designed to achieve a high degree of autonomous operation in low energy modes. The intelligent combination of peripherals, RAM with data retention, DMA, low-power oscillators and short wake-up times, makes it attractive to remain in low energy modes for long periods and thus saving energy consumption.

Tip

Throughout this document, the first figure in every module description contains an Energy Mode Indicator that shows in which energy mode(s) the module can operate (see Table 3.1 (p. 8)).

Table 3.1. Energy Mode Description

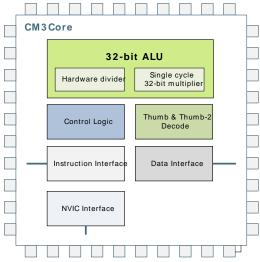
	,	
Energy Mode	Name	Description
0 1 2 3 4	EM0 – Energy Mode 0 (Run mode)	In EM0, the CPU is running and consuming as little as 180 µA/MHz, when running code from flash. All peripherals can also be activated.
0 1 2 3 4	EM1 – Energy Mode 1 (Sleep Mode)	In EM1, the CPU is sleeping and the power consumption is only 45 $\mu\text{A/MHz}$. The peripherals including, DMA, PRS and memory system is still available.
0 1 2 3 4	EM2 – Energy Mode 2 (Deep Sleep Mode)	In EM2 the high frequency oscillator is turned off, but with the 32.768 kHz oscillator running, selected low energy peripherals (LCD, RTC, LETIMER, PCNT, WDOG, LEUART, I ² C, ACMP, LESENSE, OPAMP) are still available, giving a high degree of autonomous operation with a current consumption as low as 0.9 µA with RTC enabled. Power-on Reset, Brown-out Detection and full RAM and CPU retention is also included.
0 1 2 3 4	EM3 - Energy Mode 3 (Stop Mode)	In EM3 the low-frequency oscillator is disabled, but there is still full CPU and RAM retention, as well as Power-on Reset, Pin reset EM4 wakeup and Brown-out Detector, with a consumption of only 0.6 µA. The low-power ACMP, asynchronous external interrupt, PCNT, and I ² C can wake-up the device. Even in this mode, the wake-up time is in the range of a few microseconds.
0 1 2 3 4	EM4 – Energy Mode 4 (Shutoff Mode)	In EM4, the current is down to 20 nA and all chip functionality is turned off except the pin reset , GPIO pin wake-up , GPIO pin retenetion and the power on reset. All pins are put into their reset state.

3.5 Product Overview

Table 3.2 (p. 9) shows a device overview of the EFM32TG Microcontroller Family, including peripheral functionality. For more information, the reader is referred to the device specific datasheets.

Downloaded from Houles com

Table 3.2. EFM32TG Microcontroller Family


EFM32TG Part #	Flash	RAM	GPIO(pins)	ГСД	USART	LEUART	l²c	Timer(PWM)	LETIMER	ктс	PCNT	Watchdog	ADC(pins)	DAC(pins)	ACMP(pins)	AES	HBI	LESENSE	Op-Amps	Package
108F4	4	1	17	-	1	1	1	2 (6)	1	1	1	1	-	-	2 (4)	-	-	Y	-	QFN24
108F8	8	2	17	-	1	1	1	2 (6)	1	1	1	1	-	-	2 (4)	-	-	Y	-	QFN24
108F16	16	4	17	-	1	1	1	2 (6)	1	1	1	1	-	-	2 (4)	-	-	Y	-	QFN24
108F32	32	4	17	-	1	1	1	2 (6)	1	1	1	1	-	-	2 (4)	-	-	Y	-	QFN24
110F4	4	1	17	-	1	1	1	2 (6)	1	1	1	1	1 (2)	2 (1)	2 (4)	Y	-	Y	Y	QFN24
110F8	8	2	17	-	1	1	1	2 (6)	1	1	1	1	1 (2)	2 (1)	2 (4)	Y	-	Y	Υ	QFN24
110F16	16	4	17	-	1	1	1	2 (6)	1	1	1	1	1 (2)	2 (1)	2 (4)	Y	-	Y	Y	QFN24
110F32	32	4	17	-	1	1	1	2 (6)	1	1	1	1	1 (2)	2 (1)	2 (4)	Y	-	Y	Y	QFN24
210F8	8	2	24	-	2	1	1	2 (6)	1	1	1	1	1 (4)	2 (1)	2 (5)	Y	-	Y	Y	QFN32
210F16	16	4	24	-	2	1	1	2 (6)	1	1	1	1	1 (4)	2 (1)	2 (5)	Y	-	Y	Y	QFN32
210F32	32	4	24	-	2	1	1	2 (6)	1	1	1	1	1 (4)	2 (1)	2 (5)	Y	-	Y	Y	QFN32
230F8	8	2	56	-	2	1	1	2 (6)	1	1	1	1	1 (8)	2 (2)	2 (16)	Y	-	Y	Y	QFN64
230F16	16	4	56	-	2	1	1	2 (6)	1	1	1	1	1 (8)	2 (2)	2 (16)	Y	-	Y	Y	QFN64
230F32	32	4	56	-	2	1	1	2 (6)	1	1	1	1	1 (8)	2 (2)	2 (16)	Y	-	Y	Y	QFN64
840F8	8	2	56	Y	2	1	1	2 (6)	1	1	1	1	1 (8)	2 (2)	2 (8)	Y	-	Y	Y	QFN64
840F16	16	4	56	Y	2	1	1	2 (6)	1	1	1	1	1 (8)	2 (2)	2 (8)	Y	-	Y	Y	QFN64
240F32	32	4	56	Υ	2	1	1	2 (6)	1	1	1	1	1 (8)	2 (2)	2 (8)	Y	-	Y	Y	QFN64

Downloaded from Elecules com

4 System Processor

Quick Facts

What?

The industry leading Cortex-M3 processor from ARM is the CPU in the EFM32TG microcontrollers.

Why?

The ARM Cortex-M3 is designed for exceptional short response time, high code density, and high 32-bit throughput while maintaining a strict cost and power consumption budget.

How?

Combined with the ultra low energy peripherals available in EFM32TG devices, the Cortex-M3 processor's Harvard architecture and 3 stage pipeline, single cycle instructions and Thumb-2 instruction set support, and fast interrupt handling makes it perfect for 8- to 32-bit applications.

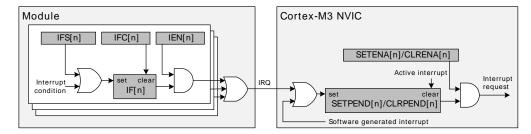
4.1 Introduction

The ARM Cortex-M3 (r2p1) 32-bit RISC processor provides outstanding computational performance and exceptional system response to interrupts while meeting low cost requirements and low power consumption.

The ARM Cortex-M3 implemented is revision r2p1.

4.2 Features

- · Harvard architecture
 - Separate data and program memory buses (No memory bottleneck as in a single bus system)
- · 3-stage pipeline
- Thumb-2 instruction set
 - · Enhanced levels of performance, energy efficiency, and code density
- Single cycle multiply and hardware divide instructions
 - 32-bit multiplication in a single cycle
 - Signed and unsigned divide operations between 2 and 12 cycles
- · Atomic bit manipulation with bit banding
 - · Direct access to single bits of data
 - Two 1MB bit banding regions for memory and peripherals mapping to 32MB alias regions
 - · Atomic operation, cannot be interrupted by other bus activities
- 1.25 DMIPS/MHz
- 24 bits System Tick Timer for Real Timer OS
- Excellent 32-bit migration choice for 8/16 bit architecture based designs
 - Simplified stack-based programmer's model is compatible with traditional ARM architecture and retains the programming simplicity of legacy 8- and 16-bit architectures


- Unaligned data storage and access
 - Continuous storage of data requiring different byte lengths
 - Data access in a single core access cycle
- Integrated power modes
 - · Sleep Now mode for immediate transfer to low power state
 - Sleep on Exit mode for entry into low power state after the servicing of an interrupt
 - Ability to extend power savings to other system components
- Optimized for low latency, nested interrupts

4.3 Functional Description

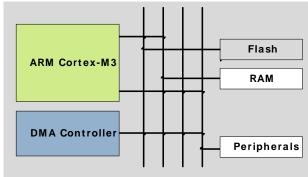
For a full functional description of the ARM Cortex-M3 (r2p1) implementation in the EFM32TG family, the reader is referred to the EFM32G Cortex-M3 Reference Manual.

4.3.1 Interrupt Operation

Figure 4.1. Interrupt Operation

The EFM32TG devices have up to 31 interrupt request lines (IRQ) which are connected to the Cortex-M3. Each of these lines (shown in Table 4.1 (p. 12)) is connected to one or more interrupt flags in one or more modules. The interrupt flags are set by hardware on an interrupt condition. It is also possible to set/clear the interrupt flags through the IFS/IFC registers. Each interrupt flag is then qualified with its own interrupt enable bit (IEN register), before being OR'ed with the other interrupt flags to generate the IRQ. A high IRQ line will set the corresponding pending bit (can also be set/cleared with the SETPEND/CLRPEND bits in ISPR0/ICPR0) in the Cortex-M3 NVIC. The pending bit is then qualified with a an enable bit (set/cleared with SETENA/CLRENA bits in ISER0/ICER0) before generating an interrupt request to the core. Figure 4.1 (p. 11) illustrates the interrupt system. For more information on how the interrupts are handled inside the Cortex-M3, the reader is referred to the EFM32G Cortex-M3 Reference Manual.

2010-12-21 - d0034 Rev0.90 www.energymicro.com


Table 4.1. Interrupt Request Lines (IRQ)

Source
DMA
GPIO_EVEN
TIMERO
USART0_RX
USART0_TX
ACMP0/ACMP1
ADC0
DAC0
I2C0
GPIO_ODD
TIMER1
USART1_RX
USART1_TX
LESENSE
LEUART0
LETIMER0
PCNT0
RTC
СМИ
VCMP
LCD
MSC
AES

5 Memory and Bus System

Quick Facts

What?

A low latency memory system including low energy Flash and RAM with data retention which makes the energy modes attractive.

Why?

RAM retention reduces the need for storing data in Flash and enables frequent use of the ultra low energy modes EM2 and EM3 with as little as $0.6~\mu\text{A}$ μA current consumption.

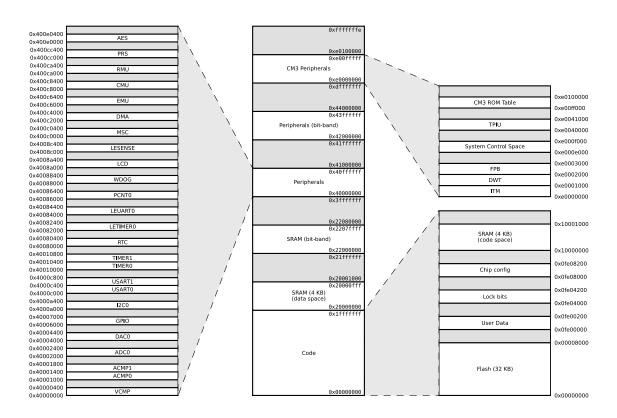
How?

Low energy and non-volatile Flash memory stores program and application data in all energy modes and can easily be reprogrammed in system. Low leakage RAM with data retention in EM0 to EM3 removes the data restore time penalty, and the DMA ensures fast autonomous transfers with predictable response time.

5.1 Introduction

The EFM32TG contains 3 main memory segments which can be accessed by the Cortex-M3 or the DMA controller:

- Flash
- RAM
- Peripherals


5.2 Functional Description

The memory segments are mapped together with the internal segments of the Cortex-M3 into the system memory map shown by Figure 5.1 (p. 14)

Downloaded from H couls com 2010-12-21 - d0034_Rev0.90 13 www.energymicro.com

Figure 5.1. System Address Space

The embedded SRAM is located at address 0x20000000 in the memory map of the EFM32TG. When running code located in SRAM starting at this address, the Cortex-M3 uses the System bus interface to fetch instructions. This results in reduced performance as the Cortex-M3 accesses stack, other data in SRAM and peripherals using the System bus interface. To be able to run code from SRAM efficiently, the SRAM is also mapped in the code space at address 0x10000000. When running code from this space, the Cortex-M3 fetches instructions through the I/D-Code bus interface, leaving the System bus interface for data access.

5.2.1 Bit-banding

The SRAM bit-band alias and peripheral bit-band alias regions are located at 0x22000000 and 0x42000000 respectively. Read and write operations to these regions are converted into masked singlebit reads and atomic single-bit writes to the embedded SRAM and peripherals of the EFM32TG.

Using a standard approach to modify a single register or SRAM bit in the aliased regions, would require software to read the value of the byte, half-word or word containing the bit, modify the bit, and then write the byte, half-word or word back to the register or SRAM address. Using bit-banding, this can be done in a single operation. As read-writeback, bit-masking and bit-shift operations are not necessary in software, code size is reduced and execution speed improved.

The bit-band regions allow each bit in the SRAM and Peripheral areas of the memory map to be addressed. To set or clear a bit in the embedded SRAM, write a 1 or a 0 to the following address:

Memory SRAM Area Set/Clear Bit

$$bit_address = 0x22000000 + (address - 0x20000000) \times 32 + bit \times 4$$
 (5.1)

where address is the address of the 32-bit word containing the bit to modify, and bit is the index of the bit in the 32-bit word.

To modify a bit in the Peripheral area, use the following address:

Memory Peripheral Area Bit Modification
$$bit_address = 0x42000000 + (address - 0x40000000) \times 32 + bit \times 4$$
 (5.2)

5.2.2 Peripherals

The peripherals are mapped into the peripheral memory segment, each with a fixed size address range according to Table 5.1 (p. 15), Table 5.2 (p. 16), and Table 5.3 (p. 17)

Table 5.1. Memory System Core Peripherals

Core peripherals	
Address range	Peripheral
0x400E0400 – 0x41FFFFFF	Reserved
0x400E0000 - 0x400E03FF	AES
0x400CC400 - 0x400FFFFF	Reserved
0x400CC000 - 0x400CC3FF	PRS
0x400CA400 - 0x400CBFFF	Reserved
0x400CA000 - 0x400CA3FF	RMU
0x400C8400 - 0x400C9FFF	Reserved
0x400C8000 - 0x400C83FF	СМО
0x400C6400 - 0x400C7FFF	Reserved
0x400C6000 - 0x400C63FF	EMU
0x400C4000 – 0x400C5FFF	Reserved
0x400C2000 – 0x400C3FFF	DMA
0x400C0400 - 0x400C1FFF	Reserved
0x400C0000 - 0x400C03FF	MSC

Table 5.2. Memory System Low Energy Peripherals

Low energy peripherals										
Address range	Peripheral									
0x4008A400 – 0x400BFFFF	Reserved									
0x4008C000 - 0x4008C3FF	LESENSE									
0x4008A000 – 0x4008A3FF	LCD									
0x40088400 – 0x40089FFF	Reserved									
0x40088000 – 0x400883FF	WDOG									
0x40086C00 – 0x40087FFF	Reserved									
0x40086000 - 0x400863FF	PCNT0									
0x40084800 – 0x40085FFF	Reserved									
0x40084000 – 0x400843FF	LEUART0									
0x40082400 – 0x40083FFF	Reserved									
0x40082000 – 0x400823FF	LETIMER0									
0x40080400 - 0x40081FFF	Reserved									
0x40080000 – 0x400803FF	RTC									

Table 5.3. Memory System Peripherals

Peripherals	
Address range	Peripheral
0x40010C00 - 0x4007FFFF	Reserved
0x40010400 - 0x400107FF	TIMER1
0x40010000 – 0x400103FF	TIMER0
0x4000E400 - 0x4000FFFF	Reserved
0x4000CC00 - 0x4000DFFF	Reserved
0x4000C400 - 0x4000C7FF	USART1
0x4000C000 - 0x4000C3FF	USART0
0x4000A400 – 0x4000BFFF	Reserved
0x4000A000 – 0x4000A3FF	I2C0
0x40008400 – 0x40009FFF	Reserved
0x40007000 – 0x40007FFF	Reserved
0x40006000 – 0x40006FFF	GPIO
0x40004400 – 0x40005FFF	Reserved
0x40004000 – 0x400043FF	DAC0
0x40002400 – 0x40003FFF	Reserved
0x40002000 – 0x400023FF	ADC0
0x40001800 – 0x40001FFF	Reserved
0x40001400 – 0x400017FF	ACMP1
0x40001000 – 0x400013FF	ACMP0
0x40000400 – 0x40000FFF	Reserved
0x40000000 - 0x400003FF	VCMP

5.2.3 Bus Matrix

The Bus Matrix connects the memory segments to the bus masters:

- Code: CPU instruction or data fetches from the code space
- System: CPU read and write to the SRAM and peripherals
- DMA: Access to code space, SRAM and peripherals

5.2.3.1 Arbitration

The Bus Matrix uses a round-robin arbitration algorithm which enables high throughput and low latency while starvation of simultaneous accesses to the same bus slave are eliminated. Round-robin does not assign a fixed priority to each bus master. The arbiter does not insert any bus wait-states.

5.2.3.2 Access Performance

The Bus Matrix is a multi-layer energy optimized AMBA AHB compliant bus with an internal bandwidth of 4x a single AHB interface.

The Bus Matrix accepts new transfers to be initiated by each master in each cycle without inserting any wait-states. However, the slaves may insert wait-states depending on their internal throughput and the clock frequency.

The Cortex-M3 and the DMA Controller, and the peripherals (not peripherals in the low frequency clock domain) run on clocks which can be prescaled separately. When accessing a peripheral which runs on a frequency equal to or faster than the HFCORECLK, the number of wait cycles per access, in addition to master arbitration, is given by:

Memory Wait Cycles with Clock Equal or Faster than the HFCORECLK

$$N_{\text{cycles}} = 2 + N_{\text{slave cycles}}$$
 (5.3)

where N_{slave cycles} is the wait cycles introduced by the slave.

When accessing a peripheral which runs on a slower clock than the HFCORECLK, wait cycles are introduced to allow the transfer to complete on the peripheral clock. The number of wait cycles per access, in addition to master arbitration, is given by:

Memory Wait Cycles with Clock Slower than the CPU

$$N_{\text{cycles}} = (2 + N_{\text{slave cycles}}) \times f_{\text{HFCORECLK}} / f_{\text{HFPERCLK}}$$
 (5.4)

where N_{slave cycles} is the wait cycles introduced by the slave.

Clocks and prescaling are described in more detail in Chapter 11 (p. 94).

5.3 Access to Low Energy Peripherals (Asynchronous Registers)

5.3.1 Introduction

The Low Energy Peripherals are capable of running when the high frequency oscillator and core system is powered off, i.e. in energy modes EM2 and in some cases also EM3. This enables the peripherals to perform tasks while the system energy consumption is minimal.

The Low Energy Peripherals are:

- Liquid Crystal Display driver LCD
- Low Energy Timer LETIMER
- Low Energy UART LEUART
- Pulse Counter PCNT
- Real Time Counter RTC
- Watchdog WDOG
- Low Energy Sensor Interface LESENSE

All Low Energy Peripherals are memory mapped, with standardized data synchronization support. Because the Low Energy Peripherals are running on clocks asynchronous to the core clock, there are some constraints on how register accesses are performed, as described in the following sections. The constraints are however standardized across all Low Energy Peripherals.

5.3.1.1 Writing

Every Low Energy Peripheral has one or more registers with data that needs to be synchronized into the Low Energy clock domain to maintain data consistency and predictable operation. There are two different synchronization mechanisms on the Tiny Gecko, immediate synchronization, and delayed synchronization. Immediate synchronization is available for the RTC, LETIMER and LESENSE, and results in an immediate update of the target registers. Delayed synchronization is used for the remaining Low Energy Peripherals, and for these peripherals, a write operation requires 3 positive edges of the

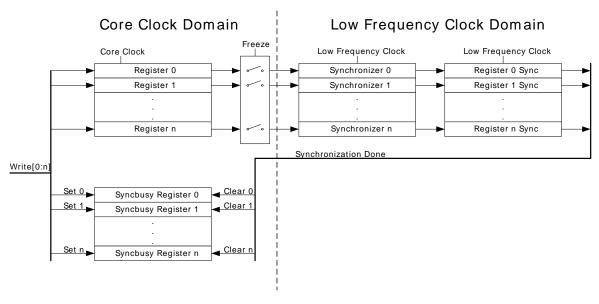
clock on the Low Energy Peripheral being accessed. Registers requiring synchronization are marked "Asynchronous in their description header.

Note

On the Gecko series of devices, all LE peripherals are subject to delayed synchronization.

5.3.1.1.1 Delayed synchronization

After writing data to a register which value is to be synchronized into the Low Energy Peripheral using delayed synchronization, a corresponding busy flag in the <module_name>_SYNCBUSY register (e.g. RTC_SYNCBUSY) is set. This flag is set as long as synchronization is in progress and is cleared upon completion.


Note

Subsequent writes to the same register before the corresponding busy flag is cleared is not supported. Write before the busy flag is cleared may result in undefined behavior.

In general the SYNCBUSY register only needs to be observed if there is a risk of multiple write access to a register (which must be prevented). It is not required to wait until the relevant flag in the SYNCBUSY register is cleared after writing a register. E.g can EM2 be entered directly after writing a register.

See Figure 5.2 (p. 19) for an overview of the writing mechanism operation.

Figure 5.2. Write operation to Low Energy Peripherals

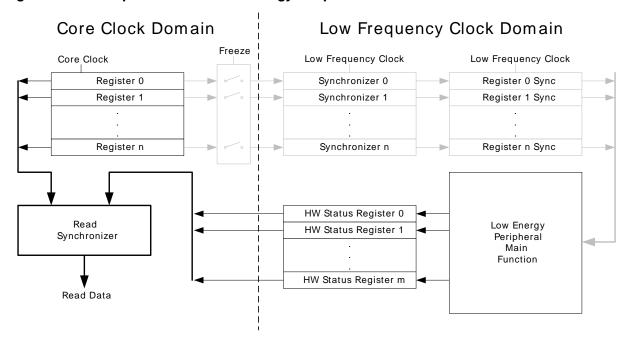
5.3.1.1.2 Immediate synchronization

In contrast to the peripherals with delayed synchronization, peripherals with immediate synchronization don't experience a delay from a value is written to it takes effect in the peripheral. They are updated immediately on the peripheral write access. If such a write is done close to an edge on the clock of the peripheral, the write is delayed to after the clock edge. This will introduce wait-states on peripheral access.

On peripherals with delayed synchronization, the SYNCBUSY registers are still present. These have two purposes: Commands written to a peripheral with immediate synchronization are not executed before the first peripheral clock after the write. In this period, the SYNCBUSY flag for the command register is set, indicating that the command has not yet been performed. The second reason is backwards compatibility. To maintain compatibility with the Gecko series, the rest of the SYNCBUSY registers are also present, but these are always 0, indicating that register writes are always safe.

Note

If compatibility with the Gecko series is a requirement for a given application, the rules that apply to delayed synchronization with respect to SYNCBUSY should also be followed for the peripherals that support immediate synchronization.


5.3.1.2 Reading

When reading from a Low Energy Peripheral, the data read is synchronized regardless if it originates in the Low Energy clock domain or core clock domain. Registers which are updated/ maintained by the Low Energy Peripheral are read directly from the Low Energy clock domain. Registers which originate in the core clock domain, are read from the core clock domain. See Figure 5.3 (p. 20) for an overview of the reading operation.

Note

Writing a register and then immediately reading the new value of the register may give the impression that the write operation is complete. This may not be the case. Please refer to the SYNCBUSY register for correct status of the write operation to the Low Energy Peripheral.

Figure 5.3. Read operation form Low Energy Peripherals

5.3.2 FREEZE register

In Low Energy Peripheral with delayed synchronization there is a <module_name>_FREEZE register (e.g. RTC_FREEZE). The register contains a bit named REGFREEZE. If precise control of the synchronization process is required, this bit may be utilized. When REGFREEZE is set, the synchronization process is halted allowing the software to write multiple Low Energy registers before starting the synchronization process, thus providing precise control of the module update process. The synchronization process is started by clearing the REGFREEZE bit.

Note

The FREEZE register is also present on peripherals with immediate synchronization, but there it has no effect

5.4 Flash

The Flash retains data in any state and typically stores the application code, special user data and security information. The Flash memory is typically programmed through the debug interface, but can also be erased and written to from software.

- Up to 32 KB of memory
- Page size of 512 bytes (minimum erase unit)
- Minimum 20K erase cycles endurance
- Greater than 10 years data retention at 85°C
- · Lock-bits for memory protection
- · Data retention in any state

5.5 SRAM

The primary task of the SRAM memory is to store application data. Additionally, it is possible to execute instructions from SRAM, and the DMA may be set up to transfer data between the SRAM, Flash and peripherals.

- Up to 4 KB memory
- · Bit-band access support
- Data retention of the entire memory in EM0 to EM3

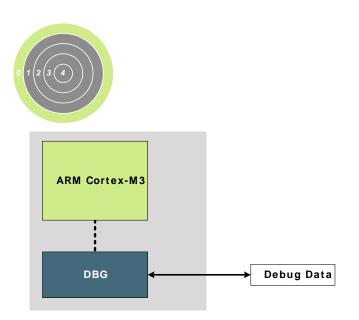
5.6 Device Information (DI) Page

The DI page contains calibration values, a unique identification number and other useful data. See the table below for a complete overview.

Table 5.4. Device Information Table

DI Address	Register	Description
0x0FE08020	CMU_LFRCOCTRL	
0x0FE08028	CMU_HFRCOCTRL	
0x0FE08030	CMU_AUXHFRCOCTRL	
0x0FE08040	ADC0_CAL	
0x0FE08048	ADC0_BIASPROG	
0x0FE08050	DAC0_CAL	
0x0FE08058	DAC0_BIASPROG	
0x0FE08060	ACMP0_CTRL	
0x0FE08068	ACMP1_CTRL	
0x0FE08070	LCD_DISPCTRLX	
0x0FE08078	CMU_LCDCTRL	
0x0FE080A0	DAC0_OPACTRL	
0x0FE080A8	DAC0_OPAOFFSET	
0x0FE081B0	DI_CRC	[15:0]: DI data CRC-16
0x0FE081B2	CAL_TEMP_0	[7:0] Calibration temperature (DegC)
0x0FE081B3	RESERVED	[7:0]: Reserved for other temperature information
0x0FE081B4	ADC0_CAL_1V25	[14:8]: Gain for 1V25 reference [6:0]: Offset for 1V25 reference
0x0FE081B6	ADC0_CAL_2V5	[14:8]: Gain for 2V5 reference [6:0]: Offset for 2V5 reference
0x0FE081B8	ADC0_CAL_VDD	[14:8]: Gain for VDD reference [6:0]: Offset for VDD reference

Downloaded from Heads com 2010-12-21 - d0034_Rev0.90 21 www.energymicro.com



DI Address	Register	Description								
0x0FE081BA	ADC0_CAL_5VDIFF	[14:8]: Gain for 5VDIFF reference [6:0]: Offset for 5VDIFF reference								
0x0FE081BC	ADC0_CAL_2XVDDVSS	[14:8]: Reserved (gain for this reference cannot be calibrated) [6:0]: Offset for 2XVDDVSS reference								
0x0FE081BE	ADC0_TEMP_0_READ_1V25	[15:4] Temperature reading at 1V25 reference [3:0] Reserved								
0x0FE081C0	RESERVED	[15:0] Reserved for other temperature information								
0x0FE081C2	RESERVED	[15:0] Reserved								
0x0FE081C4	RESERVED	[31:0] Reserved								
0x0FE081C8	DAC0_CAL_1V25	[22:16]: Gain for 1V25 reference [13:8]: Channel 1 offset for 1V25 reference [5:0]: Channel 0 offset for 1V25 reference								
0x0FE081CC	DAC0_CAL_2V5	[22:16]: Gain for 2V5 reference [13:8]: Channel 1 offset for 2V5 reference [5:0]: Channel 0 offset for 2V5 reference								
0x0FE081D0	DAC0_CAL_VDD	[22:16]: Reserved (gain for this reference cannot be calibrated) [13:8]: Channel 1 offset for VDD reference [5:0]: Channel 0 offset for VDD reference								
0x0FE081D4	RESERVED	[31:0] Reserved								
0x0FE081D8	RESERVED	[31:0] Reserved								
0x0FE081DC	HFRCO_CALIB_BAND_1	[7:0]: 1 MHz tuning								
0x0FE081DD	HFRCO_CALIB_BAND_7	[7:0]: 7 MHz tuning								
0x0FE081DE	HFRCO_CALIB_BAND_11	[7:0]: 11 MHz tuning								
0x0FE081DF	HFRCO_CALIB_BAND_14	[7:0]: 14 MHz tuning								
0x0FE081E0	HFRCO_CALIB_BAND_21	[7:0]: 21 MHz tuning								
0x0FE081E1	HFRCO_CALIB_BAND_28	[7:0]: 28 MHz tuning								
0x0FE081E2	AUXHFRCO_CALIB_BAND_1	[7:0]: 1 MHz tuning								
0x0FE081E3	AUXHFRCO_CALIB_BAND_7	[7:0]: 7 MHz tuning								
0x0FE081E4	AUXHFRCO_CALIB_BAND_11	[7:0]: 11 MHz tuning								
0x0FE081E5	AUXHFRCO_CALIB_BAND_14	[7:0]: 14 MHz tuning								
0x0FE081E6	AUXHFRCO_CALIB_BAND_21	[7:0]: 21 MHz tuning								
0x0FE081E7	AUXHFRCO_CALIB_BAND_28	[7:0]: 28 MHz tuning								
0x0FE081F0	UNIQUE_0	[31:0] Unique number								
0x0FE081F4	UNIQUE_1	[63:32] Unique number								
0x0FE081F8	MEM_INFO_FLASH	[15:0]: Flash size, kbyte count as unsigned integer (eg. 128)								
0x0FE081FA	MEM_INFO_RAM	[15:0]: Ram size, kbyte count as unsigned integer (eg. 16)								
0x0FE081FC	PART_NUMBER	[15:0]: EFM32 part number as unsigned integer (eg. 230)								
0x0FE081FE	PART_FAMILY	[7:0]: EFM32 part family number (Gecko = 71d)								
0x0FE081FF	PROD_REV	[7:0]: EFM32 Production ID								

Downloaded from Elecules com

6 DBG - Debug Interface

Quick Facts

What?

The DBG (Debug Interface) is used to program and debug EFM32TG devices.

Why?

The Debug Interface makes it easy to reprogram and update the system in field, and allows debugging with minimal I/O pin use.

How?

The Cortex-M3 supports advanced debugging features. EFM32TG devices only use two port pins for debugging or programming. The systems internal and external state can be examined with debug extensions supporting instruction or data access break- and watch points.

6.1 Introduction

The EFM32TG devices include hardware debug support through a 2-pin serial-wire debug interface. In addition there is also a 1-wire Serial Wire Viewer pin which can be used to output profiling information, data trace and software-generated messages.

6.2 Features

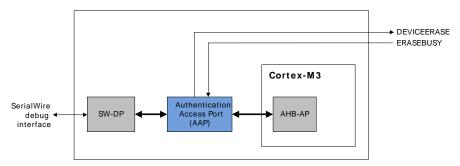
- Flash Patch and Breakpoint (FPB) unit
 - · Implement breakpoints and code patches
- Data Watch point and Trace (DWT) unit
 - · Implement watch points, trigger resources, and system profiling
- Instrumentation Trace Macrocell (ITM)
 - Application-driven trace source that supports printf style debugging

6.3 Functional Description

There are three debug pins on the device, which also can be used as GPIO. The three debug pins are:

- SWCLK Serial Wire Clock input. This pin is enabled after reset and has a built-in pull down.
- SWDIO Serial Wire data Input/Output. This pin is enabled after a reset and has a built in pull-up.
- SWO Serial Wire Viewer Output. This pin is disabled after a reset.

For more information on how to enable the debug pin outputs/inputs the reader is referred to Section 28.3.4.1 (p. 453), the ARM Cortex-M3 Technical Reference Manual and the ARM CoreSight Technical Reference Manual


6.4 Debug Lock and Device Erase

The debug access to the Cortex-M3 is locked by clearing the Debug Lock Word (DLW), see Section 7.3.2 (p. 29)

When debug access is locked, the debug interface remains accessible, but the connection to the Cortex-M3 core is blocked. This mechanism is controlled by the Authentication Access Port (AAP) as illustrated by Figure 6.1 (p. 24).

Figure 6.1. AAP - Authentication Access Port

The device is unlocked by writing to the AAP_CMDKEY register and then setting the DEVICEERASE bit of the AAP_CMD register via the debug interface. This erase operation erases the main block, all lock bits are reset and debug access through the AHB-AP is enabled. The operation takes 40 ms to complete. Note that the SRAM contents will also be deleted during a device erase.

The debugger may read the status from the AAP_STATUS register. When the ERASEBUSY bit is set low after DEVICEERASE of the AAP_CMD register is set, the debugger may set the SYSRESETREQ bit in the AAP_CMD register. After reset, the debugger may resume a normal debug session through the AHB-AP.

Note

If the debug pins are reconfigured for other I/O purposes than debug, a device erase may no longer be executed. The pins are configured for debug in their reset state.

6.5 Register Map

The offset register address is relative to the registers base address.

Offset	Name	Туре	Description
0x000	AAP_CMD	W1	Command Register
0x004	AAP_CMDKEY	W1	Command Key Register
0x008	AAP_STATUS	R	Status Register
0x0FC	AAP_IDR	R	AAP Identification Register

6.6 Register Description

AAP_CMDKEY register.

6.6.1 AAP_CMD - Command Register

Offset	Bit Position																															
0x000	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	0	∞	7	9	2	4	က	2	-	0
Reset					•																										0	0
Access																															M1	W
Name																															SYSRESETREQ	DEVICEERASE

Bit	Name	Reset	Access	Description						
31:2	Reserved	To ensure co	ompatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)						
1	SYSRESETREQ	0	0 W1 System Reset Request							
	A system reset reques	t is generated wher	n set to 1. This reg	gister is write enabled from the AAP_CMDKEY register.						
0	DEVICEERASE	0	W1	Erase the Flash Main Block, SRAM and Lock Bits						
	This also includes the	Debug lock word	(DLW), causing d	erased, the SRAM is cleared and then the Lock bit (LB) page is erased. lebug access to be enabled after the next reset. The information block page lock word (LILW) is grased. This register is write enabled from the						

6.6.2 AAP_CMDKEY - Command Key Register

Offset													:	Bit F	ositi	ion					-	•					•			
0x004	30	29	28	27	26	25	24	23	22	21	20	19	17	16	15	14	13	12	11	10	6	80	7	9	2	4	3	2	-	0
Reset															0000000000															
Access															W1															
Name															WRITEKEY															
Bit	Name						Re	set			Α	cces	SS	D	escr	iptic	on													
31:0	WRITE	KEY					0x0	0000	0000		W	1		С	MD K	ey R	leg	iste	r											

Bit	Name	Reset A	ccess	Description
	The key value mus	st be written to this register to w	rite enable	the AAP_CMD register.
	Value	Mode	Descr	iption
	0xCFACC118	WRITEEN	Enabl	e write to AAP_CMD

6.6.3 AAP_STATUS - Status Register

Offset															Bit	i Po	siti	on														
0x008	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	9	5	4	က	2	_	0
Reset																																0
Access																																~
Name																																ERASEBUSY
Bit	Na	ıme						Re	eset			A	ссе	ess		De	scri	iptio	on													
31:1	Re	serv	ed					То	ensi	ure c	omp	atibi	ility v	vith	futui	re de	vice	es, a	alwa	ауѕ и	vrite	bits	to 0.	Mor	e int	form	natio	n in	Sect	ion 2	.1 (p	o. 3)
0	ER	ASE	BUS	Υ				0				R				Dev	ice	Era	se	Con	nmai	nd S	Statu	ıs								

6.6.4 AAP_IDR - AAP Identification Register

This bit is set when a device erase is executing.

Offset															Bi	t Pc	siti	on														
0x0FC	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	7	10	6	8	7	9	2	4	က	2	-	0
Reset																00000																
Access			α																													
Name																	<u> </u>															
Bit	Na	me						Re	set			A	CC	ess		De	scri	iptic	on													
31:0	ID							0x1	6E6	0001		R				AA	P Id	entif	fica	tion	n Re	gist	er									
	Acc	ess	port	iden	tifica	atio	n re	giste	r in d	com	olian	ce w	/ith	the	ARN	1 AD	l v5	spec	cific	atio	n (JE	DE	СМа	anuf	actur	er I	D) .					

2010-12-21 - d0034_Rev0.90 www.energymicro.com

7 MSC - Memory System Controller

010001010110111001100101011110010 01100111011110010010000001001101 01101001011000110111001001101111 00100000011100100111010101101100 01100101011100110010000001110100 01101000011001010010000001110111 01101111011100100110110001100100 00100000011011110110011000100000 01101100011011110111011100101101 011001010110111001100101011110010

01100111011110010010000001101101 01101001011000110111001001101111 01100011011011110110111001110100 01110010011011110110110001101100 01100101011100100010000001100100 01100101011100110110100101100111 01101110001000010100010101101110

Quick Facts

What?

The user can perform Flash memory read, read configuration and write operations through the Memory System Controller (MSC).

Why?

The MSC allows the application code, user data and flash lock bits to be stored in nonvolatile Flash memory. Certain memory system functions, such as program memory wait-states and bus faults are also configured from the MSC peripheral register interface, giving the developer the ability to dynamically customize the memory system performance, security level, energy consumption and error handling capabilities to the requirements at hand.

How?

The MSC integrates a low-energy Flash IP with a charge pump, enabling minimum energy consumption while eliminating the need for external programming voltage to erase the memory. An easy to use write and erase interface is supported by an internal, fixed-frequency oscillator and autonomous flash timing and control reduces software complexity while not using other timer resources.

Application code may dynamically scale between high energy optimization and high code execution performance through advanced read modes.

A highly efficient low energy instruction cache reduces the number of flash reads significantly, thus saving energy. Performance is also improved when waitstates are used, since many of the wait-states are eliminated. Built-in performance counters can be used to measure the efficiency of the instruction cache.

7.1 Introduction

The Memory System Controller (MSC) is the program memory unit of the EFM32TG microcontroller. The flash memory is readable and writable from both the Cortex-M3 and DMA. The flash memory is divided into two blocks; the main block and the information block. Program code is normally written to the main block. Additionally, the information block is available for special user data and flash lock bits. There is also a read-only page in the information block containing system and device calibration data. Read and write operations are supported in the energy modes EM0 and EM1.

7.2 Features

- · AHB read interface
 - · Scalable access performance to optimize the Cortex-M3 code interface
 - Zero wait-state access up to 16 MHz and one wait-state for 16 MHz and above
 - Advanced energy optimization functionality
 - · Conditional branch target prefetch suppression
 - · Cortex-M3 disfolding of if-then (IT) blocks
 - Instruction Cache
 - DMA read support in EM0 and EM1
- · Command and status interface
 - · Flash write and erase
 - Accessible from Cortex-M3 in EM0
 - DMA write support in EM0 and EM1
 - Core clock independent Flash timing
 - Internal oscillator and internal timers for precise and autonomous Flash timing
 - General purpose timers are not occupied during Flash erase and write operations
 - Configurable interrupt erase abort
 - · Improved interrupt predictability
 - · Memory and bus fault control
- Security features
 - Lockable debug access
 - · Page lock bits
- End-of-write and end-of-erase interrupts

7.3 Functional Description

The size of the main block is device dependent. The largest size available is 32 KB (64 pages). The information block is fixed in size for all devices with 512 bytes available for user data. The information block also contains chip configuration data located in a reserved area. The main block is mapped to address 0x00000000 and the information block is mapped to address 0x0FE00000. Table 7.1 (p. 29) outlines how the Flash is mapped in the memory space. All Flash memory is organized into 512 byte pages.

Table 7.1. MSC Flash Memory Mapping

Block	Page	Base address	Write/Erase by	Software readable	Purpose/Name	Size
Main ¹	0	0x0000000	Software, debug	Yes	User code and data	4 KB - 32 KB
			Software, debug	Yes		
	63	0x00007E00	Software, debug	Yes		
Reserved	-	0x00020000	-	-	Reserved for flash expansion	~24 MB
Information	0	0x0FE00000	Software, debug	Yes	User Data (UD)	2 KB/64 KB
	-	0x0FE00200	-	-	Reserved	
	1	0x0FE04000	Write: Software, debug Erase: Debug only	Yes	Lock Bits (LB)	
	-	0x0FE04200	-	-	Reserved	
	2	0x0FE08000	-	Yes	Device Information (DI)	
	-	0x0FE08200	-	-	Reserved	
Reserved	-	0x0FE10000	-	-	Reserved for flash expansion	Rest of code space

¹Block/page erased by a device erase

7.3.1 User Data (UD) Page Description

This is the user data page in the information block. The page can be erased and written by software. The page is erased by the ERASEPAGE command of the MSC_WRITECMD register. Note that the page is not erased by a device erase operation. The device erase operation is described in Section 6.4 (p. 23).

7.3.2 Lock Bits (LB) Page Description

This page contains the following information:

- Main block Page Lock Words (PLWs)
- User data page Lock Word (ULWs)
- Debug Lock Word (DLW)

The words in this page are organized as shown in Table 7.2 (p. 29):

Table 7.2. Lock Bits Page Structure

127	DLW
126	ULW
N	PLW[N]
1	PLW[1]
0	PLW[0]

There are 32 page lock bits per page lock word (PLW). Bit 0 refers to the first page and bit 31 refers to the last page within a PLW. Thus, PLW[0] contains lock bits for page 0-31 in the main block, PLW[1]

contains lock bits for page 32-63 etc. A page is locked when the bit is 0. A locked page cannot be erased or written.

Word 127 is the debug lock word (DLW). The four LSBs of this word are the debug lock bits. If these bits are 0xF, then debug access is enabled. Debug access to the core is disabled from power-on reset until the DLW is evaluated immediately before the Cortex-M3 starts execution of the user application code. If the bits are not 0xF, then debug access to the core remains blocked.

Word 126 is the user page lock word (ULW). Bit 0 of this word is the User Data Page lock bit. Bit 1 in this word locks the Lock Bits Page. The lock bits can be reset by a device erase operation initiated from the Authentication Access Port (AAP) registers. The AAP is described in more detail in Section 6.4 (p. 23). Note that the AAP is only accessible from the debug interface, and cannot be accessed from the Cortex-M3 core.

7.3.3 Device Information (DI) Page

This read-only page holds oscillator, DAC and ADC calibration data from the production test as well as an unique device ID. The page is further described in Section 5.6 (p. 21).

7.3.4 Device Revision

The device revision number is read from the ROM Table. The Revision number is extracted from the PID2 and PID3 registers, as illustrated in Figure 7.1 (p. 30). The Rev[7:4] and Rev[3:0] must be combined to form the complete revision number Revision[7:0].

Figure 7.1. Revision Number Extraction

PID2	(0xE00FF	FE8)
31:8	7:4	3:0
	Rev[7:4]	

PID3	(0xE00FF	FEC)
31:8	7:4	3:0
	Rev[3:0]	

The Revision number is to be interpreted according to Table 7.3 (p. 30).

Table 7.3. Revision Number Interpretation

Revision[7:0]	Revision
0x00	A

7.3.5 Post-reset Behavior

Calibration values are automatically written to registers by the MSC before application code startup. The values are also available to read from the DI page for later reference by software. Other information such as the device ID and production date is also stored in the DI page and is readable from software.

7.3.5.1 One Wait-state Access

After reset, the HFCORECLK is normally 14 MHz from the HFRCO and the MODE field of the MSC_READCTRL register is set to WS1 (one wait-state). The reset value must be WS1 as an uncalibrated HFRCO may produce a frequency higher than 16 MHz. Software must not select a zero wait-state mode unless the clock is guaranteed to be 16 MHz or below, otherwise the resulting behavior is undefined. If a HFCORECLK frequency above 16 MHz is to be set by software, the MODE field of the MSC_READCTRL register must be set to WS1 or WS1SCBTP before the core clock is switched to the higher frequency clock source.

When changing to a lower frequency, the MODE field of the MSC_READCTRL register must be set to WS0 or WS0SCBTP only after the frequency transition has completed. If the HFRCO is used, wait until the oscillator is stable on the new frequency. Otherwise, the behavior is unpredictable.

7.3.5.2 Zero Wait-state Access

At 16 MHz and below, read operations from flash may be performed without any wait-states. Zero waitstate access greatly improves code execution performance at frequencies from 16 MHz and below. By default, the Cortex-M3 uses speculative prefetching and If-Then block folding to maximize code execution performance at the cost of additional flash accesses and energy consumption.

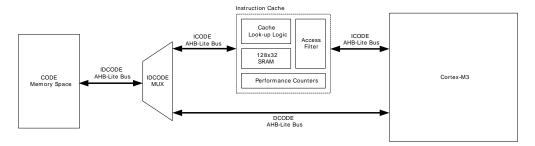
7.3.5.3 Suppressed Conditional Branch Target Prefetch (SCBTP)

MSC offers a special instruction fetch mode which optimizes energy consumption by cancelling Cortex-M3 conditional branch target prefetches. Normally, the Cortex-M3 core prefetches both the next sequential instruction and the instruction at the branch target address when a conditional branch instruction reaches the pipeline decode stage. This prefetch scheme improves performance while one extra instruction is fetched from memory at each conditional branch, regardless of whether the branch is taken or not. To optimize for low energy, the MSC can be configured to cancel these speculative branch target prefetches. With this configuration, energy consumption is more optimal, as the branch target instruction fetch is delayed until the branch condition is evaluated.

The performance penalty with this mode enabled is source code dependent, but is normally less than 1% for core frequencies from 16 MHz and below. To enable the mode at frequencies from 16 MHz and below write WS0SCBTP to the MODE field of the MSC READCTRL register. For frequencies above 16 MHz, use the WS1SCBTP mode. An increased performance penalty per clock cycle must be expected in this mode compared to WS0SCBTP mode. The performance penalty in WS1SCBTP mode depends greatly on the density and organization of conditional branch instructions in the code.

7.3.5.4 Cortex-M3 If-Then Block Folding

The Cortex-M3 offers a mechanism known as if-then block folding. This is a form of speculative prefetching where small if-then blocks are collapsed in the prefetch buffer if the condition evaluates to false. The instructions in the block then appear to execute in zero cycles. With this scheme, performance is optimized at the cost of higher energy consumption as the processor fetches more instructions from memory than it actually executes. To disable the mode, write a 1 to the DISFOLD bit in the NVIC Auxiliary Control Register; see the Cortex-M3 Technical Reference Manual for details. Normally, it is expected that this feature is most efficient at core frequencies above 16 MHz. Folding is enabled by default.


7.3.5.5 Instruction Cache

The MSC includes an instruction cache. The instruction cache for the internal flash memory is enabled by default, but can be disabled by setting IFCDIS in MSC_READCTRL. When enabled, the instruction cache typically reduces the number of flash reads significantly, thus saving energy. In most cases a cache hit-rate of more than 70 % is achievable. When a 32-bit instruction fetch hits in the cache the data is returned to the processor in one clock cycle. Thus, performance is also improved when wait-states are used (i.e. running at frequencies above 16 MHz).

The instruction cache is connected directly to the ICODE bus on the Cortex-M3 and functions as a memory access filter between the processor and the memory system, as illustrated in Figure 7.2 (p. 32) . The cache consists of an access filter, lookup logic, a 128x32 SRAM (512 bytes) and two performance counters. The access filter checks that the address for the access is to on-chip flash memory (instructions in RAM are not cached). If the address matches, the cache lookup logic and SRAM is enabled. Otherwise, the cache is bypassed and the access is forwarded to the memory system. The cache is then updated when the memory access completes. The access filter also disables cache updates for interrupt context accesses if caching in interrupt context is disabled. The performance counters, when enabled, keep track of the number of cache hits and misses. The cache consists of 16 8-word cachelines organized as 4 sets with 4 ways. The cachelines are filled up continuously one word at a time as the individual words are requested by the processor. Thus, not all words of a cacheline might be valid at a given time.

Figure 7.2. Instruction Cache

By default, the instruction cache is automatically invalidated when the contents of the flash is changed (i.e. written or erased). In many cases, however, the application only makes changes to data in the flash, not code. In this case, the automatic invalidate feature can be disabled by setting AIDIS in MSC_READCTRL. The cache can (independent of the AIDIS setting) be manually invalidated by writing 1 to INVCACHE in MSC_CMD.

In general it is highly recommended to keep the cache enabled all the time. However, for some sections of code with very low cache hit-rate more energy-efficient execution can be achieved by disabling the cache temporarily. To measure the hit-rate of a code-section, the built-in performance counters can be used. Before the section, start the performance counters by writing 1 to STARTPC in MSC CMD. This starts the performance counters, counting from 0. At the end of the section, stop the performance counters by writing 1 to STOPPC in MSC_CMD. The number of cache hits and cache misses for that section can then be read from MSC_CACHEHITS and MSC_CACHEMISSES respectively. The total number of 32-bit instruction fetches will be MSC_CACHEHITS + MSC_CACHEMISSES. Thus, the cache hit-ratio can be calculated as MSC_CACHEHITS / (MSC_CACHEHITS + MSC_CACHEMISSES). When MSC_CACHEHITS overflows the CHOF interrupt flag is set. When MSC_CACHEMISSES overflows the CMOF interrupt flag is set. These flags must be cleared explicitly by software. The range of the performance counters can thus be extended by increasing a counter in the MSC interrupt routine. The performance counters only count when a cache lookup is performed. If the lookup fails, MSC_CACHEMISSES is increased. If the lookup is successful, MSC_CACHEHITS is increased. For example, a cache lookup is not performed if the cache is disabled or the code is executed from RAM. When caching of vector fetches and instructions in interrupt routines is disabled (ICCDIS in MSC_READCTRL is set), the performance counters do not count when these types of fetches occur (i.e. while in interrupt context).

By default, interrupt vector fetches and instructions in interrupt routines are also cached. Some applications may get better cache utilization by not caching instructions in interrupt context. This is done by setting ICCDIS in MSC_READCTRL. You should only set this bit based on the results from a cache hit ratio measurement. In general, it is recommended to keep the ICCDIS bit cleared. Note that lookups in the cache are still performed, regardless of the ICCDIS setting - but instructions are not cached when cache misses occur inside the interrupt routine. So, for example, if a cached function is called from the interrupt routine, the instructions for that function will be taken from the cache.

The cache content is not retained in EM2, EM3 and EM4. The cache is therefore invalidated regardless of the setting of AIDIS in MSC_READCTRL when entering these energy modes. Applications that switch frequently between EM0 and EM2/3 and executes the very same non-looping code almost every time will most likely benefit from putting this code in RAM. The interrupt vectors can also be put in RAM to reduce current consumption even further.

7.3.6 Erase and Write Operations

The AUXHFRCO is used for timing during flash write and erase operations. To achieve correct timing, the MSC_TIMEBASE register has to be configured according to the settings in CMU_AUXHFRCOCTRL. BASE in MSC_TIMEBASE defines how many AUXCLK cycles - 1 there is in 1 us or 5 us, depending on the configuration of PERIOD. To ensure that timing of flash write and erase operations is within the specification of the flash, the value written to BASE should give at least a 10% margin with respect to

the period, i.e. for the 1 us PERIOD, the number of cycles should at least span 1.1 us, and for the 5 us period they should span at least 5.5 us. For the 7MHz and 1MHz bands, it is recommended to set PERIOD in MSC TIMEBASE to 5US to achieve sufficient timing resolution.

Both page erase and write operations require that the address is written into the MSC_ADDRB register. For erase operations, the address may be any within the page to be erased. Load the address by writing 1 to the LADDRIM bit in the MSC_WRITECMD register. The LADDRIM bit only has to be written once when loading the first address. After each word is written the internal address register ADDR will be incremented automatically by 4. The INVADDR bit of the MSC_STATUS register is set if the loaded address is outside the flash and the LOCKED bit of the MSC STATUS register is set if the page addressed is locked. Any attempts to command erase of or write to the page are ignored if INVADDR or the LOCKED bits of the MSC_STATUS register are set. To abort an ongoing erase, set the ERASEABORT bit in the MSC_WRITECMD register.

When a word is written to the MSC WDATA register, the WDATAREADY bit of the MSC STATUS register is cleared. When this status bit is set, software or DMA may write the next word.

A single word write is commanded by setting the WRITEONCE bit of the MSC WRITECMD register. The operation is complete when the BUSY bit of the MSC_STATUS register is cleared and control of the flash is handed back to the AHB interface, allowing application code to resume execution.

For a DMA write the software must write the first word to the MSC WDATA register and then set the WRITETRIG bit of the MSC_WRITECMD register. DMA triggers when the WDATAREADY bit of the MSC_STATUS register is set.

It is possible to write words twice between each erase by keeping at 1 the bits that are not to be changed. Let us take as an example writing two 16 bit values, 0xAAAA and 0x5555. To safely write them in the same flash word this method can be used:

- Write 0xFFFFAAAA (word in flash becomes 0xFFFFAAAA)
- Write 0x5555FFFF (word in flash becomes 0x5555AAAA)

Note

During a write or erase, flash read accesses will be stalled, effectively halting code execution from flash. Code execution continues upon write/erase completion. Code residing in RAM may be executed during a write/erase operation.

7.4 Register Map

The offset register address is relative to the registers base address.

Offset	Name	Туре	Description
0x000	MSC_CTRL	RW	Memory System Control Register
0x004	MSC_READCTRL	RW	Read Control Register
0x008	MSC_WRITECTRL	RW	Write Control Register
0x00C	MSC_WRITECMD	W1	Write Command Register
0x010	MSC_ADDRB	RW	Page Erase/Write Address Buffer
0x018	MSC_WDATA	RW	Write Data Register
0x01C	MSC_STATUS	R	Status Register
0x02C	MSC_IF	R	Interrupt Flag Register
0x030	MSC_IFS	W1	Interrupt Flag Set Register
0x034	MSC_IFC	W1	Interrupt Flag Clear Register
0x038	MSC_IEN	RW	Interrupt Enable Register
0x03C	MSC_LOCK	RW	Configuration Lock Register
0x040	MSC_CMD	W1	Command Register
0x044	MSC_CACHEHITS	R	Cache Hits Performance Counter
0x048	MSC_CACHEMISSES	R	Cache Misses Performance Counter
0x050	MSC_TIMEBASE	RW	Flash Write and Erase Timebase

7.5 Register Description

7.5.1 MSC_CTRL - Memory System Control Register

Offset															Bi	it Po	siti	on														
0x000	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	41	13	12	7	10	6	80	7	9	2	4	က	2	-	0
Reset												•																	•			-
Access																																₩ M
Name																																BUSFAULT

Bit	Name	Reset	Access	Description
31:1	Reserved	To ensure cor	mpatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
0	BUSFAULT	1	RW	Bus Fault Response Enable
	When this bit is s	set, the memory system ge	enerates bus erro	r response
	Value	Mode	Des	cription
	0	GENERATE	A bu	is fault is generated on access to unmapped code and system space
	1	IGNORE	Acc	esses to unmapped address space is ignored

7.5.2 MSC_READCTRL - Read Control Register

Offset		Bit Position																														
0x004	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	41	13	12	7	10	ი	8	7	9	2	4	က	2	-	0
Reset																											0	0	0		0x1	
Access																											RW	RW	RW		RW	
Name																											ICCDIS	AIDIS	IFCDIS		MODE	

Bit	Name	Reset	Access	Description									
31:6	Reserved	To ensure co	To ensure compatibility with future devices, always write bits to 0. More information										
5	ICCDIS	0	RW	Interrupt Context Cache Disable									
		,	U	es and instruction fetches in interrupt context. Cache lookup will still be counters will not count when these types of fetches occur.									
4	AIDIS	0	RW	Automatic Invalidate Disable									
	When this bit is se	t the cache is not autom	natically invalidate	d when a write or page erase is performed.									
3	IFCDIS	0	RW	Internal Flash Cache Disable									
	Disable instruction	cache for internal flash	memory.										
2:0	MODE	0x1	RW	Read Mode									

After reset, the core clock is 14 MHz from the HFRCO and the MODE field of MSC_READCTRL register is set to WS1. The reset value is WS1 because the HFRCO may produce a frequency above 16 MHz before it is calibrated. WS1 or WS1SCBTP mode is required for a frequency above 16 MHz. If software wants to set a core clock frequency above 16 MHz, this register must be set to WS1 or WS1SCBTP before the core clock is switched to the higher frequency. When changing to a lower frequency, this register can be set to WS0 or WS0SCBTP after the frequency transition has been completed. If the HFRCO is used as clock source, wait until the oscillator is stable on the new frequency to avoid unpredictable behavior.

Value	Mode	Description
0	WS0	Zero wait-states inserted in fetch or read transfers
1	WS1	One wait-state inserted for each fetch or read transfer. This mode is required for a core frequency above 16 MHz.
2	WS0SCBTP	Zero wait-states inserted with the Suppressed Conditional Branch Target Prefetch (SCBTP) function enabled. SCBTP saves energy by delaying Cortex-M3 conditional branch target prefetches until the conditional branch instruction is in the execute stage. When the instruction reaches this stage, the evaluation of the branch condition is completed and the core does not perform a speculative prefetch of both the branch target address and the next sequential address. With the SCBTP function enabled, one instruction fetch is saved for each branch not taken, with a negligible performance penalty.
3	WS1SCBTP	One wait-state access with SCBTP enabled.

7.5.3 MSC_WRITECTRL - Write Control Register

Offset	Bit Position																															
0x008	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	ი	œ	7	9	2	4	က	2	_	0
Reset					•												•							•							0	0
Access																															W.	R W
Name																															IRQERASEABORT	WREN

Bit	Name	Reset	Access	Description
31:2	Reserved	To ensure compa	atibility with fut	ure devices, always write bits to 0. More information in Section 2.1 (p. 3)

Downloaded from H course on 2010-12-21 - d0034_Rev0.90 35 www.energymicro.com

Bit	Name	Reset	Access	Description									
1	IRQERASEABORT	0	RW	Abort Page Erase on Interrupt									
	When this bit is set to 1, will cause an exception.	•	errupt aborts any	current page erase operation. Executing that interrupt vector from Flash									
0	WREN	0	RW	Enable Write/Erase Controller									
	When this bit is set, the MSC write and erase functionality is enabled												

7.5.4 MSC_WRITECMD - Write Command Register

Offset		Bit Position																														
0x00C	31	30	53	78	27	56	52	24	23	22	72	20	19	18	17	16	15	4	13	12	=	10	6	80	7	9	2	4	က	7	-	0
Reset													•			•			•								0	0	0	0	0	0
Access																											W	M1	W	W	W	W W
Name																											ERASEABORT	WRITETRIG	WRITEONCE	WRITEEND	ERASEPAGE	LADDRIM

				5
Bit	Name	Reset	Access	Description
31:6	Reserved	To ensure c	ompatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
5	ERASEABORT	0	W1	Abort erase sequence
	Writing to this bit will a	abort an ongoing er	ase sequence.	
4	WRITETRIG	0	W1	Word Write Sequence Trigger
				dd 4 to ADDR and write the next word if available within a 30us timeout. R is set to the base of the page.
3	WRITEONCE	0	W1	Word Write-Once Trigger
				returned to the AHB interface as soon as the write operation completes. et in order to use this command.
2	WRITEEND	0	W1	End Write Mode
	Write 1 to end write m	ode when using the	WRITETRIG con	nmand.
1	ERASEPAGE	0	W1	Erase Page
	Erase any user define in order to use this co		the MSC_ADDRE	3 register. The WREN bit in the MSC_WRITECTRL register must be set
0	LADDRIM	0	W1	Load MSC_ADDRB into ADDR
		•		C_ADDRB register. The internal address register ADDR is incremented incremented past the page boundary, ADDR is set to the base of the page.

2010-12-21 - d0034_Rev0.90 www.energymicro.com

7.5.5 MSC_ADDRB - Page Erase/Write Address Buffer

Offset														Bi	t Po	ositi	on														
0x010	31	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	9	2	4	က	2	-	0
Reset																000000000															
Access															i	≩ Y															
Name												-			(((ADDRB															
Bit	Nam	е					Re	set			A	CC	ess		De	escr	iptio	on													
31:0	ADDF	В					0x0	0000	0000)	R	W			Pa	ge E	rase	9 0	r Wr	ite A	ddr	ess	Buff	er							
	This r	egiste																													

erase commands. For write commands, bit [1:0] are ignored as writes are 32-bit wide only. This register is loaded into the internal MSC_ADDR register when the LADDRIM field in MSC_CMD is set. The MSC_ADDR register is not readable.

7.5.6 MSC_WDATA - Write Data Register

Offset															Bi	t Pc	siti	on														
0x018	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	1	10	6	8	7	9	2	4	က	2	-	0
Reset																00000000	000000000															
Access																Š	À															
Name																																
Bit	Na	me						Re	set			A	CC	ess		De	scri	iptic	on													
31:0	WE	ATA	\					0x0	0000	0000)	R'	W			Wri	ite D	ata														
		e dat et, o								s in I	MSC	_AD	DR	. Th	is re	giste	er mi	ust b	e v	vritte	en w	hen	the \	WDA	ATA	REA	ADY	bit c	of MS	SC_S	TAT	rus

7.5.7 MSC_STATUS - Status Register

Offset															Bi	t Po	siti	on														
0x01C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	41	13	12	11	10	6	8	7	9	2	4	က	7	-	0
Reset																										0	0	0	-	0	0	0
Access																										~	œ	22	œ	œ	œ	œ
Name																										PCRUNNING	ERASEABORTED	WORDTIMEOUT	WDATAREADY	INVADDR	LOCKED	BUSY

D:4	Nama	Ponet	A 00000	Departmen
Bit	Name	Reset	Access	Description
31:7	Reserved	To ensure c	ompatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
6	PCRUNNING	0	R	Performance Counters Running
	This bit is set while the is cleared.	e performance cou	inters are running	. When one performance counter reaches the maximum value, this bit
5	ERASEABORTED	0	R	The Current Flash Erase Operation Aborted
	When set, the current of	erase operation wa	s aborted by inter	rupt.
4	WORDTIMEOUT	0	R	Flash Write Word Timeout
		e AHB interface. 1		n the timeout. The flash write operation timed out and access to the when the ERASEPAGE, WRITETRIG or WRITEONCE commands in
3	WDATAREADY	1	R	WDATA Write Ready
				y MSC Flash Write Controller and the register may be updated with the en writing to MSC_WDATA.
2	INVADDR	0	R	Invalid Write Address or Erase Page
	Set when software atte	empts to load an inv	valid (unmapped)	address into ADDR
1	LOCKED	0	R	Access Locked
	When set, the last eras	se or write is aborte	ed due to erase/wr	ite access constraints
0	BUSY	0	R	Erase/Write Busy
	When set, an erase or			

7.5.8 MSC_IF - Interrupt Flag Register

Offset															Bi	t Pc	siti	on														
0x02C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	9	2	4	3	2	-	0
Reset												•					•				•								0	0	0	0
Access																													2	~	~	œ
Name																													CMOF	CHOF	WRITE	ERASE

Bit	Name	Reset	Access	Description
31:4	Reserved	To ensure co	ompatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
3	CMOF	0	R	Cache Misses Overflow Interrupt Flag
	Set when MSC_CAG	CHEMISSES overflow	S	
2	CHOF	0	R	Cache Hits Overflow Interrupt Flag
	Set when MSC_CAG	CHEHITS overflows		
1	WRITE	0	R	Write Done Interrupt Read Flag
	Set when a write is	done		
0	ERASE	0	R	Erase Done Interrupt Read Flag
	Set when erase is de	one		

Downloaded from Elecules com

7.5.9 MSC_IFS - Interrupt Flag Set Register

Offset															Bi	t Pc	siti	on														
0x030	31	30	29	28	27	26	52	24	23	22	21	20	19	18	17	16	15	41	13	12	7	10	ი	8	7	9	2	4	က	2	-	0
Reset					•																								0	0	0	0
Access																													W	W1	M1	X
Name																													CMOF	CHOF	WRITE	ERASE

Bit	Name	Reset	Access	Description
31:4	Reserved	To ensure co	ompatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
3	CMOF	0	W1	Cache Misses Overflow Interrupt Set
	Set the CMOF flag	and generate interrupt	t	
2	CHOF	0	W1	Cache Hits Overflow Interrupt Set
	Set the CHOF flag	and generate interrupt		
1	WRITE	0	W1	Write Done Interrupt Set
	Set the write done	bit and generate interru	upt	
0	ERASE	0	W1	Erase Done Interrupt Set
	Set the erase done	e bit and generate inter	rupt	

7.5.10 MSC_IFC - Interrupt Flag Clear Register

Offset															Bi	t Po	ositi	on														
0x034	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	41	13	12	7	10	6	8	7	9	2	4	က	7	-	0
Reset																			·			•				·			0	0	0	0
Access																													×	×	W	W
Name																													CMOF	СНОР	WRITE	ERASE

Bit	Name	Reset	Access	Description
31:4	Reserved	To ensure co	mpatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
3	CMOF	0	W1	Cache Misses Overflow Interrupt Clear
	Clear the CMOF interru	ıpt flag		
2	CHOF	0	W1	Cache Hits Overflow Interrupt Clear
	Clear the CHOF interru	pt flag		
1	WRITE	0	W1	Write Done Interrupt Clear
	Clear the write done bit			
0	ERASE	0	W1	Erase Done Interrupt Clear
	Clear the erase done b	it		

Downloaded from Heads, com 2010-12-21 - d0034_Rev0.90 39 www.energymicro.com

7.5.11 MSC_IEN - Interrupt Enable Register

Offset															Bi	t Pc	siti	on														
0x038	31	30	29	28	27	56	25	24	23	22	21	20	19	18	17	16	15	4	13	12	=	10	6	8	7	9	2	4	က	7	-	0
Reset																													0	0	0	0
Access																													RW	W.	ΑM	R W
Name																													CMOF	CHOF	WRITE	ERASE

Bit	Name	Reset	Access	Description
31:4	Reserved	To ensure co	ompatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
3	CMOF	0	RW	Cache Misses Overflow Interrupt Enable
	Enable the cache r	misses performance co	unter overflow inte	errupt
2	CHOF	0	RW	Cache Hits Overflow Interrupt Enable
	Enable the cache h	nits performance counte	er overflow interru	pt
1	WRITE	0	RW	Write Done Interrupt Enable
	Enable the write do	one interrupt		
0	ERASE	0	RW	Erase Done Interrupt Enable
	Enable the erase of	lone interrupt		

7.5.12 MSC_LOCK - Configuration Lock Register

0

0x1B71

Offset															Bi	t Pc	siti	on									-					
0x03C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	17	10	6	8	7	9	2	4	8	2	-	0
Reset																								0000	000000							
Access																								Š	<u>}</u>							
Name																								\L\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	LOCKNEY							

Bit	Name	Reset	Access	Description
31:16	Reserved	To ensure co	mpatibility with fu	uture devices, always write bits to 0. More information in Section 2.1 (p. 3
15:0	LOCKKEY	0x0000	RW	Configuration Lock
	MSC_TIMEBASE. W			access to MSC_CTRL, MSC_READCTRL, MSC_WRITECMD ar When reading the register, bit 0 is set when the lock is enabled.
	Mode	Value		Description
	Read Operation			
	UNLOCKED	0		MSC registers are unlocked
	LOCKED	1		MSC registers are locked

Lock MSC registers

Unlock MSC registers

www.energymicro.com 2010-12-21 - d0034_Rev0.90 Downloaded from I

Write Operation LOCK

UNLOCK

7.5.13 MSC_CMD - Command Register

Offset															Bi	t Po	siti	on								-						
0x040	31	30	29	28	27	56	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	0	8	7	9	2	4	က	2	-	0
Reset																														0	0	0
Access																														Ž.	W1	W1
Name																														STOPPC	STARTPC	INVCACHE

Bit	Name	Reset	Access	Description
31:3	Reserved	To ensure com	patibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
2	STOPPC	0	W1	Stop Performance Counters
	Use this commant bit to s	top the performand	ce counters.	
1	STARTPC	0	W1	Start Performance Counters
	Use this command bit to	start the performan	ce counters. Th	e performance counters always start counting from 0.
0	INVCACHE	0	W1	Invalidate Instruction Cache
	Use this register to invalid	date the instruction	cache.	

7.5.14 MSC_CACHEHITS - Cache Hits Performance Counter

Offset															Bi	i Po	siti	on														
0x044	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	1	10	6	8	7	9	2	4	က	2	1	0
Reset																							00000x0									
Access																							œ									
Name																							CACHEHITS									

Bit	Name	Reset	Access	Description
31:20	Reserved	To ensure co	mpatibility with fo	uture devices, always write bits to 0. More information in Section 2.1 (p. 3)
19:0	CACHEHITS	0x00000	R	Cache hits since last performance counter start command.
	Use to measure cach	ne performance for a p	particular code s	ection.

Downloaded from Houles com

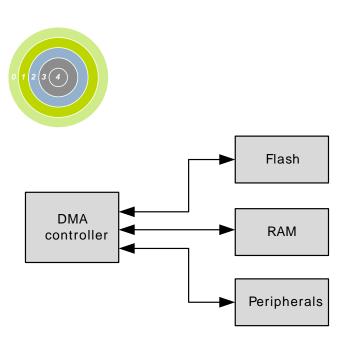
7.5.15 MSC_CACHEMISSES - Cache Misses Performance Counter

Offset															Bit	Pos	itio	n														
0x048	31	30	29	28	27	26	52	24	53	7.7	21	20	19	<u>o</u>	17	16	2	14	13	7	7	10	6	8	7	9	2	4	3	2	-	0
Reset																							00000×0									
Access																						ı	ď									
Name																							CACHEMISSES									

Bit	Name	Reset	Access	Description
31:20	Reserved	To ensure co	mpatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
19:0	CACHEMISSES	0x00000	R	Cache misses since last performance counter start command.
	Use to measure cache	performance for a p	articular code se	ection.

7.5.16 MSC_TIMEBASE - Flash Write and Erase Timebase

Offset															Bi	t Pc	siti	on														
0x050	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	41	13	12	7	10	6	80	7	9	2	4	က	2	-	0
Reset																0													0,50	2 40		
Access																X W													<u> </u>	<u>}</u>		
Name																PERIOD													о С	ם ה		


Bit	Name	Reset	Access	Description
31:17	Reserved	To ensure	compatibility with f	iuture devices, always write bits to 0. More information in Section 2.1 (p. 3)
16	PERIOD	0	RW	Sets the timebase period
	Decides wheth	ner TIMEBASE specifies the	ne number of AUX	cycles in 1 us or 5 us
	Value	Mode	De	scription
	0	1US	TIM	MEBASE period is 1 us
	1	5US	TIM	MEBASE period is 5 us
15:6	Reserved	To ensure	compatibility with f	uture devices, always write bits to 0. More information in Section 2.1 (p. 3)
5:0	BASE	0x10	RW	Timebase used by MSC to time flash writes and erases

Should be set to the number of AUX clock cycles-1 in 1us +10% if PERIOD is cleared, or the number of AUX clock cycles-1 in 5us +10% if PERIOD is set. The value should be rounded up to make sure the number of clock cycles generate at least the specified time. The resetvalue of the timebase matches a 14 MHz AUXHFRCO, which is the default frequency of the AUXHFRCO.

Downloaded from H couls com 2010-12-21 - d0034_Rev0.90 42 www.energymicro.com

8 DMA - DMA Controller

Quick Facts

What?

The DMA controller can move data without CPU intervention, effectively reducing the energy consumption for a data transfer.

Why?

The DMA can perform data transfers more energy efficiently than the CPU and allows autonomous operation in low energy modes. The LEUART can for instance provide full UART communication in EM2, consuming only a few μ A by using the DMA to move data between the LEUART and RAM.

How?

The DMA controller has multiple highly configurable, prioritized DMA channels. Advanced transfer modes such as ping-pong and scatter-gather make it possible to tailor the controller to the specific needs of an application.

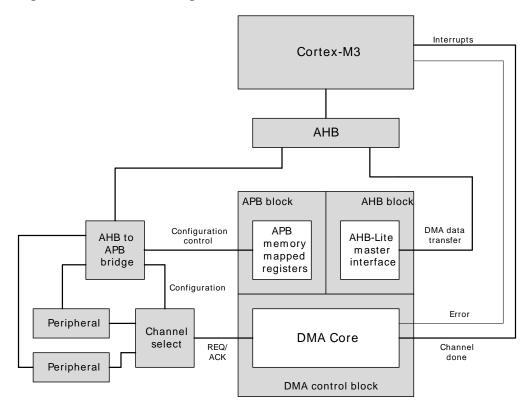
8.1 Introduction

The Direct Memory Access (DMA) controller performs memory operations independently of the CPU. This has the benefit of reducing the energy consumption and the workload of the CPU, and enables the system to stay in low energy modes when moving for instance data from the USART to RAMRAM. The DMA controller uses the PL230 μ DMA controller licensed from ARM¹. Each of the PL230s channels can on the EFM32 be connected to any of the EFM32 peripherals.

8.2 Features

- The DMA controller is accessible as a memory mapped peripheral
- Possible data transfers include
 - RAM/Flash to peripheral
 - Peripheral to RAM
 - RAM/Flash to RAM
- The DMA controller has 8 independent channels
- Each channel has one (primary) or two (primary and alternate) descriptors
- The configuration for each channel includes
 - Transfer mode
 - Priority
 - Word-count
 - Word-size (8, 16, 32 bit)
- The transfer modes include
 - Basic (using the primary or alternate DMA descriptor)
 - Ping-pong (switching between the primary or alternate DMA descriptors, for continuous data flow to/from peripherals)

¹ARM PL230 homepage [http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0417a/index.html]



- Scatter-gather (using the primary descriptor to configure the alternate descriptor)
- Each channel has a programmable transfer length
- A DMA channel can be triggered by any of several sources:
 - Communication modules (USART, LEUART)
 - Timers (TIMER)
 - Analog modules (DAC, ADC)
 - Software
- · Programmable mapping between channel number and peripherals any DMA channel can be triggered by any of the available sources
- Interrupts upon transfer completion
- Data transfer to/from LEUART in EM2 is supported by the DMA, providing extremely low energy consumption while performing UART communications

8.3 Block Diagram

An overview of the DMA and the modules it interacts with is shown in Figure 8.1 (p. 44).

Figure 8.1. DMA Block Diagram

The DMA Controller consists of four main parts:

- An APB block allowing software to configure the DMA controller
- An AHB block allowing the DMA to read and write the DMA descriptors and the source and destination data for the DMA transfers
- A DMA control block controlling the operation of the DMA, including request/acknowledge signals for the connected peripherals
- A channel select block routing the right peripheral request to each DMA channel

8.4 Functional Description

The DMA Controller is highly flexible. It is capable of transferring data between peripherals and memory without involvement from the processor core. This can be used to increase system performance by off-loading the processor from copying large amounts of data or avoiding frequent interrupts to service peripherals needing more data or having available data. It can also be used to reduce the system energy consumption by making the DMA work autonomously with the LEUART for data transfer in EM2 without having to wake up the processor core from sleep.

The DMA Controller contains 8 independent channels. Each of these channels can be connected to any of the available peripheral trigger sources by writing to the configuration registers, see Section 8.4.1 (p. 45) . In addition, each channel can be triggered by software (for large memory transfers or for debugging purposes).

What the DMA Controller should do when one of its channels is triggered, is configured through channel descriptors residing in system memory. Before enabling a channel, the software must therefore take care to write this configuration to memory. When the channel is triggered, the DMA Controller will first read the channel descriptor from system memory, and then it will proceed to perform the memory transfers as specified by the descriptor. The descriptor contains the memory address to read from, the memory address to write to, the number of bytes to be transferred, etc. The channel descriptor is described in detail in Section 8.4.3 (p. 55).

In addition to the basic transfer mode, the DMA Controller also supports two advanced transfer modes; ping-pong and scatter-gather. Ping-pong transfers are ideally suited for streaming data for high-speed peripheral communication as the DMA will be ready to retrieve the next incoming data bytes immediately while the processor core is still processing the previous ones (and similarly for outgoing communication). Scatter-gather involves executing a series of tasks from memory, and allows sophisticated schemas to be implemented by software.

Using different priority levels for the channels and setting the number of bytes after which the DMA Controller rearbitrates, it is possible to ensure that timing-critical transfers are serviced on time.

8.4.1 Channel Select Configuration

The channel select block allows selecting which peripheral's request lines (dma reg, dma sreg) to connect to each DMA channel.

This configuration is done by software through the extra registers DMA CH0 CTRL- DMA CH7 CTRL. with SOURCESEL and SIGSEL components. SOURCESEL selects which peripheral to listen to. SIGSEL selects which of the peripheral's output signals is selected.

All peripherals are connected to dma_req. When this signal is triggered, the DMA performs a number of transfers as specified by the channel descriptor (2R). The USARTs are additionally connected to the dma_sreq line. When only dma_sreq is asserted but not dma_req, then the DMA will perform exactly one transfer only (given that dma_sreq is enabled by software).

8.4.2 DMA control

8.4.2.1 DMA arbitration rate

You can configure when the controller arbitrates during a DMA transfer. This enables you to reduce the latency to service a higher priority channel.

The controller provides four bits that configure how many AHB bus transfers occur before it rearbitrates. These bits are known as the R_power bits because the value you enter, R, is raised to the power of two and this determines the arbitration rate. For example, if R = 4 then the arbitration rate is 2⁴, that is, the controller arbitrates every 16 DMA transfers.

Table 8.1 (p. 46) lists the arbitration rates.

Table 8.1. AHB bus transfer arbitration interval

R_power	Arbitrate after x DMA transfers
b0000	x = 1
b0001	x = 2
b0010	x = 4
b0011	x = 8
b0100	x = 16
b0101	x = 32
b0110	x = 64
b0111	x = 128
b1000	x = 256
b1001	x = 512
b1010 - b1111	x = 1024

Note

You must take care not to assign a low-priority channel with a large R_power because this prevents the controller from servicing high-priority requests, until it rearbitrates.

When N > 2^R and is not an integer multiple of 2^R then the controller always performs sequences of 2^R transfers until N < 2^R remain to be transferred. The controller performs the remaining N transfers at the end of the DMA cycle.

You store the value of the R_power bits in the channel control data structure. See Section 8.4.3.3 (p. 58) for more information about the location of the R_power bits in the data structure.

8.4.2.2 Priority

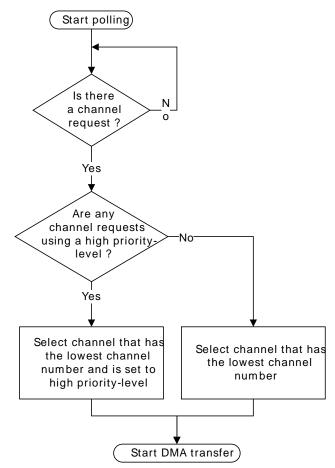
When the controller arbitrates, it determines the next channel to service by using the following information:

- · the channel number
- the priority level, default or high, that is assigned to the channel.

You can configure each channel to use either the default priority level or a high priority level by setting the DMA_CHPRIS register.

Channel number zero has the highest priority and as the channel number increases, the priority of a channel decreases. Table 8.2 (p. 46) lists the DMA channel priority levels in descending order of priority.

Table 8.2. DMA channel priority


Channel	Priority level	Descending order of
number	setting	channel priority
0	High	Highest-priority DMA channel
1	High	-
2	High	-
3	High	-

Channel	Priority level	Descending order of
number	setting	channel priority
4	High	-
5	High	-
6	High	-
7	High	-
0	Default	-
1	Default	-
2	Default	-
3	Default	-
4	Default	-
5	Default	-
6	Default	-
7	Default	Lowest-priority DMA channel

After a DMA transfer completes, the controller polls all the DMA channels that are available. Figure 8.2 (p. 47) shows the process it uses to determine which DMA transfer to perform next.

Figure 8.2. Polling flowchart

8.4.2.3 DMA cycle types

The cycle_ctrl bits control how the controller performs a DMA cycle. You can set the cycle_ctrl bits as Table 8.3 (p. 48) lists.

Table 8.3. DMA cycle types

cycle_ctrl	Description
b000	Channel control data structure is invalid
b001	Basic DMA transfer
b010	Auto-request
b011	Ping-pong
b100	Memory scatter-gather using the primary data structure
b101	Memory scatter-gather using the alternate data structure
b110	Peripheral scatter-gather using the primary data structure
b111	Peripheral scatter-gather using the alternate data structure

Note

The cycle_ctrl bits are located in the channel_cfg memory location that Section 8.4.3.3 (p. 58) describes.

For all cycle types, the controller arbitrates after 2^R DMA transfers. If you set a low-priority channel with a large 2^R value then it prevents all other channels from performing a DMA transfer, until the low-priority DMA transfer completes. Therefore, you must take care when setting the R_power, that you do not significantly increase the latency for high-priority channels.

8.4.2.3.1 Invalid

After the controller completes a DMA cycle it sets the cycle type to invalid, to prevent it from repeating the same DMA cycle.

8.4.2.3.2 Basic

In this mode, you configure the controller to use either the primary, or alternate, data structure. After you enable the channel, and the controller receives a request then the flow for this DMA cycle is:

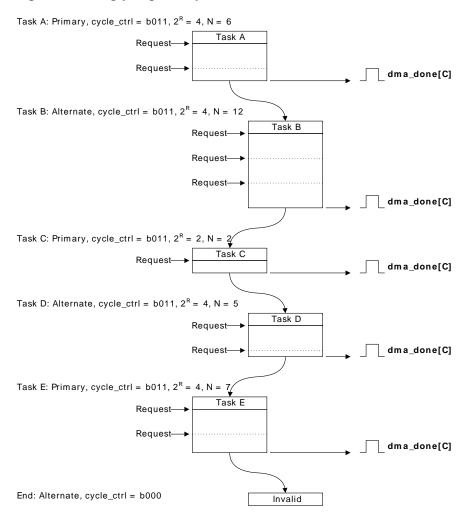
- 1. The controller performs 2^R transfers. If the number of transfers remaining is zero the flow continues at step 3 (p. 48).
- 2. The controller arbitrates:
 - if a higher-priority channel is requesting service then the controller services that channel
 - if the peripheral or software signals a request to the controller then it continues at step 1 (p. 48).
- 3. The controller sets dma_done[C] HIGH for one HFCORECLK cycle. This indicates to the host processor that the DMA cycle is complete.

8.4.2.3.3 Auto-request

When the controller operates in this mode, it is only necessary for it to receive a single request to enable it to complete the entire DMA cycle. This enables a large data transfer to occur, without significantly increasing the latency for servicing higher priority requests, or requiring multiple requests from the processor or peripheral.

You can configure the controller to use the primary, or alternate, data structure. After you enable the channel, and the controller receives a request for this channel, then the flow for this DMA cycle is:

- 1. The controller performs 2^R transfers for channel C. If the number of transfers remaining is zero the flow continues at step 3 (p. 49).
- 2. The controller arbitrates. When channel C has the highest priority then the DMA cycle continues at step 1 (p. 48).


3. The controller sets dma_done[C] HIGH for one HFCORECLK cycle. This indicates to the host processor that the DMA cycle is complete.

8.4.2.3.4 Ping-pong

In ping-pong mode, the controller performs a DMA cycle using one of the data structures and it then performs a DMA cycle using the other data structure. The controller continues to switch from primary to alternate to primary... until it reads a data structure that is invalid, or until the host processor disables the channel.

Figure 8.3 (p. 49) shows an example of a ping-pong DMA transaction.

Figure 8.3. Ping-pong example

In Figure 8.3 (p. 49):

Task A 1. The host processor configures the primary data structure for task A.

- 2. The host processor configures the alternate data structure for task B. This enables the controller to immediately switch to task B after task A completes, provided that a higher priority channel does not require servicing.
- 3. The controller receives a request and performs four DMA transfers.
- 4. The controller arbitrates. After the controller receives a request for this channel, the flow continues if the channel has the highest priority.
- 5. The controller performs the remaining two DMA transfers.

6. The controller sets <code>dma_done[C]</code> HIGH for one <code>HFCORECLK</code> cycle and enters the arbitration process.

After task A completes, the host processor can configure the primary data structure for task C. This enables the controller to immediately switch to task C after task B completes, provided that a higher priority channel does not require servicing.

After the controller receives a new request for the channel and it has the highest priority then task B commences:

Task B

- 7. The controller performs four DMA transfers.
- 8. The controller arbitrates. After the controller receives a request for this channel, the flow continues if the channel has the highest priority.
- 9. The controller performs four DMA transfers.
- 10. The controller arbitrates. After the controller receives a request for this channel, the flow continues if the channel has the highest priority.
- 11. The controller performs the remaining four DMA transfers.
- 12. The controller sets $dma_done[C]$ HIGH for one HFCORECLK cycle and enters the arbitration process.

After task B completes, the host processor can configure the alternate data structure for task D.

After the controller receives a new request for the channel and it has the highest priority then task C commences:

Task C 13.The controller performs two DMA transfers.

14.The controller sets <code>dma_done[C]</code> HIGH for one <code>HFCORECLK</code> cycle and enters the arbitration process.

After task C completes, the host processor can configure the primary data structure for task E.

After the controller receives a new request for the channel and it has the highest priority then task D commences:

Task D 15.The controller performs four DMA transfers.

- 16. The controller arbitrates. After the controller receives a request for this channel, the flow continues if the channel has the highest priority.
- 17. The controller performs the remaining DMA transfer.
- 18. The controller sets $dma_done[C]$ HIGH for one HFCORECLK cycle and enters the arbitration process.

After the controller receives a new request for the channel and it has the highest priority then task E commences:

Task E 19.The controller performs four DMA transfers.

- 20. The controller arbitrates. After the controller receives a request for this channel, the flow continues if the channel has the highest priority.
- 21. The controller performs the remaining three DMA transfers.
- 22.The controller sets <code>dma_done[C]</code> HIGH for one <code>HFCORECLK</code> cycle and enters the arbitration process.

If the controller receives a new request for the channel and it has the highest priority then it attempts to start the next task. However, because the host processor has not configured the alternate data structure,

and on completion of task D the controller set the cycle_ctrl bits to b000, then the ping-pong DMA transaction completes.

Note

You can also terminate the ping-pong DMA cycle in Figure 8.3 (p. 49), if you configure task E to be a basic DMA cycle by setting the cycle_ctrl field to 3'b001.

8.4.2.3.5 Memory scatter-gather

In memory scatter-gather mode the controller receives an initial request and then performs four DMA transfers using the primary data structure. After this transfer completes, it starts a DMA cycle using the alternate data structure. After this cycle completes, the controller performs another four DMA transfers using the primary data structure. The controller continues to switch from primary to alternate to primary... until either:

- the host processor configures the alternate data structure for a basic cycle
- · it reads an invalid data structure.

Note

After the controller completes the N primary transfers it invalidates the primary data structure by setting the cycle_ctrl field to b000.

The controller only asserts dma_done[C] when the scatter-gather transaction completes using an autorequest cycle.

In scatter-gather mode, the controller uses the primary data structure to program the alternate data structure. Table 8.4 (p. 51) lists the fields of the channel_cfg memory location for the primary data structure, that you must program with constant values and those that can be user defined.

Table 8.4. channel cfg for a primary data structure, in memory scatter-gather mode

Bit	Field	Value	Description		
Constant	Constant-value fields:				
[31:30}	dst_inc	b10	Configures the controller to use word increments for the address		
[29:28]	dst_size	b10	Configures the controller to use word transfers		
[27:26]	src_inc	b10	Configures the controller to use word increments for the address		
[25:24]	src_size	b10	Configures the controller to use word transfers		
[17:14]	R_power	b0010	Configures the controller to perform four DMA transfers		
[3]	next_useburst	0	For a memory scatter-gather DMA cycle, this bit must be set to zero		
[2:0]	cycle_ctrl	b100	Configures the controller to perform a memory scatter-gather DMA cycle		
User defi	ned values:				
[23:21]	dst_prot_ctrl	-	Configures the state of HPROT when the controller writes the destination data		
[20:18]	src_prot_ctrl	-	Configures the state of HPROT when the controller reads the source data		
[13:4]	n_minus_1	N ¹	Configures the controller to perform N DMA transfers, where N is a multiple of four		

¹Because the R_power field is set to four, you must set N to be a multiple of four. The value given by N/4 is the number of times that you must configure the alternate data structure.

See Section 8.4.3.3 (p. 58) for more information.

Figure 8.4 (p. 52) shows a memory scatter-gather example.

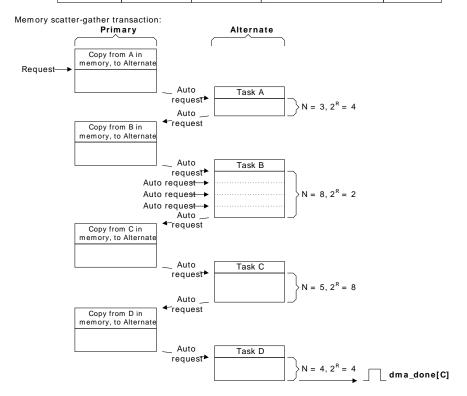


Figure 8.4. Memory scatter-gather example

Initialization:1. Configure primary to enable the copy A, B, C, and D operations: cycle_ctrl = b100, 2^R = 4, N = 16.

2. Write the primary source data to memory, using the structure shown in the following table.

	src_data_end_ptr	dst_data_end_ptr	channel_cfg	Unused	
Data for Task A	0x0A000000	0x0AE00000	cycle_ctrl = $b101, 2^R = 4, N = 3$	0xXXXXXXXX	
Data for Task B	0x0B000000	0x0BE00000	cycle_ctrl = $b101, 2^R = 2, N = 8$	0xXXXXXXX	
Data for Task C	0x0C000000	0x0CE00000	cycle_ctrl = b101, 2 ^R = 8, N = 5	0xXXXXXXX	
Data for Task D	0x0D000000	0x0DE00000	cycle_ctrl = b010, 2 ^R = 4, N = 4	0xXXXXXXX	

In Figure 8.4 (p. 52):

Initialization

- The host processor configures the primary data structure to operate in memory scatter-gather mode by setting cycle_ctrl to b100. Because a data structure for a single channel consists of four words then you must set 2^R to 4. In this example, there are four tasks and therefore N is set to 16.
- 2. The host processor writes the data structure for tasks A, B, C, and D to the memory locations that the primary src data end ptr specifies.
- 3. The host processor enables the channel.

The memory scatter-gather transaction commences when the controller receives a request on dma_req[] or a manual request from the host processor. The transaction continues as follows:

Primary, copy A

- 1. After receiving a request, the controller performs four DMA transfers. These transfers write the alternate data structure for task A.
- 2. The controller generates an auto-request for the channel and then arbitrates.

Task A

3. The controller performs task A. After it completes the task, it generates an auto-request for the channel and then arbitrates.

Primary, copy B

- 4. The controller performs four DMA transfers. These transfers write the alternate data structure for task B.
- 5. The controller generates an auto-request for the channel and then arbitrates.

Task B

6. The controller performs task B. After it completes the task, it generates an auto-request for the channel and then arbitrates.

Primary, copy C

7. The controller performs four DMA transfers. These transfers write the alternate data structure for task C.

	8. The controller generates an auto-request for the channel and then arbitrates.
Task C	9. The controller performs task C. After it completes the task, it generates an auto-request for the channel and then arbitrates.
Primary, copy D	10.The controller performs four DMA transfers. These transfers write the alternate data structure for task D.
	11. The controller sets the cycle_ctrl bits of the primary data structure to b000, to indicate that this data structure is now invalid.
	12. The controller generates an auto-request for the channel and then arbitrates.
Task D	13.The controller performs task D using an auto-request cycle.
	14.The controller sets dma_done[C] HIGH for one HFCORECLK cycle and enters the arbitration process.

8.4.2.3.6 Peripheral scatter-gather

In peripheral scatter-gather mode the controller receives an initial request from a peripheral and then it performs four DMA transfers using the primary data structure. It then immediately starts a DMA cycle using the alternate data structure, without rearbitrating.

Note

These are the only circumstances, where the controller does not enter the arbitration process after completing a transfer using the primary data structure.

After this cycle completes, the controller rearbitrates and if the controller receives a request from the peripheral that has the highest priority then it performs another four DMA transfers using the primary data structure. It then immediately starts a DMA cycle using the alternate data structure, without rearbitrating. The controller continues to switch from primary to alternate to primary... until either:

- the host processor configures the alternate data structure for a basic cycle
- it reads an invalid data structure.

Note

After the controller completes the N primary transfers it invalidates the primary data structure by setting the cycle_ctrl field to b000.

The controller asserts dma_done[C] when the scatter-gather transaction completes using a basic cycle.

In scatter-gather mode, the controller uses the primary data structure to program the alternate data structure. Table 8.5 (p. 53) lists the fields of the channel_cfg memory location for the primary data structure, that you must program with constant values and those that can be user defined.

Table 8.5. channel_cfg for a primary data structure, in peripheral scatter-gather mode

Bit F	Field	Value	Description		
Constant-va	Constant-value fields:				
[31:30} c	dst_inc	b10	Configures the controller to use word increments for the address		
[29:28] c	dst_size	b10	Configures the controller to use word transfers		
[27:26] s	src_inc	b10	Configures the controller to use word increments for the address		
[25:24] s	src_size	b10	Configures the controller to use word transfers		
[17:14] F	R_power	b0010	Configures the controller to perform four DMA transfers		
[2:0] c	cycle_ctrl	b110	Configures the controller to perform a peripheral scatter-gather DMA cycle		
User defined	User defined values:				
[23:21] c	dst_prot_ctrl	-	Configures the state of HPROT when the controller writes the destination data		
[20:18] s	src_prot_ctrl	-	Configures the state of HPROT when the controller reads the source data		

Bit	Field	Value	Description
[13:4]	n_minus_1	N ¹	Configures the controller to perform N DMA transfers, where N is a multiple of four
[3]	next_useburst	-	When set to 1, the controller sets the chnl_useburst_set [C] bit to 1 after the alternate transfer completes

¹Because the R_power field is set to four, you must set N to be a multiple of four. The value given by N/4 is the number of times that you must configure the alternate data structure.

See Section 8.4.3.3 (p. 58) for more information.

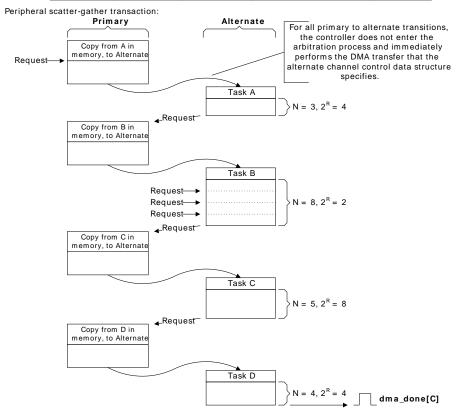

Figure 8.5 (p. 54) shows a peripheral scatter-gather example.

Figure 8.5. Peripheral scatter-gather example

Initialization:1. Configure primary to enable the copy A, B, C, and D operations: $cycle_ctrl = b110, 2^R = 4, N = 16.$

2. Write the primary source data in memory, using the structure shown in the following table.

	src_data_end_ptr	dst_data_end_ptr	channel_cfg	Unused
Data for Task A	0x0A000000	0x0AE00000	cycle_ctrl = $b111, 2^R = 4, N = 3$	0xXXXXXXXX
Data for Task B	0x0B000000	0x0BE00000	cycle_ctrl = b111, 2 ^R = 2, N = 8	0xXXXXXXXX
Data for Task C	0x0C000000	0x0CE00000	cycle_ctrl = b111, 2 ^R = 8, N = 5	0xXXXXXXXX
Data for Task D	0x0D000000	0x0DE00000	cycle_ctrl = $b001, 2^R = 4, N = 4$	0xXXXXXXXX

In Figure 8.5 (p. 54):

Initialization

- 1. The host processor configures the primary data structure to operate in peripheral scatter-gather mode by setting cycle_ctrl to b110. Because a data structure for a single channel consists of four words then you must set 2^R to 4. In this example, there are four tasks and therefore N is set to 16.
- 2. The host processor writes the data structure for tasks A, B, C, and D to the memory locations that the primary src_data_end_ptr specifies.
- 3. The host processor enables the channel.

The peripheral scatter-gather transaction commences when the controller receives a request on dma_req[]. The transaction continues as follows:

Primary, copy A	1. After receiving a request, the controller performs four DMA transfers. These
	transfers write the alternate data structure for task A

Task A 2. The controller performs task A.

3. After the controller completes the task it enters the arbitration process.

After the peripheral issues a new request and it has the highest priority then the process continues with:

4. The controller performs four DMA transfers. These transfers write the alternate Primary, copy B data structure for task B.

Task B 5. The controller performs task B. To enable the controller to complete the task, the peripheral must issue a further three requests.

6. After the controller completes the task it enters the arbitration process.

After the peripheral issues a new request and it has the highest priority then the process continues with:

Primary, copy C 7. The controller performs four DMA transfers. These transfers write the alternate data structure for task C.

8. The controller performs task C. Task C

9. After the controller completes the task it enters the arbitration process.

After the peripheral issues a new request and it has the highest priority then the process continues with:

Primary, copy D 10. The controller performs four DMA transfers. These transfers write the alternate

data structure for task D.

11. The controller sets the cycle_ctrl bits of the primary data structure to b000, to

indicate that this data structure is now invalid.

Task D 12. The controller performs task D using a basic cycle.

13.The controller sets dma_done[C] HIGH for one HFCORECLK cycle and enters

the arbitration process.

8.4.2.4 Error signaling

If the controller detects an ERROR response on the AHB-Lite master interface, it:

- disables the channel that corresponds to the ERROR
- sets dma err HIGH.

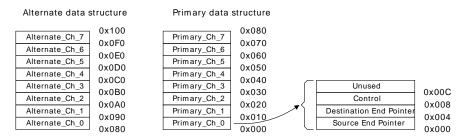
After the host processor detects that dma_err is HIGH, it must check which channel was active when the ERROR occurred. It can do this by:

Reading the DMA_CHENS register to create a list of disabled channels.

When a channel asserts dma done[] then the controller disables the channel. The program running on the host processor must always keep a record of which channels have recently asserted their dma_done[] outputs.

2. It must compare the disabled channels list from step 1 (p. 55), with the record of the channels that have recently set their dma done[] outputs. The channel with no record of dma done[C] being set is the channel that the ERROR occurred on.

8.4.3 Channel control data structure


You must provide an area of system memory to contain the channel control data structure. This system memory must:

- provide a contiguous area of system memory that the controller and host processor can access
- have a base address that is an integer multiple of the total size of the channel control data structure.

Figure 8.6 (p. 56) shows the memory that the controller requires for the channel control data structure, when all 8 channels and the optional alternate data structure are in use.

Figure 8.6. Memory map for 8 channels, including the alternate data structure

This structure in Figure 8.6 (p. 56) uses 256 bytes of system memory. The controller uses the lower 8 address bits to enable it to access all of the elements in the structure and therefore the base address must be at 0xxxxxxx00.

You can configure the base address for the primary data structure by writing the appropriate value in the DMA_CTRLBASE register.

You do not need to set aside the full 256 bytes if not all 8 channels are used or not all alternate descriptors are used. If e.g. only 4 channels are used and they only need the primary descriptors, then only 64 bytes need be set aside.

Table 8.6 (p. 56) lists the address bits that the controller uses when it accesses the elements of the channel control data structure.

Table 8.6. Address bit settings for the channel control data structure

Address bits				
[7]	[6]	[5]	[4]	[3:0]
Α	C[2]	C[1]	C[0]	0x0, 0x4, or 0x8

Where:

A Selects one of the channel control data structures:

A = 0 Selects the primary data structure.

A = 1 Selects the alternate data structure.

C[2:0] Selects the DMA channel.

Address[3:0] Selects one of the control elements:

0x0 Selects the source data end pointer.

0x4 Selects the destination data end pointer.

0x8 Selects the control data configuration.

0xC The controller does not access this address location. If required, you can enable the host processor to use this memory location as system memory.

Note

It is not necessary for you to calculate the base address of the alternate data structure because the DMA_ALTCTRLBASE register provides this information.

Figure 8.7 (p. 57) shows a detailed memory map of the descriptor structure.

Unused 0x0FC Control Alternate for 0x0F8 channel 7 **Destination End Pointer** 0x0F4 Source End Pointer 0x0F0 Alternate data Unused 0x09C structure Alternate for Control 0x098 channel 1 Destination End Pointer 0x094 Source End Pointer 0x090 Unused 0x08C Control Alternate for 0x088 channel 0 **Destination End Pointer** 0x084 Source End Pointer 080x0 Unused 0x07C Control Primary for 0x078 channel 7 **Destination End Pointer** 0x074 Source End Pointer 0x070 Primary data Unused 0x01C structure Control Primary for 0x018 channel 1 Destination End Pointer 0x014 Source End Pointer 0x010 Unused 0x00C Primary for Control 800x0 channel 0 Destination End Pointer 0x004

Figure 8.7. Detailed memory map for the 8 channels, including the alternate data structure

The controller uses the system memory to enable it to access two pointers and the control information that it requires for each channel. The following subsections will describe these 32-bit memory locations and how the controller calculates the DMA transfer address.

0x000₋

8.4.3.1 Source data end pointer

The src_data_end_ptr memory location contains a pointer to the end address of the source data. Figure 8.7 (p. 57) lists the bit assignments for this memory location.

Table 8.7. src_data_end_ptr bit assignments

Bit	Name	Description
[31:0]	src_data_end_ptr	Pointer to the end address of the source data

Source End Pointer

Before the controller can perform a DMA transfer, you must program this memory location with the end address of the source data. The controller reads this memory location when it starts a 2^R DMA transfer.

Note

The controller does not write to this memory location.

8.4.3.2 Destination data end pointer

The dst_data_end_ptr memory location contains a pointer to the end address of the destination data. Table 8.8 (p. 58) lists the bit assignments for this memory location.

Table 8.8. dst_data_end_ptr bit assignments

Bit	Name	Description
[31:0]	dst_data_end_ptr	Pointer to the end address of the destination data

Before the controller can perform a DMA transfer, you must program this memory location with the end address of the destination data. The controller reads this memory location when it starts a 2^R DMA transfer.

Note

The controller does not write to this memory location.

8.4.3.3 Control data configuration

For each DMA transfer, the channel_cfg memory location provides the control information for the controller. Figure 8.8 (p. 58) shows the bit assignments for this memory location.

Figure 8.8. channel_cfg bit assignments

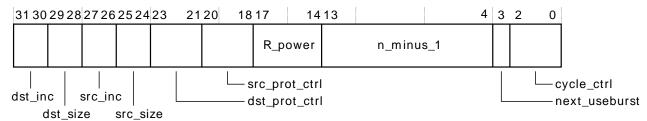


Table 8.9 (p. 58) lists the bit assignments for this memory location.

Table 8.9. channel_cfg bit assignments

Bit	Name	Description	
[31:30]	dst_inc	Destination address increment.	
		The address increment depends	s on the source data width as follows:
		Source data width = byte	b00 = byte.
			b01 = halfword.
			b10 = word.
			b11 = no increment. Address remains set to the value that the dst_data_end_ptr memory location contains.
		Source data width = halfword	b00 = reserved.
			b01 = halfword.
			b10 = word.
			b11 = no increment. Address remains set to the value that the dst_data_end_ptr memory location contains.
		Source data width = word	b00 = reserved.
			b01 = reserved.
			b10 = word.
			b11 = no increment. Address remains set to the value that the dst_data_end_ptr memory location contains.
[29:28]	dst_size	Destination data size.	

Bit	Name	Description		
		Note		
		You	must set dst_size	to contain the same value that src_size contains.
[27:26]	src_inc	Set the bits to source data wi		address increment. The address increment depends on the
		Source data w	idth = byte	b00 = byte.
				b01 = halfword.
				b10 = word.
		Source data w	idth = halfword	b11 = no increment. Address remains set to the value that the src_data_end_ptr memory location contains. b00 = reserved.
				b01 = halfword.
				b10 = word.
		Source data w	idth = word	b11 = no increment. Address remains set to the value that the src_data_end_ptr memory location contains. b00 = reserved.
				b01 = reserved.
				b10 = word.
				b11 = no increment. Address remains set to the value that
				the src_data_end_ptr memory location contains.
[25:24]	src_size	Set the bits to	match the size of	the source data:
		b00 = byte		
		b01 = halfword	I	
		b10 = word		
		b11 = reserved	d.	
[23:21]	dst_prot_ctrl	Set the bits to	control the state o	f HPROT when the controller writes the destination data.
			his bit has no effe	
				of the Blanc. If HPROT as follows:
		0	= HPROT is LOW	and the access is non-privileged.
		1	= HPROT is HIGH	and the access is privileged.
[20:18]	src_prot_ctrl	Set the bits to	control the state o	f HPROT when the controller reads the source data.
		Bit [20] T	his bit has no effe	ct on the DMA.
			his bit has no effe	ct on the DMA. of HPROT as follows:
				and the access is non-privileged.
				and the access is privileged.
[47,44]	D. nower			
[17:14]	R_power		rbitration rate sett	ny DMA transfers can occur before the controller rearbitrates. ings are:
		b0000		each DMA transfer.
		b0001 b0010		2 DMA transfers. 4 DMA transfers.
		b0010 b0011		8 DMA transfers.
		b0100		16 DMA transfers.
		b0101	Arbitrates after	32 DMA transfers.
		b0110		64 DMA transfers.
		b0111		128 DMA transfers.
		b1000		256 DMA transfers.
		b1001 b1010 - b1111		512 DMA transfers. 1024 DMA transfers. This means that no arbitration occurs

Downloaded from Elecules com

Bit	Name	Description
[13:4]	n_minus_1	Prior to the DMA cycle commencing, these bits represent the total number of DMA transfers
[10.4]	11_11111143_1	that the DMA cycle contains. You must set these bits according to the size of DMA cycle that you require.
		The 10-bit value indicates the number of DMA transfers, minus one. The possible values are:
		b000000000 = 1 DMA transfer
		b000000001 = 2 DMA transfers
		b00000010 = 3 DMA transfers
		b00000011 = 4 DMA transfers
		b00000100 = 5 DMA transfers
		•
		•
		b111111111 = 1024 DMA transfers.
		The controller updates this field immediately prior to it entering the arbitration process. This enables the controller to store the number of outstanding DMA transfers that are necessary to complete the DMA cycle.
[3]	next_useburst	Controls if the chnl_useburst_set [C] bit is set to a 1, when the controller is performing a peripheral scatter-gather and is completing a DMA cycle that uses the alternate data structure.
		Note
		Immediately prior to completion of the DMA cycle that the alternate data structure specifies, the controller sets the chnl_useburst_set [C] bit to 0 if the number of remaining transfers is less than 2 ^R . The setting of the next_useburst bit controls if the controller performs an additional modification of the chnl_useburst_set [C] bit.
		In peripheral scatter-gather DMA cycle then after the DMA cycle that uses the alternate data structure completes, either:
		0 = the controller does not change the value of the chnl_useburst_set [C] bit. If the chnl_useburst_set [C] bit is 0 then for all the remaining DMA cycles in the peripheral scatter-gather transaction, the controller responds to requests on $\mathtt{dma_req}[\]$ and $\mathtt{dma_sreq}[\]$, when it performs a DMA cycle that uses an alternate data structure.
		1 = the controller sets the chnl_useburst_set [C] bit to a 1. Therefore, for the remaining DMA cycles in the peripheral scatter-gather transaction, the controller only responds to requests on dma_req[], when it performs a DMA cycle that uses an alternate data structure.
[2:0]	cycle_ctrl	The operating mode of the DMA cycle. The modes are:
		b000 Stop. Indicates that the data structure is invalid.
		b001 Basic. The controller must receive a new request, prior to it entering the arbitration process, to enable the DMA cycle to complete.
		b010 Auto-request. The controller automatically inserts a request for the appropriate channel during the arbitration process. This means that the initial request is sufficient to enable the DMA cycle to complete.
		 b011 Ping-pong. The controller performs a DMA cycle using one of the data structures. After the DMA cycle completes, it performs a DMA cycle using the other data structure. After the DMA cycle completes and provided that the host processor has updated the original data structure, it performs a DMA cycle using the original data structure. The controller continues to perform DMA cycles until it either reads an invalid data structure or the host processor changes the cycle_ctrl bits to b001 or b010. See Section 8.4.2.3.4 (p. 49). b100 Memory scatter/gather. See Section 8.4.2.3.5 (p. 51).
		When the controller operates in memory scatter-gather mode, you must only use this
		value in the primary data structure. b101 Memory scatter/gather. See Section 8.4.2.3.5 (p. 51).
		When the controller operates in memory scatter-gather mode, you must only use this value in the alternate data structure. b110 Peripheral scatter/gather. See Section 8.4.2.3.6 (p. 53).
		When the controller operates in peripheral scatter-gather mode, you must only use this value in the primary data structure. b111 Peripheral scatter/gather. See Section 8.4.2.3.6 (p. 53).

Downloaded from Elecules com

Bit	Name	Description
		When the controller operates in peripheral scatter-gather mode, you must only use this value in the alternate data structure.

At the start of a DMA cycle, or 2^R DMA transfer, the controller fetches the channel_cfg from system memory. After it performs 2^R, or N, transfers it stores the updated channel_cfg in system memory.

The controller does not support a dst_size value that is different to the src_size value. If it detects a mismatch in these values, it uses the src_size value for source and destination and when it next updates the n_minus_1 field, it also sets the dst_size field to the same as the src_size field.

After the controller completes the N transfers it sets the cycle_ctrl field to b000, to indicate that the channel cfg data is invalid. This prevents it from repeating the same DMA transfer.

8.4.3.4 Address calculation

To calculate the source address of a DMA transfer, the controller performs a left shift operation on the n_minus_1 value by a shift amount that src_inc specifies, and then subtracts the resulting value from the source data end pointer. Similarly, to calculate the destination address of a DMA transfer, it performs a left shift operation on the n_minus_1 value by a shift amount that dst_inc specifies, and then subtracts the resulting value from the destination end pointer.

Depending on the value of src_inc and dst_inc, the source address and destination address can be calculated using the equations:

src_inc = b00 and dst_inc = b00
 source address = src_data_end_ptr - n_minus_1
 destination address = dst_data_end_ptr - (n_minus_1
 source address = src_data_end_ptr - (n_minus_1 << 1)
 destination address = dst_data_end_ptr - (n_minus_1 << 1)
 src_inc = b10 and dst_inc = b10
 source address = src_data_end_ptr - (n_minus_1 << 2)
 destination address = dst_data_end_ptr - (n_minus_1 << 2)
 source address = src_data_end_ptr - (n_minus_1 << 2)
 source address = src_data_end_ptr
 destination address = dst_data_end_ptr
 destination address = dst_data_end_ptr

Table 8.10 (p. 61) lists the destination addresses for a DMA cycle of six words.

Table 8.10. DMA cycle of six words using a word increment

Initial values of chann	nel_cfg, prior to the D	MA cycle		
src_size = b10, dst_ir	nc = b10, n_minus_1 =	= b101, cycl	e_ctrl = 1	
	End Pointer	Count	Difference ¹	Address
	0x2AC	5	0x14	0x298
	0x2AC	4	0x10	0x29C
DMA transfers	0x2AC	3	0xC	0x2A0
	0x2AC	2	0x8	0x2A4
	0x2AC	1	0x4	0x2A8
	0x2AC	0	0x0	0x2AC
Final values of chann	el_cfg, after the DMA	A cycle		
src_size = b10, dst_ir	nc = b10, n_minus_1 :	= 0, cycle_c	trl = 0	

¹This value is the result of count being shifted left by the value of dst_inc.

Table 8.11 (p. 62) lists the destination addresses for a DMA transfer of 12 bytes using a halfword increment.

Downloaded from Headis Company and Downloaded from

Table 8.11. DMA cycle of 12 bytes using a halfword increment

src_size = b00, dst_ii	nc = b01, n_minus_1 =	= b1011, cy	cle_ctrl = 1, R_pc	ower = b11
	End Pointer	Count	Difference ¹	Address
	0x5E7	11	0x16	0x5D1
	0x5E7	10	0x14	0x5D3
DMA transfers	0x5E7	9	0x12	0x5D5
211111111111111111111111111111111111111	0x5E7	8	0x10	0x5D7
	0x5E7	7	0xE	0x5D9
	0x5E7	6	0xC	0x5DB
	0x5E7	5	0xA	0x5DD
	0x5E7	4	0x8	0x5DF
Values of channel_cf	fg after 2 ^R DMA transf	fers		
src_size = b00, dst_ii	nc = b01, n_minus_1 =	= b011, cycl	e_ctrl = 1, R_pov	ver = b11
	End Pointer	Count	Difference	Address
	0x5E7	3	0x6	0x5E1
	0x5E7	2	0x4	0x5E3
	0x5E7	1	0x2	0x5E5
DMA transfers	UASE /			

¹This value is the result of count being shifted left by the value of dst_inc.

8.4.4 Interaction with the EMU

The DMA interacts with the Energy Management Unit (EMU) to allow transfers from e.g. the LEUART to occur in EM2. The EMU can wake up the DMA sufficiently long to allow data transfers to occur. See section "DMA Support" in the LEUART documentation.

8.4.5 Interrupts

The PL230 dma_done[n:0] signals, one for each channel, as well as the dma_err signal, are available as interrupts to the Cortex-M3 core. They are combined into one interrupt vector, DMA_INT. If interrupts for the DMA is enabled in the ARM Cortex-M3 core, an interrupt will be made if one or more of the interrupt flags in DMA_IF and their corresponding bits in DMA_IEN are set.

8.5 Examples

A basic example of how to program the DMA for transferring 42 bytes from the USART1 to memory location 0x20003420. Assumes that the channel 0 is currently disabled, and that the DMA_ALTCTRLBASE register has already been configured.

2010-12-21 - d0034 Rev0.90 62 www.energymicro.com

²After the controller completes the DMA cycle it invalidates the channel_cfg memory location by clearing the cycle_ctrl field.

Example 8.1. DMA Transfer

- 1. Configure the channel select for using USART1 with DMA channel 0
 - Write SOURCESEL=0b001101 and SIGSEL=XX to DMA CHCTRL0
- 2. Configure the primary channel descriptor for DMA channel 0
 - a. Write XX (read address of USART1) to src_data_end_ptr
 - b. Write 0x20003420 + 40 to dst_data_end_ptr c
 - c. Write these values to channel_cfg for channel 0:
 - i. dst_inc=b01 (destination halfword address increment)
 - ii. dst_size=b01 (halfword transfer size)
 - iii. src inc=b11 (no address increment for source)
 - iv. src_size=01 (halfword transfer size)
 - v. dst_prot_ctrl=000 (no cache/buffer/privilege)
 - vi. src_prot_ctrl=000 (no cache/buffer/privilege)
 - vii.R_power=b0000 (arbitrate after each DMA transfer)
 - viiin_minus_1=d20 (transfer 21 halfwords)
 - ix. next_useburst=b0 (not applicable)
 - x. cycle_ctrl=b001 (basic operating mode)
- 3. Enable the DMA
 - a. Write EN=1 to DMA_CONFIG
- 4. Disable the single requests for channel 0 (i.e. do not react to data available, wait for buffer full)
 - a. Write DMA_CHUSEBURSTS[0]=1
- 5. Enable buffer-full requests for channel 0
 - a. Write DMA_CHREQMASKC[0]=1
- 6. 6. Use the primary data structure for channel 0
 - a. Write DMA_CHALTC[0]=1
- 7. 7. Enable channel 0
 - a. Write DMA_CHENS[0]=1

8.6 Register Map

The offset register address is relative to the registers base address.

Offset	Name	Туре	Description
0x000	DMA_STATUS	R	DMA Status Registers
0x004	DMA_CONFIG	W	DMA Configuration Register
0x008	DMA_CTRLBASE	RW	Channel Control Data Base Pointer Register
0x00C	DMA_ALTCTRLBASE	R	Channel Alternate Control Data Base Pointer Register
0x010	DMA_WAITSTATUS	R	Channel Wait on Request Status Register
0x014	DMA_CHSWREQ	W1	Channel Software Request Register
0x018	DMA_CHUSEBURSTS	RW1	Channel Useburst Set Register
0x01C	DMA_CHUSEBURSTC	W1	Channel Useburst Clear Register
0x020	DMA_CHREQMASKS	RW1	Channel Request Mask Set Register
0x024	DMA_CHREQMASKC	W1	Channel Request Mask Clear Register
0x028	DMA_CHENS	RW1	Channel Enable Set Register
0x02C	DMA_CHENC	W1	Channel Enable Clear Register
0x030	DMA_CHALTS	RW1	Channel Alternate Set Register
0x034	DMA_CHALTC	W1	Channel Alternate Clear Register
0x038	DMA_CHPRIS	RW1	Channel Priority Set Register
0x03C	DMA_CHPRIC	W1	Channel Priority Clear Register
0x04C	DMA_ERRORC	RW	Bus Error Clear Register
0x1000	DMA_IF	R	Interrupt Flag Register
0x1004	DMA_IFS	W1	Interrupt Flag Set Register
0x1008	DMA_IFC	W1	Interrupt Flag Clear Register
0x100C	DMA_IEN	RW	Interrupt Enable register
0x1100	DMA_CH0_CTRL	RW	Channel Control Register
0x1104	DMA_CH1_CTRL	RW	Channel Control Register
0x1108	DMA_CH2_CTRL	RW	Channel Control Register
0x110C	DMA_CH3_CTRL	RW	Channel Control Register
0x1110	DMA_CH4_CTRL	RW	Channel Control Register
0x1114	DMA_CH5_CTRL	RW	Channel Control Register
0x1118	DMA_CH6_CTRL	RW	Channel Control Register
0x111C	DMA_CH7_CTRL	RW	Channel Control Register

Downloaded from House 12010-12-21 - d0034_Rev0.90 64 www.energymicro.com

8.7 Register Description

8.7.1 DMA_STATUS - DMA Status Registers

Offset														Bi	t Po	sitio	on_														
0x000	30	53	· ·	_	56	52	4	23	22	_	20	19	80	17	16	15		13	12	11	10	6	8			2	4	က	7		0
	31	5	28	27	0	Ñ	24	7	2	21	Ñ	7	. 18	-	-	~	14	-	-	_	~	0,		7	9		4	(1)	1,4	-	
Reset													0x07												2	3					0
Access													~												٥	<u> </u>					~
Name													CHNUM												H F F	2					Z
Bit	Nam	е					Res	set			A	CC	ess		De	scri	ptic	on													
31:21	Reser	ved					То є	ensi	ıre c	omp	atibi	ility	with	futu	re de	vice	s, a	lway	'S W	rite	bits	to 0.	Mor	e inf	orm	atio	n in S	Sect	ion 2	.1 (p	. 3)
20:16	CHNL	JM					0x07	7			R				Cha	nne	el Nu	ımb	er												
	Numb	er of	avail	able	DMA	A ch	anne	els r	ninu	s on	e. A	lway	ys re	eads	as 7	, as	the	re ar	e 8	cha	nne	ls.									
15:8	Reser	Reserved To ensure compa												futu	re de	vice	s, a	lway	'S W	rite	bits	to 0.	Mor	e int	orm	atio	n in :	Sect	ion 2	.1 (p	. 3)
7:4	STAT	E				_	0x0				R				Cor	ntrol	Cu	rren	t St	ate											
	State	can b	e on	e of	the fo	ollov	wing.	. Hiç	gher	valu	es (11-1	15) a	are u	ındef	ined	l.														
	Value			N	lode								D	escri	ption																
	0			IC	DLE								Ic	lle																	
	1			R	DCH	CTR	LDA	TA					R	eadii	ng ch	anne	l cor	ntrolle	er da	ata											
	2			R	DSR	CEN	IDPTI	R					R	eadi	ng so	urce	data	end	poir	nter											
	3			_	DDS			₹					-		ng de				end	poin	iter										
	4			_	DSR										ng so																
	5			_	/RDS										g des																
	7			+	/AITR			Τ.					_		g for																
	8			-	/RCH TALL		KLDA	IA						talled	g cha	nnei	conti	roller	uati	а											
	9			_	ONE								_	one																	
	10			_	ERSO	CAT	TRAN	NS					_		eral s	scatte	er-ga	ther t	tran	sitior	<u> </u>										
3:1	Reser	ved					То є	ensu	ıre c	omp	atibi	ility			re de							to 0.	Mor	e inf	orm	atio	n in :	Sect	ion 2	.1 (p). 3)
0	EN						0			- 1	R							e St												.,	
	When	this b	oit is	1, th	e DN	ΛA is	s ena	able	ed.																						

8.7.2 DMA_CONFIG - DMA Configuration Register

Offset															Bi	t Po	siti	on														
0x004	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	7	10	0	8	7	9	2	4	က	2	-	0
Reset																											0					0
Access																											>					>
Name																											CHPROT					Z

Bit	Name	Reset	Access	Description
31:6	Reserved	To ensure comp	atibility with fut	rure devices, always write bits to 0. More information in Section 2.1 (p. 3)
5	CHPROT	0	W	Channel Protection Control

must be 0.

Bit	Name	Reset	Access	Description
				rivileged or not. When CHPROT = 1 then HPROT is HIGH and the access d the access is non-privileged.
4:1	Reserved	To ensure co	ompatibility with t	future devices, always write bits to 0. More information in Section 2.1 (p. 3)
0	EN	0	W	Enable DMA
	Set this bit to enab	le the DMA controller.		

8.7.3 DMA_CTRLBASE - Channel Control Data Base Pointer Register

Offset															Bi	t P	ositi	on								,						
0x008	33	30	53	78	27	56	52	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	∞	7	9	2	4	က	7	-	0
Reset																	00000000x0															
Access																	§ N															
Name																	CTRLBASE															
Bit	Na	ame						Re	set			Α	CC	ess		D	escr	iptio	on													
31:0	СТ	RLB	ASE					0x0	0000	0000)	R	W			Ch	ann	el Co	ont	rol [ata	Bas	se P	ointe	er							
																	hanr ructu															oint [7:0]

8.7.4 DMA_ALTCTRLBASE - Channel Alternate Control Data Base Pointer Register

Offset													Bi	t Po	siti	on														
0x00C	34	29	28	27	56	25	24	23	22	77	20	19	17	16	15	14	13	12	1	10	စ	8	7	9	2	4	က	2	-	0
Reset														08000000																
Access																														
Name														ALTCTBIBASE																
Bit	Nan	ne					Re	set			Α	cces	S	De	scri	iptic	on													
31:0	ALTO	TRLB	ASE				0x0	0000	080		R			Cha	anne	el Al	tern	ate	Cor	ntrol	Dat	а Ва	ase	Poi	nter					
	The I	oase a	ddres	ss of	f the	alte	ernat	e da	ta str	uctu	ıre.	This re	egiste	er will	rea	d as	DM	A_C	CTR	LBA	SE -	+ 0x8	30.							

2010-12-21 - d0034_Rev0.90 www.energymicro.com

8.7.5 DMA_WAITSTATUS - Channel Wait on Request Status Register

Offset															Bit	t Po	siti	on														
0x010	31	30	29	28	27	26	22	24	23	22	21	20	19	18	17	16	15	4	13	12	11	10	6	8	7	9	2	4	က	2	-	0
Reset																L	1100000000															
Access																	Ľ															
Name																O	WALLSTATUS															
Bit	Na	me						Re	set			Α	CCE	ess		De	scri	iptio	on													
31:0	WA	ITST	ATL	JS				0x0	0000	00FF		R				Ch	anne	el W	ait	on F	Requ	est	Stat	tus								
	Sta	tus fo	or wa	ait or	n red	que	st fo	or ea	ch cł	nann	el.																					

8.7.6 DMA_CHSWREQ - Channel Software Request Register

Offset															Bi	t Po	siti	on														
0x014	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	1	10	6	8	7	9	5	4	3	2	-	0
Reset																									0	0	0	0	0	0	0	0
Access																									W	W1	W	W	W	×	W	M
Name																									CH7SWREQ	CH6SWREQ	CH5SWREQ	CH4SWREQ	CH3SWREQ	CH2SWREQ	CH1SWREQ	CH0SWREQ
Bit	Nar	me						Re	set			A	\cc	ess		De	scr	iptio	on													

		· · · · · · · · · · · · · · · · · · ·		
Bit	Name	Reset	Access	Description
31:8	Reserved	To ensure co	ompatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3
7	CH7SWREQ	0	W1	Channel 7 Software Request
	Write 1 to this bit to g	generate a DMA requ	est for this channe	el.
6	CH6SWREQ	0	W1	Channel 6 Software Request
	Write 1 to this bit to g	generate a DMA requ	est for this channe	el.
5	CH5SWREQ	0	W1	Channel 5 Software Request
	Write 1 to this bit to g	generate a DMA requ	est for this channe	el.
4	CH4SWREQ	0	W1	Channel 4 Software Request
	Write 1 to this bit to g	generate a DMA requ	est for this channe	el.
3	CH3SWREQ	0	W1	Channel 3 Software Request
	Write 1 to this bit to g	generate a DMA requ	est for this channe	el.
2	CH2SWREQ	0	W1	Channel 2 Software Request
	Write 1 to this bit to g	generate a DMA requ	est for this channe	el.
1	CH1SWREQ	0	W1	Channel 1 Software Request
	Write 1 to this bit to g	generate a DMA requ	est for this channe	el.
0	CH0SWREQ	0	W1	Channel 0 Software Request
	Write 1 to this bit to g	generate a DMA requ	est for this channe	el.

Downloaded from E 2010-12-21 - d0034_Rev0.90 67 www.energymicro.com

8.7.7 DMA_CHUSEBURSTS - Channel Useburst Set Register

Offset															Bi	t Po	siti	on														
0x018	31	30	29	28	27	56	22	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	ი	∞	7	9	2	4	က	7	-	0
Reset			•	•								•							•			•	•		0	0	0	0	0	0	0	0
Access																									RW1							
Name																									CH7USEBURSTS	CH6USEBURSTS	CH5USEBURSTS	CH4USEBURSTS	CH3USEBURSTS	CH2USEBURSTS	CH1USEBURSTS	CH0USEBURSTS

Bit	Name	Reset	Access	Description
31:8	Reserved	To ensure co	ompatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
7	CH7USEBURSTS	0	RW1	Channel 7 Useburst Set
	See description for chan	nel 0.		
6	CH6USEBURSTS	0	RW1	Channel 6 Useburst Set
	See description for chan	nel 0.		
5	CH5USEBURSTS	0	RW1	Channel 5 Useburst Set
	See description for chan	nel 0.		
4	CH4USEBURSTS	0	RW1	Channel 4 Useburst Set
	See description for chan	nel 0.		
3	CH3USEBURSTS	0	RW1	Channel 3 Useburst Set
	See description for chan	nel 0.		
2	CH2USEBURSTS	0	RW1	Channel 2 Useburst Set
	See description for chan	nel 0.		
1	CH1USEBURSTS	0	RW1	Channel 1 Useburst Set
	See description for chan	nel 0.		
0	CH0USEBURSTS	0	RW1	Channel 0 Useburst Set

Write to 1 to enable the useburst setting for this channel. Reading returns the useburst status. After the penultimate 2^R transfer completes, if the number of remaining transfers, N, is less than 2^R then the controller resets the chnl_useburst_set bit to 0. This enables you to complete the remaining transfers using dma_req[] or dma_sreq[]. In peripheral scatter-gather mode, if the next_useburst bit is set in channel_cfg then the controller sets the chnl_useburst_set[C] bit to a 1, when it completes the DMA cycle that uses the alternate data structure.

Value	Mode	Description
0	SINGLEANDBURST	Channel responds to both single and burst requests
1	BURSTONLY	Channel responds to burst requests only

8.7.8 DMA_CHUSEBURSTC - Channel Useburst Clear Register

Offset															Bi	t Po	siti	on														
0x01C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	7	10	6	8	7	9	2	4	3	2	-	0
Reset		•			•		•					•									•				0	0	0	0	0	0	0	0
Access																									W M	W1	M	W1	W1	W1	W1	W N
Name																									CH7USEBURSTC	CH6USEBURSTC	CH5USEBURSTC	CH4USEBURSTC	CH3USEBURSTC	CH2USEBURSTC	CH1USEBURSTC	CH0USEBURSTC

Downloaded from H course on 2010-12-21 - d0034_Rev0.90 68 www.energymicro.com

Bit	Name	Reset	Access	Description
31:8	Reserved	To ensure comp	atibility with fut	ure devices, always write bits to 0. More information in Section 2.1 (p. 3)
7	CH7USEBURSTC	0	W1	Channel 7 Useburst Clear
	Write to 1 to disable usebu	rst setting for this o	channel.	
6	CH6USEBURSTC	0	W1	Channel 6 Useburst Clear
	Write to 1 to disable usebu	rst setting for this o	channel.	
5	CH5USEBURSTC	0	W1	Channel 5 Useburst Clear
	Write to 1 to disable usebu	rst setting for this o	channel.	
4	CH4USEBURSTC	0	W1	Channel 4 Useburst Clear
	Write to 1 to disable usebu	rst setting for this o	channel.	
3	CH3USEBURSTC	0	W1	Channel 3 Useburst Clear
	Write to 1 to disable usebu	rst setting for this o	channel.	
2	CH2USEBURSTC	0	W1	Channel 2 Useburst Clear
	Write to 1 to disable usebu	rst setting for this o	channel.	
1	CH1USEBURSTC	0	W1	Channel 1 Useburst Clear
	Write to 1 to disable usebu	rst setting for this o	channel.	
0	CH0USEBURSTC	0	W1	Channel 0 Useburst Clear
	Write to 1 to disable usebu	rst setting for this o	channel.	

8.7.9 DMA_CHREQMASKS - Channel Request Mask Set Register

Offset		•	•		•										Bi	t Po	siti	on													•	
0x020	33	30	53	88	27	26	52	24	23	22	21	20	19	18	17	16	15	4	13	12	11	10	6	œ	7	9	2	4	က	7	-	0
Reset								•					•		•										0	0	0	0	0	0	0	0
Access																									RW1							
Name																									CH7REQMASKS	CH6REQMASKS	CH5REQMASKS	CH4REQMASKS	CH3REQMASKS	CH2REQMASKS	CH1REQMASKS	CHOREQMASKS

	·			
Bit	Name	Reset	Access	Description
31:8	Reserved	To ensure co	ompatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
7	CH7REQMASKS	0	RW1	Channel 7 Request Mask Set
	Write to 1 to disable per	ripheral requests for	or this channel.	
6	CH6REQMASKS	0	RW1	Channel 6 Request Mask Set
	Write to 1 to disable per	ripheral requests for	or this channel.	
5	CH5REQMASKS	0	RW1	Channel 5 Request Mask Set
	Write to 1 to disable per	ripheral requests for	or this channel.	
4	CH4REQMASKS	0	RW1	Channel 4 Request Mask Set
	Write to 1 to disable per	ripheral requests f	or this channel.	
3	CH3REQMASKS	0	RW1	Channel 3 Request Mask Set
	Write to 1 to disable per	ripheral requests f	or this channel.	
2	CH2REQMASKS	0	RW1	Channel 2 Request Mask Set
	Write to 1 to disable per	ripheral requests for	or this channel.	
1	CH1REQMASKS	0	RW1	Channel 1 Request Mask Set

Downloaded from Houlescom 2010-12-21 - d0034_Rev0.90 69 www.energymicro.com

Bit	Name	Reset	Access	Description
	Write to 1 to disable perip	heral requests for	this channel.	
0	CH0REQMASKS	0	RW1	Channel 0 Request Mask Set
	Write to 1 to disable perip	heral requests for	this channel.	

8.7.10 DMA_CHREQMASKC - Channel Request Mask Clear Register

Offset															Bi	t Po	siti	on														
0x024	31	30	29	28	27	56	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	ი	∞	7	9	2	4	က	7	-	0
Reset											•	•					•				•			•	0	0	0	0	0	0	0	0
Access																									×	W	×	W	×	W	W	×
Name																									CH7REQMASKC	CH6REQMASKC	CH5REQMASKC	CH4REQMASKC	CH3REQMASKC	CH2REQMASKC	CH1REQMASKC	CHOREQMASKC

			<u> </u>	
Bit	Name	Reset	Access	Description
31:8	Reserved	To ensure co	ompatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
7	CH7REQMASKC	0	W1	Channel 7 Request Mask Clear
	Write to 1 to enable peri	pheral requests fo	or this channel.	
6	CH6REQMASKC	0	W1	Channel 6 Request Mask Clear
	Write to 1 to enable peri	pheral requests fo	or this channel.	
5	CH5REQMASKC	0	W1	Channel 5 Request Mask Clear
	Write to 1 to enable peri	pheral requests fo	or this channel.	
4	CH4REQMASKC	0	W1	Channel 4 Request Mask Clear
	Write to 1 to enable peri	pheral requests fo	or this channel.	
3	CH3REQMASKC	0	W1	Channel 3 Request Mask Clear
	Write to 1 to enable peri	pheral requests fo	or this channel.	
2	CH2REQMASKC	0	W1	Channel 2 Request Mask Clear
	Write to 1 to enable peri	pheral requests fo	or this channel.	
1	CH1REQMASKC	0	W1	Channel 1 Request Mask Clear
	Write to 1 to enable peri	pheral requests fo	or this channel.	
0	CH0REQMASKC	0	W1	Channel 0 Request Mask Clear
	Write to 1 to enable peri	pheral requests fo	or this channel.	

8.7.11 DMA_CHENS - Channel Enable Set Register

Offset															Bi	t Pc	siti	on														
0x028	31	30	29	28	27	26	22	24	23	22	21	20	19	18	17	16	15	41	13	12	7	10	ი	8	7	9	2	4	က	2	-	0
Reset			•		•																				0	0	0	0	0	0	0	0
Access																									RW1							
Name																									CH7ENS	CH6ENS	CH5ENS	CH4ENS	CH3ENS	CHZENS	CH1ENS	CHOENS

Downloaded from Hoods, com 2010-12-21 - d0034_Rev0.90 70 www.energymicro.com

Bit	Name	Reset	Access	Description
31:8	Reserved	To ensure co	mpatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
7	CH7ENS	0	RW1	Channel 7 Enable Set
	Write to 1 to enable	this channel. Reading	returns the enabl	le status of the channel.
6	CH6ENS	0	RW1	Channel 6 Enable Set
	Write to 1 to enable	this channel. Reading	returns the enabl	le status of the channel.
5	CH5ENS	0	RW1	Channel 5 Enable Set
	Write to 1 to enable	this channel. Reading	returns the enabl	le status of the channel.
4	CH4ENS	0	RW1	Channel 4 Enable Set
	Write to 1 to enable	this channel. Reading	returns the enabl	le status of the channel.
3	CH3ENS	0	RW1	Channel 3 Enable Set
	Write to 1 to enable	this channel. Reading	returns the enabl	le status of the channel.
2	CH2ENS	0	RW1	Channel 2 Enable Set
	Write to 1 to enable	this channel. Reading	returns the enabl	le status of the channel.
1	CH1ENS	0	RW1	Channel 1 Enable Set
	Write to 1 to enable	this channel. Reading	returns the enabl	le status of the channel.
0	CH0ENS	0	RW1	Channel 0 Enable Set
	Write to 1 to enable	this channel. Reading	returns the enabl	le status of the channel.

8.7.12 DMA_CHENC - Channel Enable Clear Register

Offset										•					Bi	t Pc	siti	on														
0x02C	33	30	29	28	27	56	52	24	23	22	21	20	19	18	17	16	15	41	13	12	7	10	6	8	7	9	2	4	ю	2	-	0
Reset																									0	0	0	0	0	0	0	0
Access																									W1	W1	W	W1	W1	W1	M1	W1
Name																									CH7ENC	CH6ENC	CHSENC	CH4ENC	CH3ENC	CHZENC	CH1ENC	CHOENC

Bit	Name	Reset	Access	Description
31:8	Reserved	To ensure co	ompatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
7	CH7ENC	0	W1	Channel 7 Enable Clear
	Write to 1 to disable	this channel. See als	o description for c	channel 0.
6	CH6ENC	0	W1	Channel 6 Enable Clear
	Write to 1 to disable	this channel. See als	o description for c	channel 0.
5	CH5ENC	0	W1	Channel 5 Enable Clear
	Write to 1 to disable	this channel. See als	o description for c	channel 0.
4	CH4ENC	0	W1	Channel 4 Enable Clear
	Write to 1 to disable	this channel. See als	o description for c	channel 0.
3	CH3ENC	0	W1	Channel 3 Enable Clear
	Write to 1 to disable	this channel. See als	o description for c	channel 0.
2	CH2ENC	0	W1	Channel 2 Enable Clear
	Write to 1 to disable	this channel. See als	o description for c	channel 0.
1	CH1ENC	0	W1	Channel 1 Enable Clear
	Write to 1 to disable	this channel. See als	o description for c	channel 0.
0	CH0ENC	0	W1	Channel 0 Enable Clear

Bit	Name	Reset	Access	Description
		1.0001	7.00000	Dooonpalon

Write to 1 to disable this channel. Note that the controller disables a channel, by setting the appropriate bit, when either it completes the DMA cycle, or it reads a channel_cfg memory location which has cycle_ctrl = b000, or an ERROR occurs on the AHB-Lite bus.

8.7.13 DMA_CHALTS - Channel Alternate Set Register

Offset															Bi	t Pc	siti	on														
0x030	31	30	53	78	27	26	22	24	23	22	2	20	19	18	17	16	15	4	13	12	11	10	6	80	7	9	2	4	က	2	-	0
Reset								•							•				•						0	0	0	0	0	0	0	0
Access																									RW1							
Name																									CH7ALTS	CH6ALTS	CH5ALTS	CH4ALTS	CH3ALTS	CH2ALTS	CH1ALTS	CHOALTS

Bit	Name	Reset	Access	Description
31:8	Reserved	To ensure comp	patibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
7	CH7ALTS	0	RW1	Channel 7 Alternate Structure Set
	Write to 1 to select the alte	ernate structure for	this channel.	
6	CH6ALTS	0	RW1	Channel 6 Alternate Structure Set
	Write to 1 to select the alte	ernate structure for	this channel.	
5	CH5ALTS	0	RW1	Channel 5 Alternate Structure Set
	Write to 1 to select the alte	ernate structure for	this channel.	
4	CH4ALTS	0	RW1	Channel 4 Alternate Structure Set
	Write to 1 to select the alte	ernate structure for	this channel.	
3	CH3ALTS	0	RW1	Channel 3 Alternate Structure Set
	Write to 1 to select the alte	ernate structure for	this channel.	
2	CH2ALTS	0	RW1	Channel 2 Alternate Structure Set
	Write to 1 to select the alte	ernate structure for	this channel.	
1	CH1ALTS	0	RW1	Channel 1 Alternate Structure Set
	Write to 1 to select the alte	ernate structure for	this channel.	
0	CH0ALTS	0	RW1	Channel 0 Alternate Structure Set
	Write to 1 to select the alte	ernate structure for	this channel.	

8.7.14 DMA_CHALTC - Channel Alternate Clear Register

Offset															Bi	t Pc	siti	on														
0x034	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	41	13	12	11	10	6	æ	7	9	2	4	က	2	~	0
Reset				•				•																,	0	0	0	0	0	0	0	0
Access																									N N	W1	W	W	W	W1	M1	X
Name																									CH7ALTC	CH6ALTC	CH5ALTC	CH4ALTC	CH3ALTC	CH2ALTC	CH1ALTC	CHOALTC

Bit	Name	Reset	Access	Description
31:8	Reserved	To ensure comp	atibility with fut	ure devices, always write bits to 0. More information in Section 2.1 (p. 3)

Downloaded from E 2010-12-21 - d0034_Rev0.90 72 www.energymicro.com

Bit	Name	Reset	Access	Description
7	CH7ALTC	0	W1	Channel 7 Alternate Clear
	Write to 1 to select the pr	imary structure for t	his channel.	
6	CH6ALTC	0	W1	Channel 6 Alternate Clear
	Write to 1 to select the pr	imary structure for t	his channel.	
5	CH5ALTC	0	W1	Channel 5 Alternate Clear
	Write to 1 to select the pr	imary structure for t	his channel.	
4	CH4ALTC	0	W1	Channel 4 Alternate Clear
	Write to 1 to select the pr	imary structure for t	his channel.	
3	CH3ALTC	0	W1	Channel 3 Alternate Clear
	Write to 1 to select the pr	imary structure for t	his channel.	
2	CH2ALTC	0	W1	Channel 2 Alternate Clear
	Write to 1 to select the pr	imary structure for t	his channel.	
1	CH1ALTC	0	W1	Channel 1 Alternate Clear
	Write to 1 to select the pr	imary structure for t	his channel.	
0	CH0ALTC	0	W1	Channel 0 Alternate Clear
	Write to 1 to select the pr	imary structure for t	his channel.	

8.7.15 DMA_CHPRIS - Channel Priority Set Register

Offset															Bi	t Po	siti	on														
0x038	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	œ	7	9	2	4	က	7	-	0
Reset					•				•		•				•	•						•			0	0	0	0	0	0	0	0
Access																									RW1							
Name																									CH7PRIS	CH6PRIS	CH5PRIS	CH4PRIS	CH3PRIS	CH2PRIS	CH1PRIS	CH0PRIS

				0 0 0 0 0 0 0
Bit	Name	Reset	Access	Description
31:8	Reserved	To ensure c	ompatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
7	CH7PRIS	0	RW1	Channel 7 High Priority Set
	Write to 1 to obtain	high priority for this ch	annel. Reading re	sturns the channel priority status.
6	CH6PRIS	0	RW1	Channel 6 High Priority Set
	Write to 1 to obtain	high priority for this ch	annel. Reading re	sturns the channel priority status.
5	CH5PRIS	0	RW1	Channel 5 High Priority Set
	Write to 1 to obtain	high priority for this ch	annel. Reading re	sturns the channel priority status.
4	CH4PRIS	0	RW1	Channel 4 High Priority Set
	Write to 1 to obtain	high priority for this ch	annel. Reading re	sturns the channel priority status.
3	CH3PRIS	0	RW1	Channel 3 High Priority Set
	Write to 1 to obtain	high priority for this ch	annel. Reading re	sturns the channel priority status.
2	CH2PRIS	0	RW1	Channel 2 High Priority Set
	Write to 1 to obtain	high priority for this ch	annel. Reading re	sturns the channel priority status.
1	CH1PRIS	0	RW1	Channel 1 High Priority Set
	Write to 1 to obtain	high priority for this ch	annel. Reading re	sturns the channel priority status.
0	CH0PRIS	0	RW1	Channel 0 High Priority Set
	Write to 1 to obtain	high priority for this ch	annel. Reading re	turns the channel priority status.

Downloaded from Elecules com

8.7.16 DMA_CHPRIC - Channel Priority Clear Register

Offset															Bi	t Pc	siti	on														
0x03C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	41	13	12	7	10	6	80	7	9	2	4	က	7	-	0
Reset																									0	0	0	0	0	0	0	0
Access																									W	W1	W1	W M	W1	W	M	W1
Name																									CH7PRIC	CH6PRIC	CH5PRIC	CH4PRIC	CH3PRIC	CH2PRIC	CH1PRIC	CHOPRIC

D'	Manua	D		Boundaries
Bit	Name	Reset	Access	Description
31:8	Reserved	To ensure co	mpatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
7	CH7PRIC	0	W1	Channel 7 High Priority Clear
	Write to 1 to clear h	igh priority for this char	nnel.	
6	CH6PRIC	0	W1	Channel 6 High Priority Clear
	Write to 1 to clear h	igh priority for this char	nnel.	
5	CH5PRIC	0	W1	Channel 5 High Priority Clear
	Write to 1 to clear h	igh priority for this char	nnel.	
4	CH4PRIC	0	W1	Channel 4 High Priority Clear
	Write to 1 to clear h	igh priority for this char	nnel.	
3	CH3PRIC	0	W1	Channel 3 High Priority Clear
	Write to 1 to clear h	igh priority for this char	nnel.	
2	CH2PRIC	0	W1	Channel 2 High Priority Clear
	Write to 1 to clear h	igh priority for this char	nnel.	
1	CH1PRIC	0	W1	Channel 1 High Priority Clear
	Write to 1 to clear h	igh priority for this char	nnel.	
0	CH0PRIC	0	W1	Channel 0 High Priority Clear
	Write to 1 to clear h	igh priority for this char	nnel.	

8.7.17 DMA_ERRORC - Bus Error Clear Register

Offset															Bi	t Pc	siti	on														
0x04C	31	30	59	78	27	56	22	24	23	22	21	20	19	18	17	16	15	4	13	12	1	10	თ	∞	7	9	2	4	က	2	_	0
Reset				•							•		•		•																	0
Access																																Z.
Name																																ERRORC

Bit	Name	Reset	Access	Description
31:1	Reserved	To ensure co	ompatibility with fu	uture devices, always write bits to 0. More information in Section 2.1 (p. 3)
0	ERRORC	0	RW	Bus Error Clear
				g a 1 to this bit will clear the bit. If the error is deasserted at the same time scedence and ERRORC remains asserted.

2010-12-21 - d0034_Rev0.90 www.energymicro.com Downloaded from I

8.7.18 DMA_IF - Interrupt Flag Register

Offset															Bi	t Pc	siti	on														
0x1000	33	30	29	28	27	26	22	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	2	4	က	2	-	0
Reset	0				•																				0	0	0	0	0	0	0	0
Access	2																								œ	~	œ	~	œ	œ	œ	œ
Name	ERR																								CH7DONE	CH6DONE	CH5DONE	CH4DONE	CH3DONE	CH2DONE	CH1DONE	CHODONE

Bit	Name	Reset	Access	Description
31	ERR	0	R	DMA Error Interrupt Flag
	This flag is set when an err	or has occurred on	the AHB bus.	
30:8	Reserved	To ensure compa	atibility with fut	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
7	CH7DONE	0	R	DMA Channel 7 Complete Interrupt Flag
	Set when the DMA channel channel.	el has compeleted	its transfer. If	the channel is disabled, the flag is set when there is a request for the
6	CH6DONE	0	R	DMA Channel 6 Complete Interrupt Flag
	Set when the DMA channel channel.	el has compeleted	its transfer. If	the channel is disabled, the flag is set when there is a request for the
5	CH5DONE	0	R	DMA Channel 5 Complete Interrupt Flag
	Set when the DMA channel channel.	el has compeleted	its transfer. If	the channel is disabled, the flag is set when there is a request for the
4	CH4DONE	0	R	DMA Channel 4 Complete Interrupt Flag
	Set when the DMA channel channel.	el has compeleted	its transfer. If	the channel is disabled, the flag is set when there is a request for the
3	CH3DONE	0	R	DMA Channel 3 Complete Interrupt Flag
	Set when the DMA channel channel.	el has compeleted	its transfer. If	the channel is disabled, the flag is set when there is a request for the
2	CH2DONE	0	R	DMA Channel 3 Complete Interrupt Flag
	Set when the DMA channel channel.	el has compeleted	its transfer. If	the channel is disabled, the flag is set when there is a request for the
1	CH1DONE	0	R	DMA Channel 2 Complete Interrupt Flag
	Set when the DMA channel channel.	el has compeleted	its transfer. If	the channel is disabled, the flag is set when there is a request for the
0	CH0DONE	0	R	DMA Channel 1 Complete Interrupt Flag
	Set when the DMA channel channel.	el has compeleted	its transfer. If	the channel is disabled, the flag is set when there is a request for the

8.7.19 DMA_IFS - Interrupt Flag Set Register

Offset															Bi	t Po	siti	on														
0x1004	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	41	13	12	7	10	6	œ	7	9	2	4	က	7	-	0
Reset	0																								0	0	0	0	0	0	0	0
Access	N N																								×	W	W	W W	M	W W	W 1	W1
Name	ERR																								CH7DONE	CH6DONE	CH5DONE	CH4DONE	CH3DONE	CH2DONE	CH1DONE	CHODONE

Bit	Name	Reset	Access	Description
31	ERR	0	W1	DMA Error Interrupt Flag Set
	Set to 1 to set DMA er	rror interrupt flag.		
30:8	Reserved	To ensure co	mpatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
7	CH7DONE	0	W1	DMA Channel 7 Complete Interrupt Flag Set
	Write to 1 to set the co	orresponding DMA o	hannel complete	interrupt flag.
6	CH6DONE	0	W1	DMA Channel 6 Complete Interrupt Flag Set
	Write to 1 to set the co	orresponding DMA o	hannel complete	interrupt flag.
5	CH5DONE	0	W1	DMA Channel 5 Complete Interrupt Flag Set
	Write to 1 to set the co	orresponding DMA o	hannel complete	interrupt flag.
4	CH4DONE	0	W1	DMA Channel 4 Complete Interrupt Flag Set
	Write to 1 to set the co	orresponding DMA o	hannel complete	interrupt flag.
3	CH3DONE	0	W1	DMA Channel 3 Complete Interrupt Flag Set
	Write to 1 to set the co	orresponding DMA o	hannel complete	interrupt flag.
2	CH2DONE	0	W1	DMA Channel 2 Complete Interrupt Flag Set
	Write to 1 to set the co	orresponding DMA o	hannel complete	interrupt flag.
1	CH1DONE	0	W1	DMA Channel 1 Complete Interrupt Flag Set
	Write to 1 to set the co	orresponding DMA o	hannel complete	interrupt flag.
0	CH0DONE	0	W1	DMA Channel 0 Complete Interrupt Flag Set
	Write to 1 to set the co	orresponding DMA o	hannel complete	interrupt flag.

8.7.20 DMA_IFC - Interrupt Flag Clear Register

Offset															Bi	t Po	siti	on														
0x1008	31	30	29	28	27	56	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	∞	7	9	2	4	က	7	-	0
Reset	0																								0	0	0	0	0	0	0	0
Access	W V																								W	W1	W1	W V	W 1	Ž.	W 1	X
Name	ERR																								CH7DONE	CHEDONE	CH5DONE	CH4DONE	CH3DONE	CH2DONE	CH1DONE	CHODONE

Bit	Name	Reset	Access	Description
31	ERR	0	W1	DMA Error Interrupt Flag Clear
	Set to 1 to clear DN	MA error interrupt flag. N	lote that if an error	r happened, the Bus Error Clear Register must be used to clear the DMA.
30:8	Reserved	To ensure co	ompatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
7	CH7DONE	0	W1	DMA Channel 7 Complete Interrupt Flag Clear
	Write to 1 to clear t	the corresponding DMA	channel complete	e interrupt flag.
6	CH6DONE	0	W1	DMA Channel 6 Complete Interrupt Flag Clear
	Write to 1 to clear t	the corresponding DMA	channel complete	e interrupt flag.
5	CH5DONE	0	W1	DMA Channel 5 Complete Interrupt Flag Clear
	Write to 1 to clear t	the corresponding DMA	channel complete	e interrupt flag.
4	CH4DONE	0	W1	DMA Channel 4 Complete Interrupt Flag Clear
	Write to 1 to clear t	the corresponding DMA	channel complete	e interrupt flag.
3	CH3DONE	0	W1	DMA Channel 3 Complete Interrupt Flag Clear
	Write to 1 to clear t	the corresponding DMA	channel complete	e interrupt flag.

Downloaded from Electric com

Bit	Name	Reset	Access	Description
2	CH2DONE	0	W1	DMA Channel 2 Complete Interrupt Flag Clear
	Write to 1 to clear th	ne corresponding DMA	channel complet	e interrupt flag.
1	CH1DONE	0	W1	DMA Channel 1 Complete Interrupt Flag Clear
	Write to 1 to clear th	ne corresponding DMA	channel complet	e interrupt flag.
0	CH0DONE	0	W1	DMA Channel 0 Complete Interrupt Flag Clear
	Write to 1 to clear th	ne corresponding DMA	channel complet	e interrupt flag.

8.7.21 DMA_IEN - Interrupt Enable register

Offset															Bi	t Pc	siti	on														
0x100C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	7	10	6	80	7	9	2	4	က	2	-	0
Reset	0																								0	0	0	0	0	0	0	0
Access	RW																								ΑW	RW	RW	RW	RW	RW	RW W	RW
Name	ERR																								CH7DONE	CHEDONE	CH5DONE	CH4DONE	CH3DONE	CH2DONE	CH1DONE	CHODONE

Bit	Name	Reset	Access	Description
31	ERR	0	RW	DMA Error Interrupt Flag Enable
	Set this bit to enab	le interrupt on AHB bus	s error.	
30:8	Reserved	To ensure co	ompatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
7	CH7DONE	0	RW	DMA Channel 7 Complete Interrupt Enable
	Write to 1 to enable	e complete intterrupt or	this DMA channe	el. Clear to disable the interrupt.
6	CH6DONE	0	RW	DMA Channel 6 Complete Interrupt Enable
	Write to 1 to enable	e complete intterrupt or	this DMA channe	el. Clear to disable the interrupt.
5	CH5DONE	0	RW	DMA Channel 5 Complete Interrupt Enable
	Write to 1 to enable	e complete intterrupt or	this DMA channe	el. Clear to disable the interrupt.
4	CH4DONE	0	RW	DMA Channel 4 Complete Interrupt Enable
	Write to 1 to enable	e complete intterrupt or	this DMA channe	el. Clear to disable the interrupt.
3	CH3DONE	0	RW	DMA Channel 3 Complete Interrupt Enable
	Write to 1 to enable	e complete intterrupt or	this DMA channe	el. Clear to disable the interrupt.
2	CH2DONE	0	RW	DMA Channel 2 Complete Interrupt Enable
	Write to 1 to enable	e complete intterrupt or	this DMA channe	el. Clear to disable the interrupt.
1	CH1DONE	0	RW	DMA Channel 1 Complete Interrupt Enable
	Write to 1 to enable	e complete intterrupt or	this DMA channe	el. Clear to disable the interrupt.
0	CH0DONE	0	RW	DMA Channel 0 Complete Interrupt Enable
	Write to 1 to enable	e complete intterrupt or	this DMA channe	el. Clear to disable the interrupt.

2010-12-21 - d0034_Rev0.90 www.energymicro.com

8.7.22 DMA_CHx_CTRL - Channel Control Register

Offset															Bi	t Po	siti	on														
0x1100	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	1	10	6	8	7	9	2	4	က	2	1	0
Reset													0	0000																2	OXO	
Access													i	<u>}</u>																	<u> </u>	
Name														SOURCESEL																	SIGSE	

Bit	Name	Reset	Access	Description
31:22	Reserved	To ensure c	ompatibility with t	future devices, always write bits to 0. More information in Section 2.1 (p. 3)
21:16	SOURCESEL	0x00	RW	Source Select

Select input source to DMA channel.

Value	Mode	Description
0b000000	NONE	No source selected
0b001000	ADC0	Analog to Digital Converter 0
0b001010	DAC0	Digital to Analog Converter 0
0b001100	USART0	Universal Synchronous/Asynchronous Receiver/Transmitter 0
0b001101	USART1	Universal Synchronous/Asynchronous Receiver/Transmitter 1
0b010000	LEUART0	Low Energy UART 0
0b010100	I2C0	I2C 0
0b011000	TIMER0	Timer 0
0b011001	TIMER1	Timer 1
0b110000	MSC	
0b110001	AES	Advanced Encryption Standard Accelerator
0b110010	LESENSE	Low Energy Sensor Interface

Signal Select

15:4 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)

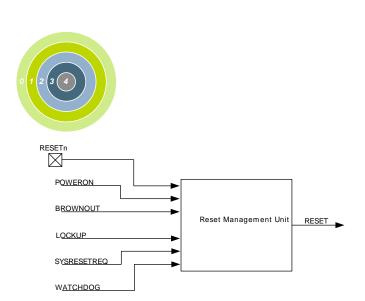
 RW

Select input signal to DMA channel.

3:0

SIGSEL

Value	Mode	Description
SOURCESEL = 0b000000 (NONE)		
0bxxxx	OFF	Channel input selection is turned off
SOURCESEL = 0b001000 (ADC0)		
0b0000	ADC0SINGLE	ADC0SINGLE
0b0001	ADC0SCAN	ADC0SCAN
SOURCESEL = 0b001010 (DAC0)		
0b0000	DAC0CH0	DAC0CH0
0b0001	DAC0CH1	DAC0CH1
SOURCESEL = 0b001100 (USART0)		
0b0000	USART0RXDATAV	USART0RXDATAV REQ/SREQ
0b0001	USART0TXBL	USART0TXBL REQ/SREQ
0b0010	USART0TXEMPTY	USART0TXEMPTY
SOURCESEL = 0b001101 (USART1)		
0b0000	USART1RXDATAV	USART1RXDATAV REQ/SREQ
0b0001	USART1TXBL	USART1TXBL REQ/SREQ
0b0010	USART1TXEMPTY	USART1TXEMPTY
0b0011	USART1RXDATAVRIGHT	USART1RXDATAVRIGHT REQ/SREQ
0b0100	USART1TXBLRIGHT	USART1TXBLRIGHT REQ/SREQ
SOURCESEL = 0b010000 (LEUART0)		


Downloaded from Headlescom 2010-12-21 - d0034_Rev0.90 78 www.energymicro.com

Name	Reset Access	Description	
Value	Mode		Description
0b0000	LEUART0RXDATAV		LEUART0RXDATAV
0b0001	LEUART0TXBL		LEUART0TXBL
0b0010	LEUART0TXEMPTY		LEUART0TXEMPTY
SOURCESEL = 0b010100 (I2	(C0)		
0b0000	I2C0RXDATAV		I2C0RXDATAV
0b0001	I2C0TXBL		I2C0TXBL
SOURCESEL = 0b0 (TIMER0)	11000		
0b0000	TIMER0UFOF		TIMER0UFOF
0b0001	TIMER0CC0		TIMER0CC0
0b0010	TIMER0CC1		TIMER0CC1
0b0011	TIMER0CC2		TIMER0CC2
SOURCESEL = 0b0 (TIMER1)	11001		
0b0000	TIMER1UFOF		TIMER1UFOF
0b0001	TIMER1CC0		TIMER1CC0
0b0010	TIMER1CC1		TIMER1CC1
0b0011	TIMER1CC2		TIMER1CC2
SOURCESEL = 0b110000 (M	SC)		
0b0000	MSCWDATA		MSCWDATA
SOURCESEL = 0b110001 (A	ES)		
0b0000	AESDATAWR		AESDATAWR
0b0001	AESXORDATAWR		AESXORDATAWR
0b0010	AESDATARD		AESDATARD
0b0011	AESKEYWR		AESKEYWR
SOURCESEL = 0b1 (LESENSE)	10010		
0b0000	LESENSEBUFDATAV		LESENSEBUFDATAV REQ/SREQ

9 RMU - Reset Management Unit

Quick Facts

What?

The RMU ensures correct reset operation. It is responsible for connecting the different reset sources to the reset lines of the EFM32TG.

Why?

A correct reset sequence is needed to ensure safe and synchronous startup of the EFM32TG. In the case of error situations such as power supply glitches or software crash, the RMU provides proper reset and startup of the EFM32TG.

How?

The Power-on Reset and Brown-out Detector of the EFM32TG provides power line monitoring with exceptionally low power consumption. The cause of the reset may be read from a register, thus providing software with information about the cause of the reset.

9.1 Introduction

The RMU is responsible for handling the reset functionality of the EFM32TG.

9.2 Features

- Reset sources
 - Power-on Reset (POR)
 - Brown-out Detection (BOD) on the following power domains:
 - Regulated domain
 - Unregulated domain
 - Analog Power Domain 0 (AVDD0)
 - Analog Power Domain 1 (AVDD1)
 - RESETn pin reset
 - · Watchdog reset
 - EM4 wakeup reset from pin
 - Software triggered reset (SYSRESETREQ)
 - Core LOCKUP condition
- EM4 Detection
- · A software readable register indicates the cause of the last reset

9.3 Functional Description

The RMU monitors each of the reset sources of the EFM32TG. If one or more reset sources go active, the RMU applies reset to the EFM32TG. When the reset sources go inactive the EFM32TG starts up. At startup the EFM32TG loads the stack pointer and program entry point from memory, and starts execution.

As seen in Figure 9.1 (p. 81) the Power-on Reset, Brown-out Detectors and RESETn pin all reset the whole system including the Debug Interface. A Watch Dog timeout, a Core Lockup condition or a System reset request from software resets the whole system except the Debug Interface.

Whenever a reset source is active, the corresponding bit in the RMU_RSTCAUSE register is set. At startup the program code may investigate this register in order to determine the cause of the reset. The register must be cleared by software.

Reset Management Unit POR **POWERONn** BROWNOUT_UNREGR BOD Cortex-M3 V_{DD_REGULATE} BROWNOUT_REGn BOD Debug **PORESET**n Interface BROWNOUT_AVDD0 AVDD0 AVDD1 BROWNOUT_AVDD1 BOD Filter EM4 wakeup RMU_RSTCAUSE em4 RCCLR WDOG SYSRESETn Peripherals LOCKUP Edge-to-pulse LOCKUPRDIS SYSREQRST

Figure 9.1. RMU Reset Input Sources and Connections.

9.3.1 RMU_RSTCAUSE Register

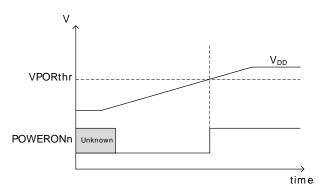
The RMU_RSTCAUSE register indicates the reason for the last reset. The register should be cleared after the value has been read at startup. Otherwise the register may indicate multiple causes for the reset at next startup. The following procedure must be done to clear RMU_RSTCAUSE:

- 1. Write a 1 to RCCLR in RMU_CMD
- 2. Write a 1 to bit 0 in EMU_AUXCTRL
- 3. Write a 0 to bit 0 in EMU_AUXCTRL

RMU_RSTCAUSE should be interpreted according to Table 9.1 (p. 82). X bits are don't care. Notice that it is possible to have multiple reset causes. For example, an external reset and a watchdog reset may happen simultaneously.

Table 9.1. RMU Reset Cause Register Interpretation

Register Value	Cause
0bXXX XXXX XXX1	A Power-on Reset has been performed. X bits are don't care.
0bXXX XXXX XX10	A Brown-out has been detected on the unregulated power.
0bXXX XXX0 0100	A Brown-out has been detected on the regulated power.
0bXXX XXXX 1X00	An external reset has been applied.
0bXXX XXX1 XX00	A watchdog reset has occurred.
0bXXX XX10 0000	A lockup reset has occurred.
0b000 01X0 0000	A system request reset has occurred.
0b000 1000 0XX0	The system as woken up from EM4.
0b001 1000 0XX0	The system as woken up from EM4 on an EM4 wakeup reset request from pin.
0b010 0000 0000	A Brown-out has been detected on Analog Power Domain 0 (AVDD0).
0b100 0000 0000	A Brown-out has been detected on Analog Power Domain 1 (AVDD1).

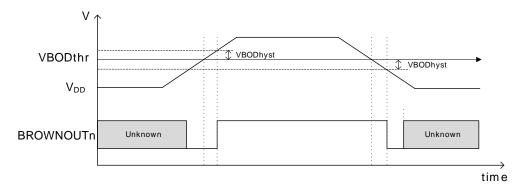

Note

When exiting EM4 with external reset, both the BODREGRST and BODUNREGRST in RSTCAUSE might be set (i.e. are invalid)

9.3.2 Power-On Reset (POR)

The POR ensures that the EFM32TG does not start up before the supply voltage V_{DD} has reached the threshold voltage VPORthr (see Device Datasheet Electrical Characteristics for details). Before the threshold voltage is reached, the EFM32TG is kept in reset state. The operation of the POR is illustrated in Figure 9.2 (p. 82), with the active low POWERONn reset signal. The reason for the "unknown" region is that the corresponding supply voltage is too low for any reliable operation.

Figure 9.2. RMU Power-on Reset Operation



9.3.3 Brown-Out Detector Reset (BOD)

The EFM32TG has 4 brownout detectors, one for the unregulated 3.0 V power, one for the regulated 1.8 V power, one for Analog Power Domain 0 (AVDD0), and one for Analog Power Domain 1 (AVDD1). The BODs are constantly monitoring the voltages. Whenever the unregulated or regulated power drops below the VBODthr value (see Electrical Characteristics for details), or if the AVDD0 or AVDD1 drops below the voltage at the decouple pin, the corresponding active low BROWNOUTn line is held low. The BODs also include hysteresis, which prevents instability in the corresponding BROWNOUTn line when the supply is crossing the VBODthr limit or the AVDD bods drops below decouple. The operation of the BOD is illustrated in Figure 9.3 (p. 83). The "unknown" regions are handled by the POR module.

Figure 9.3. RMU Brown-out Detector Operation

9.3.4 RESETn pin Reset

Forcing the RESETn pin low generates a reset of the EFM32TG. The RESETn pin includes an onchip pull-up resistor, and can therefore be left unconnected if no external reset source is needed. Also connected to the RESETn line is a filter which prevents glitches from resetting the EFM32TG.

9.3.5 Watchdog Reset

The Watchdog circuit is a timer which (when enabled) must be cleared by software regularly. If software does not clear it, a Watchdog reset is activated. This functionality provides recovery from a software stalemate. Refer to the Watchdog section for specifications and description. A Watchdog reset does not reset the Debug Interface. This allows an active debug session to continue in case of a Watchdog reset.

9.3.6 Lockup Reset

A Cortex-M3 lockup is the result of the core being locked up because of an unrecoverable exception following the activation of the processor's built-in system state protection hardware.

A Cortex-M3 lockup gives immediate indication of seriously errant kernel software. This is the result of the core being locked up due to an unrecoverable exception following the activation of the processor's built in system state protection hardware. For more information about the Cortex-M3 lockup conditions see the ARMv7-M Architecture Reference Manual. The Lockup reset does not reset the Debug Interface. Set the LOCKUPRDIS bit in the RMU CTRL register in order to disable this reset source.

9.3.7 System Reset Request

Software may initiate a reset (e.g. if it finds itself in a non-recoverable state). By asserting the SYSRESETREQ in the Application Interrupt and Reset Control Register (write 0x05FA 0004), a reset is issued. The SYSRESETREQ does not reset the Debug Interface.

9.3.8 EM4 Reset

Whenever the system goes down into EM4, the EM4RST bit is set. This bit must be cleared by software after waking up from EM4.

9.3.9 EM4 Wakeup Reset

Whenever the system is woken up from EM4 on a pin reset request, the EM4WURST bit is set. This bit must be cleared by software after waking up from EM4.

9.4 Register Map

The offset register address is relative to the registers base address.

Offset	Name	Туре	Description
0x000	RMU_CTRL	RW	Control Register
0x004	RMU_RSTCAUSE	R	Reset Cause Register
0x008	RMU_CMD	W1	Command Register

9.5 Register Description

9.5.1 RMU_CTRL - Control Register

Offset															Bi	it Po	siti	on														
0x000	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	41	13	12	7	10	6	∞	7	9	2	4	က	2	_	0
Reset																																0
Access																																₩ X
Name																																LOCKUPRDIS

Bit	Name	Reset	Access	Description
31:1	Reserved	To ensure co	mpatibility with f	uture devices, always write bits to 0. More information in Section 2.1 (p. 3)
0	LOCKUPRDIS	0	RW	Lockup Reset Disable
	Set this bit to disable t	he LOCKUP signal(from the Cortex-	M3) from resetting the device.

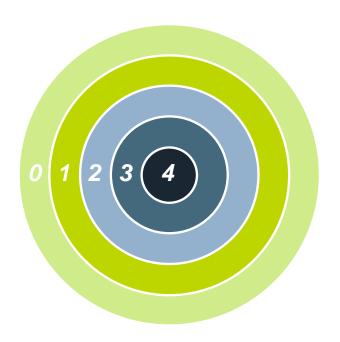
9.5.2 RMU_RSTCAUSE - Reset Cause Register

Offset															Bi	it Po	ositi	on														
0x004	31	30	29	28	27	26	52	24	23	22	21	20	19	18	17	16	15	4	13	12	1	10	ი	∞	7	9	2	4	က	7	-	0
Reset			•		•			•		•												0	0	0	0	0	0	0	0	0	0	0
Access																						œ	œ	~	~	٣	~	~	œ	~	œ	~
Name																						BODAVDD1	BODAVDD0	EM4WURST	EM4RST	SYSREQRST	LOCKUPRST	WDOGRST	EXTRST	BODREGRST	BODUNREGRST	PORST

Bit	Name	Reset	Access	Description
31:11	Reserved	To ensure co	mpatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
10	BODAVDD1	0	R	AVDD1 Bod Reset.
	Set if analog power dom 82) for details on how to		etector reset has	been performed. Must be cleared by software. Please see Table 9.1 (p.
9	BODAVDD0	0	R	AVDD0 Bod Reset.
	Set if analog power dom 82) for details on how to		etector reset has	been performed. Must be cleared by software. Please see Table 9.1 (p.
8	EM4WURST	0	R	EM4 Wake-up Reset
	Set if the system has bee 82) for details on how to	•	EM4 from a reset	request from pin. Must be cleared by software. Please see Table 9.1 (p.

Bit	Name	Reset	Access	Description
7	EM4RST	0	R	EM4 Reset
	Set if the system has be	een in EM4. Must b	e cleared by softw	ware. Please see Table 9.1 (p. 82) for details on how to interpret this bit.
6	SYSREQRST	0	R	System Request Reset
	Set if a system reques to interpret this bit.	t reset has been p	erformed. Must be	e cleared by software. Please see Table 9.1 (p. 82) for details on how
5	LOCKUPRST	0	R	LOCKUP Reset
	Set if a LOCKUP reset this bit.	has been requeste	d. Must be cleared	by software. Please see Table 9.1 (p. 82) for details on how to interpret
4	WDOGRST	0	R	Watchdog Reset
	Set if a watchdog reset this bit.	has been performe	d. Must be cleared	d by software. Please see Table 9.1 (p. 82) for details on how to interpret
3	EXTRST	0	R	External Pin Reset
	Set if an external pin reinterpret this bit.	eset has been perf	ormed. Must be o	cleared by software. Please see Table 9.1 (p. 82) for details on how to
2	BODREGRST	0	R	Brown Out Detector Regulated Domain Reset
	Set if a regulated doma for details on how to into		ctor reset has bee	n performed. Must be cleared by software. Please see Table 9.1 (p. 82)
1	BODUNREGRST	0	R	Brown Out Detector Unregulated Domain Reset
	Set if a unregulated do 82) for details on how		etector reset has b	peen performed. Must be cleared by software. Please see Table 9.1 (p.
0	PORST	0	R	Power On Reset
	Set if a power on reset this bit.	has been performe	d. Must be cleared	d by software. Please see Table 9.1 (p. 82) for details on how to interpret

9.5.3 RMU_CMD - Command Register


Offset															Bi	t Po	siti	on														
0x008	31	30	29	28	27	26	22	24	23	22	21	20	19	18	17	16	15	41	13	12	7	10	ი	œ	7	9	2	4	3	2	-	0
Reset			•		•												•				•			•								0
Access																																×
Name																																RCCLR

Bit	Name	Reset	Access	Description
31:1	Reserved	To ensure comp	atibility with fut	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
0	RCCLR	0	W1	Reset Cause Clear
	Set this bit to clear the I EMU_AUXCTRL register t			bits in the RMU_RSTCAUSE register. Use the HRCCLR bit in the

2010-12-21 - d0034_Rev0.90 www.energymicro.com

10 EMU - Energy Management Unit

Quick Facts

What?

The EMU (Energy Management Unit) handles the different low energy modes in the EFM32TG microcontrollers.

Why?

The need for performance and peripheral functions varies over time in most applications. By efficiently scaling the available resources in real-time to match the demands of the application, the energy consumption can be kept at a minimum.

How?

With a broad selection of energy modes, a high number of low-energy peripherals available even in EM2, and short wakeup time (2 µs from EM2 and EM3), applications can dynamically minimize energy consumption during program execution.

10.1 Introduction

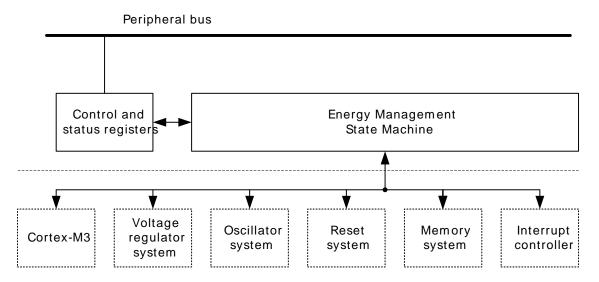
The Energy Management Unit (EMU) manages all the low energy modes (EM) in EFM32TG microcontrollers. Each energy mode manages if the CPU and the various peripherals are available. The energy modes range from EM0 to EM4, where EM0, also called run mode, enables the CPU and all peripherals. The lowest recoverable energy mode, EM3, disables the CPU and most peripherals while maintaining wake-up and RAM functionality. EM4 disables everything except the POR, pin reset and optionally GPIO state retention and EM4 reset wakeup request.

The various energy modes differ in:

- Energy consumption
- · CPU activity
- Reaction time
- Wake-up triggers
- Active peripherals
- Available clock sources

Low energy modes EM1 to EM4 are enabled through the application software. In EM1-EM3, a range of wake-up triggers return the microcontroller back to EM0. EM4 can only return to EM0 by power on reset, external pin reset or em4 reset wakeup request.

10.2 Features


- · Energy Mode control from software
- · Flexible wakeup from low energy modes
- · Low wakeup time

10.3 Functional Description

The Energy Management Unit (EMU) is responsible for managing the wide range of energy modes available in EFM32TG. An overview of the EMU module is shown in Figure 10.1 (p. 87).

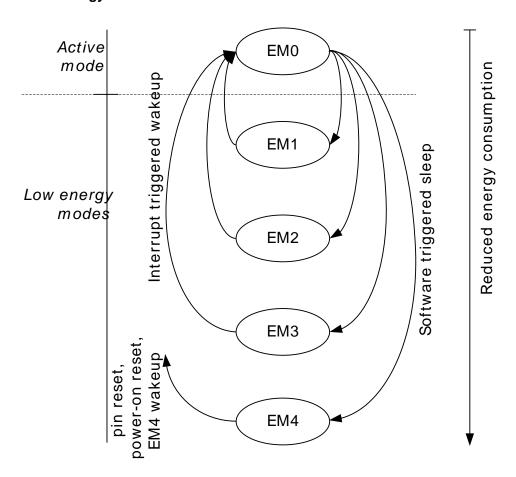
Figure 10.1. EMU Overview

The EMU is available as a peripheral on the peripheral bus. The energy management state machine is triggered from the Cortex-M3 and controls the internal voltage regulators, oscillators, memories and interrupt systems in the low energy modes. Events from the interrupt or reset systems can in turn cause the energy management state machine to return to its active state. This is further described in the following sections.

10.3.1 Energy Modes

There are five main energy modes available in EFM32TG, called Energy Mode 0 (EM0) through Energy Mode 4 (EM4). EM0, also called the active mode, is the energy mode in which any peripheral function can be enabled and the Cortex-M3 core is executing instructions. EM1 through EM4, also called low energy modes, provide a selection of reduced peripheral functionality that also lead to reduced energy consumption, as described below.

Figure 10.2 (p. 88) shows the transitions between different energy modes. After reset the EMU will always start in EMO. A transition from EMO to another energy mode is always initiated by software. EMO is the highest activity mode, in which all functionality is available. EMO is therefore also the mode with highest energy consumption.


The low energy modes EM1 through EM4 result in less functionality being available, and therefore also reduced energy consumption. The Cortex-M3 is not executing instructions in any low energy mode. Each low energy mode provides different energy consumptions associated with it, for example because a different set of peripherals are enabled or because these peripherals are configured differently.

A transition from EM0 to a low energy mode can only be triggered by software.

A transition from EM1 – EM3 to EM0 can be triggered by an enabled interrupt or event. In addition, a chip reset will return the device to EM0. A transition from EM4 can only be triggered by a pin reset power-on reset, or EM4 reset wakeup request.

Figure 10.2. EMU Energy Mode Transitions

No direct transitions between EM1, EM2 or EM3 are available, as can also be seen from Figure 10.2 (p. 88). Instead, a wakeup will transition back to EM0, in which software can enter any other low energy mode. An overview of the supported energy modes and the functionality available in each mode is shown in Table 10.1 (p. 89). Most peripheral functionality indicated as On in a particular energy mode can also be turned off from software in order to save further energy.

Downloaded from H couls com 2010-12-21 - d0034_Rev0.90 88 www.energymicro.com

Table 10.1. EMU Energy Mode Overview

	EM0 ¹	EM1 ²	EM2 ²	EM3 ²	EM4 ²
Wakeup time to EM0	-	-	2 µs	2 μs	160 µs
MCU clock tree	On	-	-	-	-
High frequency peripheral clock trees	On	On	-	-	-
Core voltage regulator	On	On	-	-	-
High frequency oscillator	On	On	-	-	-
I ² C full functionality	On	On	-	-	-
Low frequency peripheral clock trees	On	On	On	-	-
Low frequency oscillator	On	On	On	-	-
Real Time Counter	On	On	On	-	-
LCD	On	On	On	-	-
LEUART	On	On	On	-	-
LETIMER	On	On	On	-	-
PCNT	On	On	On	-	-
ACMP	On	On	On	On	-
I ² C receive address recognition	On	On	On	On	-
Watchdog	On	On	On	On ³	-
Pin interrupts	On	On	On	On	-
RAM voltage regulator/RAM retention	On	On	On	On	-
Brown Out Reset	On	On	On	On	-
Power On Reset	On	On	On	On	On
Pin Reset	On	On	On	On	On
GPIO state retention	On	On	On	On	On ⁴
EM4 Reset Wakeup Request	-	-	-	-	On ⁴

¹Energy Mode 0/Active Mode

The different Energy Modes are summarized in the following sections.

10.3.1.1 EM0

- The high frequency oscillator is active
- High frequency clock trees are active
- All peripheral functionality is available

10.3.1.2 EM1

- The high frequency oscillator is active
- MCU clock tree is inactive
- High frequency peripheral clock trees are active
- All peripheral functionality is available

²Energy Mode 1/2/3/4

³When the 1 kHz clock is selected

⁴Optional

10.3.1.3 EM2

- The high frequency oscillator is inactive (LESENSE may use AUXHFRCO)
- The high frequency peripheral and MCU clock trees are inactive
- The low frequency oscillator and clock trees are active
- Low frequency peripheral functionality (RTC, Watchdog, LCD, LEUART, I²C, LETIMER, PCNT, LESENSE) is available
- Wakeup through peripheral interrupt or asynchronous pin interrupt
- · RAM and register values are preserved
- DAC and OPAMPs are also available

10.3.1.4 EM3

- · Both high and low frequency oscillators and clock trees are inactive
- Wakeup through asynchronous pin interrupts, I²C address recognition or ACMP edge interrupt
- Watchdog enabled when 1 kHz clock has been selected
- · All other peripheral functionality is disabled
- · RAM and register values are preserved
- DAC and OPAMPsare also available

10.3.1.5 EM4

- · All oscillators and regulators are inactive
- · RAM and register values are not preserved
- Optional GPIO state retention
- Wakeup from external pin reset or pins that support EM4 wakeup

10.3.2 Entering a Low Energy Mode

A low energy mode is entered by first configuring the desired Energy Mode through the EMU control register and the SLEEPDEEP bit in the Cortex-M3 System Control Register, see Table 10.2 (p. 90). A Wait For Interrupt (WFI) or Wait For Event (WFE) instruction from the Cortex-M3 triggers the transition into a low energy mode.

The transition into a low energy mode can optionally be delayed until the lowest priority Interrupt Service Routine (ISR) is exited, if the SLEEPONEXIT bit in the Cortex-M3 System Control Register is set.

Entering the lowest energy mode, EM4, is done by writing a sequence to the EM4CTRL bitfield in the EMU_CTRL register. Writing a zero to the EM4CTRL bitfield will restart the power sequence. EM2BLOCK prevents the EMU to enter EM2 or lower, and it will instead enter EM1.

EM3 is equal to EM2, except that the LFACLK/LFBCLK are disabled in EM3. The LFACLK/LFBCLK must be disabled by the user before entering low energy mode.

The EMVREG bit in EMU_CTRL can be used to prevent the voltage regulator from being turned off in low energy modes. The device will then essentially stay in EM1 when entering a low energy mode.

Table 10.2. EMU Entering a Low Energy Mode

Low Energy Mode	EM4CTRL	EMVREG	EM2BLOCK	SLEEPDEEP	Cortex-M3 Instruction
EM1	0	x	x	0	WFI or WFE
EM2	0	0	0	1	WFI or WFE
EM4	Write sequence: 2, 3, 2, 3, 2, 3, 2, 3, 2	х	х	х	х

('x' means don't care)

10.3.3 Leaving a Low Energy Mode

In each low energy mode a selection of peripheral units are available, and software can either enable or disable the functionality. Enabled interrupts that can cause wakeup from a low energy mode is shown in Table 10.3 (p. 91). Additionally, any reset source will return to EMO.

Table 10.3. EMU Wakeup Triggers from Low Energy Modes

Peripheral	Wakeup Trigger	EM0 ¹	EM1 ¹	EM2 ¹	EM3 ¹	EM4 ¹
RTC	Any enabled interrupt	-	Yes	Yes	-	-
USART	Receive / transmit	-	Yes	-	-	-
LEUART	Receive / transmit	-	Yes	Yes	-	-
LESENSE	Any enabled interrupt	-	Yes	Yes	-	-
I ² C	Any enabled interrupt	-	Yes	-	-	-
I ² C	Receive address recognition	-	Yes	Yes	Yes	-
TIMER	Any enabled interrupt	-	Yes	-	-	-
LETIMER	Any enabled interrupt	-	Yes	Yes	-	-
СМИ	Any enabled interrupt	-	Yes	-	-	-
DMA	Any enabled interrupt	-	Yes	-	-	-
MSC	Any enabled interrupt	-	Yes	-	-	-
DAC0	Any enabled interrupt	-	Yes	-	-	-
ADC0	Any enabled interrupt	-	Yes	-	-	-
AES	Any enabled interrupt	-	Yes	-	-	-
PCNT	Any enabled interrupt	-	Yes	Yes	-	-
LCD	Any enabled interrupt	-	Yes	Yes	-	-
ACMP (Analog Comparator)	Any enabled edge interrupt	-	Yes	Yes	Yes	-
Pin interrupts	Asynchronous	-	Yes	Yes	Yes	-
Pin	Reset	-	Yes	Yes	Yes	Yes
EM4 wakeup on supported pins	Asynchronous	-	-	-	-	Yes
Power	Cycle Off/On		Yes	Yes	Yes	Yes

¹Energy Mode 0/Active Mode

1

0

10.4 Register Map

The offset register address is relative to the registers base address.

Offset	Name	Туре	Description
0x000	EMU_CTRL	RW	Control Register
0x008	EMU_LOCK	RW	Configuration Lock Register
0x024	EMU_AUXCTRL	RW	Auxiliary Control Register

10.5 Register Description

10.5.1 EMU_CTRL - Control Register

												_																				
Offset															Bi	t Pc	siti	on														
0x000	31	30	59	28	27	56	52	24	23	22	21	20	19	18	17	16	15	4	13	12	=	10	6	8	^	9	2	4	က	7	-	0
Reset				•				•														•					•		3	OK O	0	0
Access																													2	<u> </u>	N N	N N
Name																													EM4CTB		EMZBLOCK	EMVREG
Bit	Na	ame						Re	set			A	/CC	ess		De	scr	iptio	on													
31:4	Re	serv	ed					То	ens	ure d	comp	atib	ility	with	futu	ire d	evice	es, a	lwa	ys v	vrite	bits	to 0.	Mor	e inf	forn	natio	n in S	Sect	ion 2	.1 (p	o. 3)
3:2	ΕN	14CT	RL					0x0)			R	W			En	ergy	Мо	de	4 Co	ontro	ol										

This register is used to enter Energy Mode 4, in which the device only wakes up from an external pin reset, from a power cycle, or EM4 wakeup reset request. Energy Mode 4 is entered when the EM4 sequence is written to this bitfield.

EM2BLOCK 0 RW Energy Mode 2 Block

This bit is used to prevent the MCU to enter Energy Mode 2 or lower.

EMVREG 0 RW Energy Mode Voltage Regulator Control

10.5.2 EMU_LOCK - Configuration Lock Register

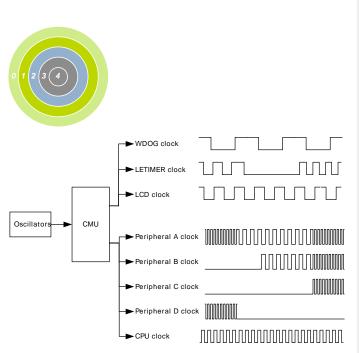
Offset															Bi	t Po	siti	on														
0x008	33	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	80	7	9	2	4	က	2	-	0
Reset																								000	000000							
Access																								2	≥ Y							
Name																								\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	LOCKKEY							

Bit	Name	Reset	Access	Description
31:16	Reserved	To ensure compa	atibility with futu	ure devices, always write bits to 0. More information in Section 2.1 (p. 3)

Downloaded from H couls com 92 www.energymicro.com

Bit	Name	Reset	Access	Description
	Hamo	110001	710000	2000 i pii dii
15:0	LOCKKEY	0x0000	RW	Configuration Lock Key
	Write any other value the register, bit 0 is set			registers from editing. Write the unlock code to unlock. When reading
	Mode	Value		Description
	Read Operation			
	UNLOCKED	0		EMU registers are unlocked
	LOCKED	1		EMU registers are locked
	Write Operation			
	LOCK	0		Lock EMU registers
	UNLOCK	0xADE8		Unlock EMU registers

10.5.3 EMU_AUXCTRL - Auxiliary Control Register


Offset															Bi	t Pc	siti	on								· · · · ·						
0x024	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	41	13	12	11	10	6	8	7	9	2	4	е	2	_	0
Reset		•	•									•					•															0
Access																																S.
Name																																HRCCLR
Bit	Na	ıme						Re	set			А	\cc	ess		De	scr	iptio	on													
0.4.4																																

Bit	Name	Reset	Access	Description
31:1	Reserved	To ensure co	ompatibility with	future devices, always write bits to 0. More information in Section 2.1 (p. 3)
0	HRCCLR	0	RW	Hard Reset Cause Clear
	Write to 1 and then	0 to clear the POR, B	OD and WDOG	reset cause register bits. See also the Reset Management Unit (RMU).

Downloaded from Heads.com 93 www.energymicro.com

11 CMU - Clock Management Unit

Quick Facts

What?

The CMU controls oscillators and clocks. EFM32TG supports four different oscillators with minimized power consumption and short start-up time. An additional separate RC oscillator is used for flash programming and debug trace. The CMU also has HW support for calibration of RC oscillators.

Why?

Oscillators and clocks contribute significantly to the power consumption of the MCU. With the low power oscillators combined with the flexible clock control scheme, it is possible to minimize the energy consumption in any given application.

How?

The CMU can configure different clock sources, enable/disable clocks to peripherals on an individual basis and set the prescaler for the different clocks. The short oscillator start-up times makes duty-cycling between active mode and the different low energy modes (EM2-4) very efficient. The calibration feature ensures high accuracy RC oscillators. Several interrupts are available to avoid CPU polling of flags.

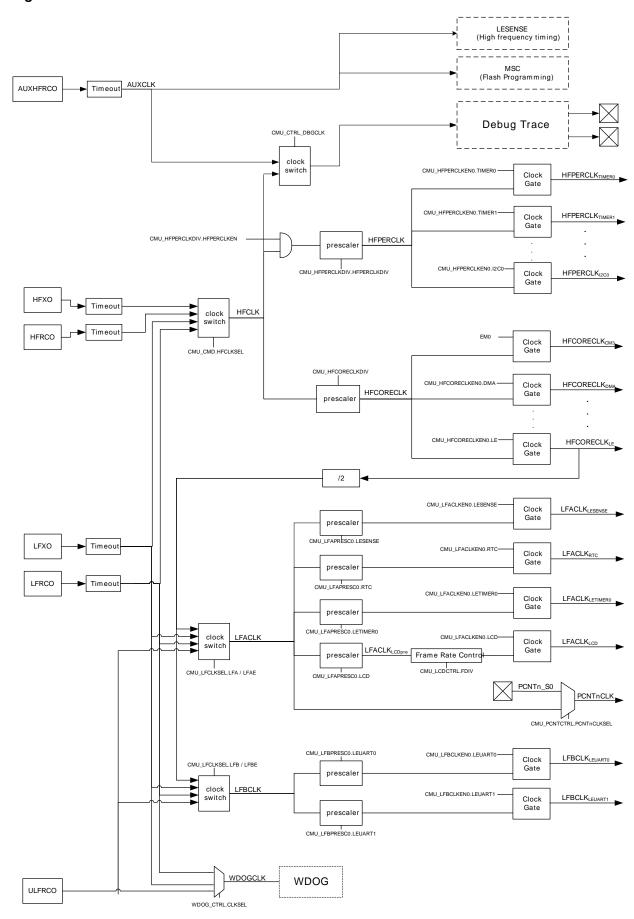
11.1 Introduction

The Clock Management Unit (CMU) is responsible for controlling the oscillators and clocks on-board the EFM32TG. The CMU provides the capability to turn on and off the clock on an individual basis to all peripheral modules in addition to enable/disable and configure the available oscillators. The high degree of flexibility enables software to minimize energy consumption in any specific application by not wasting power on peripherals and oscillators that are inactive.

11.2 Features

- Multiple clock sources available:
 - 1-28 MHz High Frequency RC Oscillator (HFRCO)
 - 4-32 MHz High Frequency Crystal Oscillator (HFXO)
 - 32.768 kHz Low Frequency RC Oscillator (LFRCO)
 - 32.768 kHz Low Frequency Crystal Oscillator (LFXO)
- · Low power oscillators
- Low start-up times
- Separate prescaler for High Frequency Core Clocks (HFCORECLK) and Peripheral Clocks (HFPERCLK)
- Individual clock prescaler selection for each Low Energy Peripheral
- Clock Gating on an individual basis to core modules and all peripherals

- Selectable clocks can be output on two pins for use externally.
- Auxiliary 1-28 MHz RC oscillator (AUXHFRCO) for flash programming, debug trace, and LESENSE timing.


11.3 Functional Description

An overview of the CMU is shown in Figure 11.1 (p. 96). The number of peripheral modules that are connected to the different clocks varies from device to device.

Downloaded from Heads, com 2010-12-21 - d0034_Rev0.90 95 www.energymicro.com

Figure 11.1. CMU Overview

11.3.1 System Clocks

11.3.1.1 HFCLK - High Frequency Clock

HFCLK is the selected High Frequency Clock. This clock is used by the CMU and drives the two prescalers that generate HFCORECLK and HFPERCLK. The HFCLK can be driven by a high-frequency oscillator (HFRCO or HFXO) or one of the low-frequency oscillators (LFRCO or LFXO). By default the HFRCO is selected. In most applications, one of the high frequency oscillators will be the preferred choice. To change the selected HFCLK write to HFCLKSEL in CMU_CMD. The HFCLK is running in EM0 and EM1.

11.3.1.2 HFCORECLK - High Frequency Core Clock

HFCORECLK is a prescaled version of HFCLK. This clock drives the Core Modules, which consists of the CPU and modules that are tightly coupled to the CPU, e.g. MSC, DMA etc. This also includes the interface to the Low Energy Peripherals. Some of the modules that are driven by this clock can be clock gated completely when not in use. This is done by clearing the clock enable bit for the specific module in CMU_HFCORECLKEN0. The frequency of HFCORECLK is set using the CMU_HFCORECLKDIV register. The setting can be changed dynamically and the new setting takes effect immediately.

Note

Note that if HFPERCLK runs faster than HFCORECLK, the number of clock cycles for each bus-access to peripheral modules will increase with the ratio between the clocks. Please refer to Section 5.2.3.2 (p. 17) for more details.

11.3.1.3 HFPERCLK - High Frequency Peripheral Clock

Like HFCORECLK, HFPERCLK is also a potentially prescaled version of HFCLK. This clock drives the High-Frequency Peripherals. All the peripherals that are driven by this clock can be clock gated completely when not in use. This is done by clearing the clock enable bit for the specific peripheral in CMU_HFPERCLKEN0. The frequency of HFPERCLK is set using the CMU_HFPERCLKDIV register. The setting can be changed dynamically and the new setting takes effect immediately.

Note

Note that if HFPERCLK runs faster than HFCORECLK, the number of clock cycles for each bus-access to peripheral modules will increase with the ratio between the clocks. E.g. if a bus-access normally takes three cycles, it will take 9 cycles if HFPERCLK runs three times as fast as the HFCORECLK.

11.3.1.4 LFACLK - Low Frequency A Clock

LFACLK is the selected clock for the Low Energy A Peripherals. There are four selectable sources for LFACLK: LFRCO, LFXO, HFCORECLK/2 and ULFRCO. In addition, the LFACLK can be disabled. From reset, the LFACLK source is set to LFRCO. However, note that the LFRCO is disabled from reset. The selection is configured using the LFA field in CMU_LFCLKSEL. The HFCORECLK/2 setting allows the Low Energy A Peripherals to be used as high-frequency peripherals.

Note

If HFCORECLK/2 is selected as LFACLK, the clock will stop in EM2/3.

Each Low Energy Peripheral that is clocked by LFACLK has its own prescaler setting and enable bit. The prescaler settings are configured using CMU_LFAPRESC0 and the clock enable bits can be found in CMU_LFACLKEN0. Notice that the LCD has an additional high resolution prescaler for Frame Rate Control, configured by FDIV in CMU LCDCTRL. When operating in oversampling mode, the pulse counters are clocked by LFACLK. This is configured for each pulse counter (n) individually by setting PCNTnCLKSEL in CMU_PCNTCTRL.

11.3.1.5 LFBCLK - Low Frequency B Clock

LFBCLK is the selected clock for the Low Energy B Peripherals. There are four selectable sources for LFBCLK: LFRCO, LFXO, HFCORECLK/2 and ULFRCO. In addition, the LFBCLK can be disabled. From reset, the LFBCLK source is set to LFRCO. However, note that the LFRCO is disabled from reset. The selection is configured using the LFB field in CMU_LFCLKSEL. The HFCORECLK/2 setting allows the Low Energy B Peripherals to be used as high-frequency peripherals.

Note

If HFCORECLK/2 is selected as LFBCLK, the clock will stop in EM2/3.

Each Low Energy Peripheral that is clocked by LFBCLK has its own prescaler setting and enable bit. The prescaler settings are configured using CMU LFBPRESC0 and the clock enable bits can be found in CMU_LFBCLKEN0.

11.3.1.6 PCNTnCLK - Pulse Counter n Clock

Each available pulse counter is driven by its own clock, PCNTnCLK where n is the pulse counter instance number. Each pulse counter can be configured to use an external pin (PCNTn_S0) or LFACLK as PCNTnCLK.

11.3.1.7 WDOGCLK - Watchdog Timer Clock

The Watchdog Timer (WDOG) can be configured to use one of three different clock sources: LFRCO, LFXO or ULFRCO. ULFRCO (Ultra Low Frequency RC Oscillator) is a separate 1 kHz RC oscillator that also runs in EM3.

11.3.1.8 AUXCLK - Auxiliary Clock

AUXCLK is a 1-28 MHz clock driven by a separate RC oscillator, AUXHFRCO. This clock is used for flash programming, debug trace, and LESENSE operation. During flash programming, or if needed by LESENSE, this clock will be active. If the AUXHFRCO has not been enabled explicitly by software, the MSC or LESENSE module will automatically start and stop it. The AUXHFRCO is enabled by writing a 1 to AUXHFRCOEN in CMU OSCENCMD. This explicit enabling is required when debug trace is used.

11.3.2 Oscillator Selection

11.3.2.1 Start-up Time

The different oscillators have different start-up times. For the RC oscillators, the start-up time is fixed, but both the LFXO and the HFXO have configurable start-up time. The start-up time is configured by software and can be optimized for the chosen crystal used in the application.

There are individual bits for each oscillator indicating the status of the oscillator:

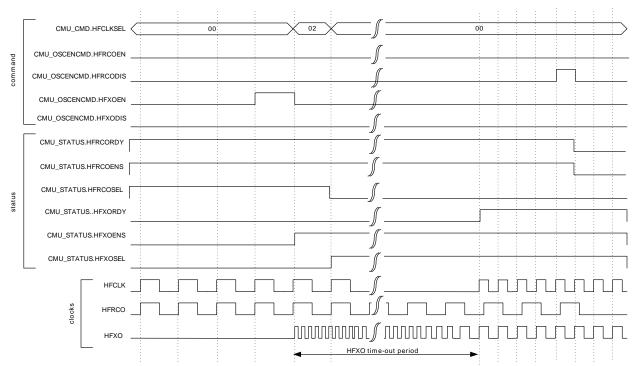
- ENABLED Indicates that the oscillator is enabled
- · READY Start-up time is exceeded
- SELECTED Start-up time is exceeded and oscillator is chosen as clock source

These status bits are located in the CMU_STATUS register.

11.3.2.2 Switching Clock Source

The HFRCO oscillator is a low energy oscillator with extremely short wake-up time. Therefore, this oscillator is always chosen by hardware as the clock source for HFCLK when the device starts up (e.g. after reset and after waking up from EM2 and EM3). After reset, the HFRCO frequency is 14 MHz.

Software can switch between the different clock sources at run-time. E.g., when the HFRCO is the clock source, software can switch to HFXO by writing the field HFCLKSEL in the CMU_CMD command register. See Figure 11.2 (p. 99) for a description of the sequence of events for this specific operation.


Note

It is important first to enable the HFXO since switching to a disabled oscillator will effectively stop HFCLK and only a reset can recover the system.

During the start-up period HFCLK will stop since the oscillator driving it is not ready. This effectively stalls the Core Modules and the High-Frequency Peripherals. It is possible to avoid this by first enabling the HFXO and then wait for the oscillator to become ready before switching the clock source. This way, the system continues to run on the HFRCO until the HFXO has timed out and provides a reliable clock. This sequence of events is shown in Figure 11.3 (p. 100).

A separate flag is set when the oscillator is ready. This flag can also be configured to generate an interrupt.

CMU_OSCENCMD.HFRCOEN

CMU_OSCENCMD.HFRCODIS

CMU_OSCENCMD.HFXOEN

CMU_OSCENCMD.HFXOEN

CMU_STATUS.HFRCOENS

CMU_STATUS.HFRCOENS

CMU_STATUS.HFRCOENS

CMU_STATUS.HFXOENS

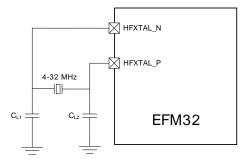
CMU_STATUS.HFXOE

Figure 11.3. CMU Switching from HFRCO to HFXO after HFXO is ready

Switching clock source for LFACLK and LFBCLK is done by setting the LFA and LFB fields in CMU_LFCLKSEL. To ensure no stalls in the Low Energy Peripherals, the clock source should be ready before switching to it.

Note

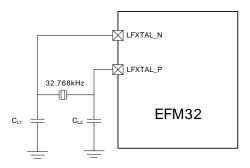
To save energy, remember to turn off all oscillators not in use.


11.3.3 Oscillator Configuration

11.3.3.1 HFXO and LFXO

The crystal oscillators are by default configured to ensure safe startup of all crystals. In order to optimize startup time and power consumption for a given crystal, it is possible to adjust the gain in the oscillator by programming the LFXOBOOST and HFXOBOOST fields in CMU_CTRL for LFXO and HFXO respectively.

The HFXO crystal is connected to the HFXTAL_N/HFXTAL_P pins as shown in Figure 11.4 (p. 100)


Figure 11.4. HFXO Pin Connection

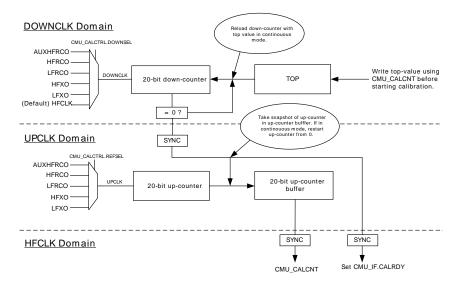
Similarly, the LFXO crystal is connected to the LFXTAL_N/LFXTAL_P pins as shown in Figure 11.5 (p. 101)

Figure 11.5. LFXO Pin Connection

It is possible to connect an external clock source to HFXTAL_N/LFXTAL_N pin of the HFXO or LFXO oscillator. By configuring the HFXOMODE/LFXOMODE fields in CMU_CTRL, the HFXO/LFXO can be bypassed.

11.3.3.2 HFRCO, LFRCO and AUXHFRCO

It is possible to calibrate the HFRCO, LFRCO and AUXHFRCO to achieve higher accuracy (see the device datasheets for details on accuracy). The frequency is adjusted by changing the TUNING fields in CMU_HFRCOCTL/CMU_LFRCOCTRL/CMU_AUXHFRCOCTRL. Changing to a higher value will result in a higher frequency. Please refer to the datasheet for stepsize details.


The HFRCO and AUXHFRCO can be set to one of several different frequency bands from 1 MHz to 28 MHz by setting the BAND field in CMU_HFRCOCTRL and CMU_AUXHFRCOCTRL. The HFRCO and AUXHFRCO frequency bands are calibrated during production test, and the production tested calibration values can be read from the Device Information (DI) page. The DI page contains a separate tuning value for each frequency band. During reset, HFRCO and AUXHFRCO tuning values are set to the production calibrated values for the 14 MHz band, which is the default frequency band. When changing to a different HFRCO or AUXHFRCO band, make sure to also update the tuning value.

The LFRCO and is also calibrated in production and its TUNING value is set to the correct value during reset.

The CMU has built-in HW support to efficiently calibrate the RC oscillators at run-time, see Figure 11.6 (p. 102) The concept is to select a reference and compare the RC frequency with the reference frequency. When the calibration circuit is started, one down-counter running on a selectable clock (DOWNSEL in CMU_CALCTRL) and one up-counter running on a selectable clock (UPSEL in CMU_CALCTRL) are started simultaneously. The top value for the down-counter must be written to CMU_CALCNT before calibration is started. When the down-counter has reached 0, the up-counter is sampled and the CALRDY interrupt flag is set. If CONT in CMU_CALCTRL is cleared, the counters are stopped at this point. If continuous mode is selected by setting CONT in CMU_CALCTRL the down-counter reloads the top value and continues counting and the up-counter restarts from 0. Software can then read out the sampled up-counter value from CMU_CALCNT. Then it is easy to find the ratio between the reference and the oscillator subject to the calibration. Overflows of the up-counter will not occur. If the up-counter reaches its top value before the down counter reaches 0, the top counter stays at its top value. Calibration can be stopped by writing CALSTOP in CMU_CMD. With this HW support, it is simple to write efficient calibration algorithms in software.

Figure 11.6. HW-support for RC Oscillator Calibration

The counter operation for single and continuous mode are shown in Figure 11.7 (p. 102) and Figure 11.8 (p. 102) respectively.

Figure 11.7. Single Calibration (CONT=0)

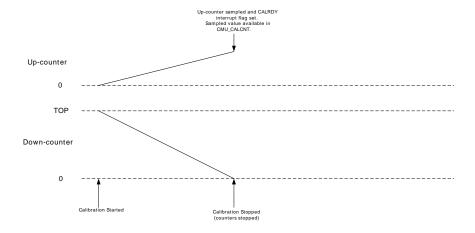
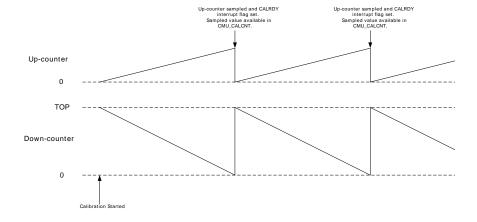



Figure 11.8. Continuous Calibration (CONT=1)

Downloaded from H couls com 2010-12-21 - d0034_Rev0.90 102 www.energymicro.com

11.3.4 Output Clock on a Pin

It is possible to configure the CMU to output clocks on two pins. This clock selection is done using CLKOUTSEL0 and CLKOUTSEL1 fields in CMU_CTRL. The output pins must be configured in the CMU_ROUTE register.

- LFRCO, LFXO, HFCLK or the qualified clock from any of the oscillators can be output on one pin (CMU_OUT1). A qualified clock will not have any glitches or skewed duty-cycle during startup. For LFXO and HFXO you need to configure LFXOTIMEOUT and HFXOTIMEOUT in CMU_CTRL correctly to guarantee a qualified clock.
- HFRCO, HFXO, HFCLK/2, HFCLK/4, HFCLK/8, HFCLK/16, ULFRCO or AUXHFRCO can be output on another pin (CMU_OUT0)

Note that HFXO and HFRCO clock outputs to pin can be unstable after startup and should not be output on a pin before HFXORDY/HFRCORDY is set high in CMU_STATUS.

11.3.5 Protection

It is possible to lock the control- and command registers to prevent unintended software writes to critical clock settings. This is controlled by the CMU LOCK register.

Downloaded from Heddis.com 2010-12-21 - d0034_Rev0.90 103 www.energymicro.com

11.4 Register Map

The offset register address is relative to the registers base address.

Offset	Name	Туре	Description
0x000	CMU_CTRL	RW	CMU Control Register
0x004	CMU_HFCORECLKDIV	RW	High Frequency Core Clock Division Register
0x008	CMU_HFPERCLKDIV	RW	High Frequency Peripheral Clock Division Register
0x00C	CMU_HFRCOCTRL	RW	HFRCO Control Register
0x010	CMU_LFRCOCTRL	RW	LFRCO Control Register
0x014	CMU_AUXHFRCOCTRL	RW	AUXHFRCO Control Register
0x018	CMU_CALCTRL	RW	Calibration Control Register
0x01C	CMU_CALCNT	RWH	Calibration Counter Register
0x020	CMU_OSCENCMD	W1	Oscillator Enable/Disable Command Register
0x024	CMU_CMD	W1	Command Register
0x028	CMU_LFCLKSEL	RW	Low Frequency Clock Select Register
0x02C	CMU_STATUS	R	Status Register
0x030	CMU_IF	R	Interrupt Flag Register
0x034	CMU_IFS	W1	Interrupt Flag Set Register
0x038	CMU_IFC	W1	Interrupt Flag Clear Register
0x03C	CMU_IEN	RW	Interrupt Enable Register
0x040	CMU_HFCORECLKEN0	RW	High Frequency Core Clock Enable Register 0
0x044	CMU_HFPERCLKEN0	RW	High Frequency Peripheral Clock Enable Register 0
0x050	CMU_SYNCBUSY	R	Synchronization Busy Register
0x054	CMU_FREEZE	RW	Freeze Register
0x058	CMU_LFACLKEN0	RW	Low Frequency A Clock Enable Register 0 (Async Reg)
0x060	CMU_LFBCLKEN0	RW	Low Frequency B Clock Enable Register 0 (Async Reg)
0x068	CMU_LFAPRESC0	RW	Low Frequency A Prescaler Register 0 (Async Reg)
0x070	CMU_LFBPRESC0	RW	Low Frequency B Prescaler Register 0 (Async Reg)
0x078	CMU_PCNTCTRL	RW	PCNT Control Register
0x07C	CMU_LCDCTRL	RW	LCD Control Register
0x080	CMU_ROUTE	RW	I/O Routing Register
0x084	CMU_LOCK	RW	Configuration Lock Register

25:23

11.5 Register Description

11.5.1 CMU_CTRL - CMU Control Register

Offset															Bi	t Pc	siti	on													
0x000	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	7	10	6	8	7	9 2	4	က	2	-	0
Reset				0				0x0			0x0			0x3	0				-	6	OXO	3	cxo		0	0x1		3	exo Ox3	3	000
Access				W.W				RW			RW			χ ≷	RW				RW	ž	≥ Y	2	<u>}</u>		W.W.	RW		Š	<u>}</u>	2	 ≩ Ƴ
Name				DBGCLK				CLKOUTSEL1			CLKOUTSEL0			LFXOTIMEOUT	LFXOBUFCUR				LFXOBOOST		LFAUMODE	E C X			HFXOGLITCHDETEN	HFXOBUFCUR		FO CONTRACTOR	HFX0B00051		HFXOMODE

Bit	Name	Reset	Access	Description
31:29	Reserved	To ensure	compatibility with	future devices, always write bits to 0. More information in Section 2.1 (p. 3)
28	DBGCLK	0	RW	Debug Clock
	Select clock u	sed for the debug system		
	Value	Mode	De	escription
	0	AUXHFRCO	AL	JXHFRCO is the debug clock
	1	HFCLK	Th	ne system clock is the debug clock
27:26	Reserved	To ansura	compatibility with	future devices, always write bits to 0. More information in Section 2.1 (p. 3)

CLKOUTSEL1 0x0 RW Clock Output Select 1

 $Controls \ the \ clock \ output \ multiplexer. \ To \ actually \ output \ on \ the \ pin, \ set \ CLKOUT1PEN \ in \ CMU_ROUTE.$

Value	Mode	Description
0	LFRCO	LFRCO (directly from oscillator)
1	LFXO	LFXO (directly from oscillator)
2	HFCLK	HFCLK
3	LFXOQ	LFXO (qualified)
4	HFXOQ	HFXO (qualified)
5	LFRCOQ	LFRCO (qualified)
6	HFRCOQ	HFRCO (qualified)
7	AUXHFRCOQ	AUXHFRCO (qualified)

22:20 CLKOUTSEL0 0x0 RW Clock Output Select 0

Controls the clock output multiplexer. To actually output on the pin, set CLKOUT0PEN in CMU_ROUTE.

Value	Mode	Description
0	HFRCO	HFRCO (directly from oscillator)
1	HFXO	HFXO (directly from oscillator)
2	HFCLK2	HFCLK/2
3	HFCLK4	HFCLK/4
4	HFCLK8	HFCLK/8
5	HFCLK16	HFCLK/16
6	ULFRCO	ULFRCO (directly from oscillator)
7	AUXHFRCO	AUXHFRCO (directly from oscillator)

19:18 LFXOTIMEOUT 0x3 RW **LFXO Timeout**

Configures the start-up delay for LFXO.

Value	Mode	Description
0	8CYCLES	Timeout period of 8 cycles
1	1KCYCLES	Timeout period of 1024 cycles

Bit	Name	Reset	Acce	ess Description
	Value	Mode		Description
	2	16KCYCLES		Timeout period of 16384 cycles
	3	32KCYCLES		Timeout period of 32768 cycles
17	LFXOBUFCUR	0	RW	LFXO Boost Buffer Current
	This value has b	peen set during calibration	n and should	not be changed.
16:14	Reserved	To ensure c	compatibility v	with future devices, always write bits to 0. More information in Section 2.1 (p.
13	LFXOBOOST	1	RW	LFXO Start-up Boost Current
	Adjusts start-up	boost current for LFXO.		
	Value	Mode		Description
	0	70PCENT		70 %
	1	100PCENT		100 % (default)
12:11	LFXOMODE	0x0	RW	LFXO Mode
				FXO. The oscillator setting takes effect when 1 is written to LFXOEN lefault when 1 is written to LFXODIS in CMU_OSCENCMD.
	Value	Mode		Description
	0	XTAL		32.768 kHz crystal oscillator
	1	BUFEXTCLK		An AC coupled buffer is coupled in series with LFXTAL_N pin, suitable for extern sinus wave (32.768 kHz).
	2	DIGEXTCLK		Digital external clock on LFXTAL_N pin. Oscillator is effectively bypassed.
10:9	HFXOTIMEOUT	0x3	RW	HFXO Timeout
	Configures the s	start-up delay for HFXO.		
	Value	Mode		Description
	0	8CYCLES		Timeout period of 8 cycles
	1	256CYCLES		Timeout period of 256 cycles
	2	1KCYCLES		Timeout period of 1024 cycles
	3	16KCYCLES		Timeout period of 16384 cycles
8	Reserved	To ensure c	compatibility w	with future devices, always write bits to 0. More information in Section 2.1 (p.
7	HFXOGLITCHD	ETEN 0	RW	HFXO Glitch Detector Enable
				long as the start-up ripple-counter is counting. A detected glitch will reset the once the ripple-counter has timed-out, glitches will not be detected.
6:5	HFXOBUFCUR	0x1	RW	HFXO Boost Buffer Current
	This value has b	een set during calibration	n and should	not be changed.
4	Reserved	To ensure c	compatibility v	vith future devices, always write bits to 0. More information in Section 2.1 (p.
3:2	HFXOBOOST	0x3	RW	HFXO Start-up Boost Current
	Used to adjust s	start-up boost current for I	HFXO.	
	Value	Mode		Description
	0	50PCENT		50 %
	1	70PCENT		70 %
	2	80PCENT		80 %
	3	100PCENT		100 % (default)
1:0	HFXOMODE	0x0	RW	HFXO Mode
		-		FXO. The oscillator setting takes effect when 1 is written to HFXOEN lefault when 1 is written to HFXODIS in CMU_OSCENCMD.
	Value	Mode		Description
	0	XTAL		4-32 MHz crystal oscillator
	1	BUFEXTCLK		An AC coupled buffer is coupled in series with HFXTAL_N, suitable for external sir wave (4-32 MHz)
		DIGEXTO! K		Digital external clack on HEYTAL N nin Oscillator is affectively hyposped

Downloaded from Elecules com

Digital external clock on HFXTAL_N pin. Oscillator is effectively bypassed.

DIGEXTCLK

11.5.2 CMU_HFCORECLKDIV - High Frequency Core Clock Division Register

Offset															Bi	t Po	siti	on														
0x004	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	9	5	4	က	7	-	0
Reset										•									·							•					OXO	
Access																															≷	
Name																															HECORECLADIV	

Bit	Name	Reset	Access	Description									
31:4	Reserved	To ensure co	ompatibility with f	h future devices, always write bits to 0. More information in Section 2.1 (p. 3)									
3:0	HFCORECLKDIV	0x0	RW	HFCORECLK Divider									
	Specifies the cloc	k divider for HFCOREC	LK.										
	Value	Mode	De	Description									
	0	HFCLK	HF	HFCORECLK = HFCLK									
	1	HFCLK2	HF	HFCORECLK = HFCLK/2									
	2	HFCLK4	HF	HFCORECLK = HFCLK/4									
	3	HFCLK8	HF	CORECLK = HFCLK/8									
	4	HFCLK16	HF	HFCORECLK = HFCLK/16									
	5	HFCLK32	HF	CORECLK = HFCLK/32									
	6	HFCLK64	HF	HFCORECLK = HFCLK/64									
	7	HFCLK128	HF	HFCORECLK = HFCLK/128									
	8	HFCLK256	HF	HFCORECLK = HFCLK/256									
	9	HFCLK512	HF	HFCORECLK = HFCLK/512									

11.5.3 CMU_HFPERCLKDIV - High Frequency Peripheral Clock Division Register

Offset															Bit	t Po	siti	on														
0x008	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	∞	7	9	2	4	က	2	- 0	,
Reset																								-						000		
Access																								₩.						- X		
Name																								HFPERCLKEN						HFPERCLKDIV		_

Bit	Name	Reset	Access	Description									
31:9	Reserved	To ensure co	To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)										
8	HFPERCLKEN	1	1 RW HFPERCLK Enable										
	Set to enable the HFP	ERCLK.											
7:4	Reserved	To ensure co	ompatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)									
3:0	HFPERCLKDIV	0x0	RW	HFPERCLK Divider									
	Specifies the clock divi	ider for the HEPER	CLK										

2010-12-21 - d0034_Rev0.90 www.energymicro.com

Bit	Name	Reset A	ccess Description
	Value	Mode	Description
	0	HFCLK	HFPERCLK = HFCLK
	1	HFCLK2	HFPERCLK = HFCLK/2
	2	HFCLK4	HFPERCLK = HFCLK/4
	3	HFCLK8	HFPERCLK = HFCLK/8
	4	HFCLK16	HFPERCLK = HFCLK/16
	5	HFCLK32	HFPERCLK = HFCLK/32
	6	HFCLK64	HFPERCLK = HFCLK/64
	7	HFCLK128	HFPERCLK = HFCLK/128
	8	HFCLK256	HFPERCLK = HFCLK/256
	9	HFCLK512	HFPERCLK = HFCLK/512

11.5.4 CMU_HFRCOCTRL - HFRCO Control Register

Offset															Bi	t Pc	siti	on														
0x00C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	11	10	6	8	7	9	5	4	ဗ	2	_	0
Reset																		0x00					0x3						0880			
Access												X X							R ⊗													
Name																		SUDELAY					BAND									

Bit	Name	Reset	Access	Description						
31:17	Reserved	To ensure co	ompatibility with fut	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)						
16:12	SUDELAY 0x00 RW HFRCO Start-up Delay									
	Always write this field to 0.									
11	Reserved	To ensure co	To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)							
10:8	BAND	0x3	RW	HFRCO Band Select						

Write this field to set the frequency band in which the HFRCO is to operate. When changing this setting there will be no glitches on the HFRCO output, hence it is safe to change this setting even while the system is running on the HFRCO. To ensure an accurate frequency, the HFTUNING value should also be written when changing the frequency band. The calibrated tuning value for the different bands can be read from the Device Information page.

Mode	Description
1MHZ	1 MHz. NOTE: Also set the TUNING value (bits 7:0) when changing band.
7MHZ	7 MHz. NOTE: Also set the TUNING value (bits 7:0) when changing band.
11MHZ	11 MHz. NOTE: Also set the TUNING value (bits 7:0) when changing band.
14MHZ	14 MHz. NOTE: Also set the TUNING value (bits 7:0) when changing band.
21MHZ	21 MHz. NOTE: Also set the TUNING value (bits 7:0) when changing band.
28MHZ	28 MHz. NOTE: Also set the TUNING value (bits 7:0) when changing band.
	1MHZ 7MHZ 11MHZ 14MHZ 21MHZ

7:0 TUNING 0x80 RW **HFRCO Tuning Value**

Writing this field adjusts the HFRCO frequency (the higher value, the higher frequency). This field is updated with the production calibrated value for the 14 MHz band during reset, and the reset value might therefore vary between devices.

Downloaded from Ecousicon 108 www.energymicro.com

11.5.5 CMU_LFRCOCTRL - LFRCO Control Register

Offset															Bi	t Po	siti	on									·					
0x010	31	30	29	28	27	26	22	24	23	22	21	20	19	18	17	16	15	14	13	12	1	10	6	80	7	9	2	4	က	2	-	0
Reset																													0x40			
Access																													RW			
Name																													TUNING			

Bit	Name	Reset	Access	Description
31:7	Reserved	To ensure compa	atibility with fut	rure devices, always write bits to 0. More information in Section 2.1 (p. 3)
6:0	TUNING	0x40	RW	LFRCO Tuning Value
				value, the higher frequency). This field is updated with the production efore vary between devices.

11.5.6 CMU_AUXHFRCOCTRL - AUXHFRCO Control Register

Offset															Bi	t Pc	siti	on														
0x014	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	1	10	6	8	7	9	5	4	က	2	-	0
Reset																							0x0						0880			
Access																							Z M					:	<u>}</u>			
Name																							BAND						9 N N O			

Bit	Name	Reset	Access	Description
31:11	Reserved	To ensure com	patibility with fut	rure devices, always write bits to 0. More information in Section 2.1 (p. 3)
10:8	BAND	0x0	RW	AUXHFRCO Band Select

Write this field to set the frequency band in which the AUXHFRCO is to operate. When changing this setting there will be no glitches on the HFRCO output, hence it is safe to change this setting even while the system is using the AUXHFRCO. To ensure an accurate frequency, the AUXTUNING value should also be written when changing the frequency band. The calibrated tuning value for the different bands can be read from the Device Information page. Flash erase and write use this clock. If it is changed to another value than the default, MSC_TIMEBASE must also be configured to ensure correct flash erase and write operation.

Value	Mode	Description
0	14MHZ	14 MHz. NOTE: Also set the TUNING value (bits 7:0) when changing band.
1	11MHZ	11 MHz. NOTE: Also set the TUNING value (bits 7:0) when changing band.
2	7MHZ	7 MHz. NOTE: Also set the TUNING value (bits 7:0) when changing band.
3	1MHZ	1 MHz. NOTE: Also set the TUNING value (bits 7:0) when changing band.
6	28MHZ	28 MHz. NOTE: Also set the TUNING value (bits 7:0) when changing band.
7	21MHZ	21 MHz. NOTE: Also set the TUNING value (bits 7:0) when changing band.

7:0 **TUNING** 0x80 RW **AUXHFRCO Tuning Value**

This value has been set during calibration and should not be changed.

2010-12-21 - d0034_Rev0.90 109 www.energymicro.com

11.5.7 CMU_CALCTRL - Calibration Control Register

Offset															Bi	t Pc	siti	ion														
0x018	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	80	7	9	2	4	က	7	-	0
Reset																										0		0x0			0×0	
Access																										RW		RW			RW	
Name																										CONT		DOWNSEL			UPSEL	

Bit	Name	Reset	Acces	ss Description
31:7	Reserved	To ensure c	ompatibility w	ith future devices, always write bits to 0. More information in Section 2.1 (p. 3)
6	CONT	0	RW	Continuous Calibration
	Set this bit to e	nable continuous calibration	on	
5:3	DOWNSEL	0x0	RW	Calibration Down-counter Select
	Selects clock s	ource for the calibration do	own-counter	
	Value	Mode		Description
	0	HFCLK		Select HFCLK for down-counter
	1	HFXO		Select HFXO for down-counter
	2	LFXO		Select LFXO for down-counter
	3	HFRCO		Select HFRCO for down-counter
	4	LFRCO		Select LFRCO for down-counter
	5	AUXHFRCO		Select AUXHFRCO for down-counter
2:0	UPSEL	0x0	RW	Calibration Up-counter Select
	Selects clock s	ource for the calibration up	o-counter	
	Value	Mode		Description
	0	HFXO		Select HFXO as up-counter
	1	LFXO		Select LFXO as up-counter
	2	HFRCO		Select HFRCO as up-counter
	3	LFRCO		Select LFRCO as up-counter
	4	AUXHFRCO		Select AUXHFRCO as up-counter

11.5.8 CMU_CALCNT - Calibration Counter Register

Offset				,									Bit	Pos	ition												
0x01C	31	30	29	28	27	26	52	23	22	21	20	18	17	16	<u>c</u> 4	13	; [10	6	8	7	9	2	4 (ω c	7 -	0
Reset																			0x00000								
Access																			RWH								
Name																			CALCNT								

Bit	Name	Reset	Access	Description
31:20	Reserved	To ensure compa	atibility with futu	ure devices, always write bits to 0. More information in Section 2.1 (p. 3)

Downloaded from Heads, com 2010-12-21 - d0034_Rev0.90 110 www.energymicro.com

Bit	Name	Reset	Access	Description
19:0	CALCNT	0x00000	RWH	Calibration Counter
	Write top value before calil	oration. Read calib	ration result fro	om this register when Calibration Ready flag has been set.

11.5.9 CMU_OSCENCMD - Oscillator Enable/Disable Command Register

Offset															Bi	t Po	siti	on														
0x020	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	41	13	12	7	10	6	∞	7	9	2	4	က	7	-	0
Reset																							0	0	0	0	0	0	0	0	0	0
Access																							W	W	×	W1	W	W	W	×	W	W
Name																							LFXODIS	LFXOEN	LFRCODIS	LFRCOEN	AUXHFRCODIS	AUXHFRCOEN	HFXODIS	HFXOEN	HFRCODIS	HFRCOEN

Bit	Name	Reset	Access	Description
31:10	Reserved	To ensure comp	patibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
9	LFXODIS	0	W1	LFXO Disable
	Disables the LFXO. LFXO	EN has higher prio	rity if written si	multaneously.
8	LFXOEN	0	W1	LFXO Enable
	Enables the LFXO.			
7	LFRCODIS	0	W1	LFRCO Disable
	Disables the LFRCO. LFR	COEN has higher p	priority if writte	n simultaneously.
6	LFRCOEN	0	W1	LFRCO Enable
	Enables the LFRCO.			
5	AUXHFRCODIS	0	W1	AUXHFRCO Disable
	Disables the AUXHFRCO a flash erase/write operati		as higher prior	ity if written simultaneously. WARNING: Do not disable this clock during
4	AUXHFRCOEN	0	W1	AUXHFRCO Enable
	Enables the AUXHFRCO.			
3	HFXODIS	0	W1	HFXO Disable
	Disables the HFXO. HFXO is selected as the source f		iority if written	simultaneously. WARNING: Do not disable the HFRXO if this oscillator
2	HFXOEN	0	W1	HFXO Enable
	Enables the HFXO.			
1	HFRCODIS	0	W1	HFRCO Disable
	Disables the HFRCO. HFF is selected as the source to		priority if writte	n simultaneously. WARNING: Do not disable the HFRCO if this oscillator
0	HFRCOEN	0	W1	HFRCO Enable
	Enables the HFRCO.			

Downloaded from Houles com

11.5.10 CMU_CMD - Command Register

Offset															Bi	t Po	siti	on														
0x024	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	1	10	6	8	7	9	2	4	က	7	-	0
Reset		•	•	•					•								•						•					0	0		0×0	
Access																												W1	W1		W1	
Name																												CALSTOP	CALSTART		HFCLKSEL	

Bit	Name	Reset	Access	Description
31:5	Reserved	To ensure c	ompatibility with t	iuture devices, always write bits to 0. More information in Section 2.1 (p. 3)
4	CALSTOP	0	W1	Calibration Stop
	Stops the calibrati	on counters.		
3	CALSTART	0	W1	Calibration Start
	Starts the calibrati	ion, effectively loading t	he CMU_CALCN	IT into the down-counter and start decrementing.
2:0	HFCLKSEL	0x0	W1	HFCLK Select
		source for HFCLK. Note d confirm that oscillator		n oscillator that is disabled will cause the system clock to stop. Check the witching.
	Value	Mode	De	escription
	1	HFRCO	Se	lect HFRCO as HFCLK
	2	HFXO	Se	lect HFXO as HFCLK
	3	LFRCO	Se	lect LFRCO as HFCLK
	4	LFXO	Se	lect LFXO as HFCLK

11.5.11 CMU_LFCLKSEL - Low Frequency Clock Select Register

Offset															Bi	t Po	siti	on														
0x028	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	41	13	12	1	10	6	8	7	9	2	4	ю	2	-	0
Reset												0				0													5	(X)	5	 Š
Access												W.				RW													\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	N.	/\/	<u>^</u>
Name												LFBE				LFAE													<u>a</u>	9	\ -	

Bit	Name	Reset	Access	Description
31:21	Reserved	To ensure co	ompatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
20	LFBE	0	RW	Clock Select for LFB Extended
	Selects the clo	ock source for LFBCLK whe	n LFB field set to	DISABLED.
	Value	Mode	Des	cription
	0	DISABLED	LFB	CLK is disabled (when LFB = DISABLED)
	1	ULFRCO	ULF	RCO selected as LFBCLK (when LFB = DISABLED)
19:17	Reserved	To ensure co	ompatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
16	ΙFΔF	0	RW	Clock Select for LEA Extended

Selects the clock source for LFACLK when LFA field set to DISABLED.

Bit	Name	Reset	Acce	ss Description
	Value	Mode		Description
	0	DISABLED		LFACLK is disabled (when LFA = DISABLED)
	1	ULFRCO		ULFRCO selected as LFACLK (when LFA = DISABLED)
15:4	Reserved	To ensure co	mpatibility w	vith future devices, always write bits to 0. More information in Section 2.1 (p. 3)
3:2	LFB	0x1	RW	Clock Select for LFB
	Selects the clo	ck source for LFBCLK		
	Value	Mode		Description
	0	DISABLED		LFBCLK is disabled
	1	LFRCO		LFRCO selected as LFBCLK
	2	LFXO		LFXO selected as LFBCLK
	3	HFCORECLKLEDIV2		HFCORECLK _{LE} divided by two is selected as LFBCLK
1:0	LFA	0x1	RW	Clock Select for LFA
	Selects the clo	ck source for LFACLK.		
	Value	Mode		Description
	0	DISABLED		LFACLK is disabled
	1	LFRCO		LFRCO selected as LFACLK
	2	LFXO		LFXO selected as LFACLK
	3	HFCORECLKLEDIV2		HFCORECLK _{LE} divided by two is selected as LFACLK

11.5.12 CMU_STATUS - Status Register

Offset															Bi	t Pc	siti	on														
0x02C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	œ	7	9	2	4	က	7	-	0
Reset																		0	0	0	0	-	0	0	0	0	0	0	0	0	-	-
Access																		~	~	2	2	~	2	œ	~	~	~	~	œ	œ	œ	~
Name																		CALBSY	LFXOSEL	LFRCOSEL	HFXOSEL	HFRCOSEL	LFXORDY	LFXOENS	LFRCORDY	LFRCOENS	AUXHFRCORDY	AUXHFRCOENS	HFXORDY	HFXOENS	HFRCORDY	HFRCOENS

Bit	Name	Reset	Access	Description
31:15	Reserved	To ensure co	mpatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
14	CALBSY	0	R	Calibration Busy
	Calibration is on-going			
13	LFXOSEL	0	R	LFXO Selected
	LFXO is selected as H	FCLK clock source.		
12	LFRCOSEL	0	R	LFRCO Selected
	LFRCO is selected as	HFCLK clock source	e.	
11	HFXOSEL	0	R	HFXO Selected
	HFXO is selected as F	IFCLK clock source		
10	HFRCOSEL	1	R	HFRCO Selected
	HFRCO is selected as	HFCLK clock source	ce.	
9	LFXORDY	0	R	LFXO Ready
	LFXO is enabled and	start-up time has ex	ceeded.	
8	LFXOENS	0	R	LFXO Enable Status
	LFXO is enabled.			

				,
Bit	Name	Reset	Access	Description
7	LFRCORDY	0	R	LFRCO Ready
	LFRCO is enabled and	start-up time has	exceeded.	
6	LFRCOENS	0	R	LFRCO Enable Status
	LFRCO is enabled.			
5	AUXHFRCORDY	0	R	AUXHFRCO Ready
	AUXHFRCO is enabled	and start-up time	has exceeded.	
4	AUXHFRCOENS	0	R	AUXHFRCO Enable Status
	AUXHFRCO is enabled	l.		
3	HFXORDY	0	R	HFXO Ready
	HFXO is enabled and s	tart-up time has ex	ceeded.	
2	HFXOENS	0	R	HFXO Enable Status
	HFXO is enabled.			
1	HFRCORDY	1	R	HFRCO Ready
	HFRCO is enabled and	start-up time has	exceeded.	
0	HFRCOENS	1	R	HFRCO Enable Status
	HFRCO is enabled.			
	-			

11.5.13 CMU_IF - Interrupt Flag Register

Offset															Bi	t Po	ositi	on														
0x030	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	ი	8	7	9	2	4	က	7	-	0
Reset																										0	0	0	0	0	0	-
Access																										2	~	~	œ	22	2	22
Name																										CALOF	CALRDY	AUXHFRCORDY	LFXORDY	LFRCORDY	HFXORDY	HFRCORDY

Bit	Name	Reset	Access	Description
31:7	Reserved	To ensure co	ompatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
6	CALOF	0	R	Calibration Overflow Interrupt Flag
	Set when calibration ov	erflow has occurre	ed	
5	CALRDY	0	R	Calibration Ready Interrupt Flag
	Set when calibration is	completed.		
4	AUXHFRCORDY	0	R	AUXHFRCO Ready Interrupt Flag
	Set when AUXHFRCO	is ready (start-up t	ime exceeded).	
3	LFXORDY	0	R	LFXO Ready Interrupt Flag
	Set when LFXO is read	dy (start-up time ex	ceeded).	
2	LFRCORDY	0	R	LFRCO Ready Interrupt Flag
	Set when LFRCO is re	ady (start-up time e	exceeded).	
1	HFXORDY	0	R	HFXO Ready Interrupt Flag
	Set when HFXO is read	dy (start-up time ex	ceeded).	
0	HFRCORDY	1	R	HFRCO Ready Interrupt Flag
	Set when HFRCO is re	ady (start-up time	exceeded).	

Downloaded from Elecules com

11.5.14 CMU_IFS - Interrupt Flag Set Register

Offset															Bi	t Po	siti	on														
0x034	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	41	13	12	7	10	6	8	7	9	2	4	က	2	-	0
Reset			•		•				•								•				•				-	0	0	0	0	0	0	0
Access																										W	W	W1	W1	W1	W1	W
Name																										CALOF	CALRDY	AUXHFRCORDY	LFXORDY	LFRCORDY	HFXORDY	HFRCORDY

Bit	Name	Reset	Access	Description
31:7	Reserved	To ensure co	ompatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
6	CALOF	0	W1	Calibration Overflow Interrupt Flag Set
	Write to 1 to clear the C	Calibration Overflow	v Interrupt Flag	
5	CALRDY	0	W1	Calibration Ready Interrupt Flag Set
	Write to 1 to set the Ca	libration Ready(co	mpleted) Interrupt	Flag
4	AUXHFRCORDY	0	W1	AUXHFRCO Ready Interrupt Flag Set
	Write to 1 to set the AU	XHFRCO Ready I	nterrupt Flag	
3	LFXORDY	0	W1	LFXO Ready Interrupt Flag Set
	Write to 1 to set the LF.	XO Ready Interrup	t Flag	
2	LFRCORDY	0	W1	LFRCO Ready Interrupt Flag Set
	Write to 1 to set the LF	RCO Ready Interru	upt Flag	
1	HFXORDY	0	W1	HFXO Ready Interrupt Flag Set
	Write to 1 to set the HF	XO Ready Interrup	ot Flag	
0	HFRCORDY	0	W1	HFRCO Ready Interrupt Flag Set
	Write to 1 to set the HF	RCO Ready Interre	upt Flag	

11.5.15 CMU_IFC - Interrupt Flag Clear Register

Offset															Bi	t Po	siti	on														
0x038	31	30	29	28	27	56	25	24	23	22	21	20	19	18	17	16	15	4	13	12	=	10	6	8	7	9	2	4	က	7	-	0
Reset																										0	0	0	0	0	0	0
Access																										W1	W1	W1	W1	W1	W1	W1
Name																										CALOF	CALRDY	AUXHFRCORDY	LFXORDY	LFRCORDY	HFXORDY	HFRCORDY

Bit	Name	Reset	Access	Description
31:7	Reserved	To ensure comp	atibility with fut	rure devices, always write bits to 0. More information in Section 2.1 (p. 3)
6	CALOF	0	W1	Calibration Overflow Interrupt Flag Clear
	Write to 1 to clear the Calib	ration Overflow Int	terrupt Flag	
5	CALRDY	0	W1	Calibration Ready Interrupt Flag Clear
	Write to 1 to clear the Calib	ration Ready Inter	rupt Flag	

Downloaded from Hoods, com 2010-12-21 - d0034_Rev0.90 115 www.energymicro.com

Bit	Name	Reset	Access	Description
4	AUXHFRCORDY	0	W1	AUXHFRCO Ready Interrupt Flag Clear
	Write to 1 to clear the	AUXHFRCO Ready	Interrupt Flag	
3	LFXORDY	0	W1	LFXO Ready Interrupt Flag Clear
	Write to 1 to clear the	LFXO Ready Interro	upt Flag	
2	LFRCORDY	0	W1	LFRCO Ready Interrupt Flag Clear
	Write to 1 to clear the	LFRCO Ready Inte	rrupt Flag	
1	HFXORDY	0	W1	HFXO Ready Interrupt Flag Clear
	Write to 1 to clear the	HFXO Ready Interr	upt Flag	
0	HFRCORDY	0	W1	HFRCO Ready Interrupt Flag Clear
	Write to 1 to clear the	HFRCO Ready Inte	rrupt Flag	

11.5.16 CMU_IEN - Interrupt Enable Register

Offset															Bi	t Po	siti	on														
0x03C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	80	7	9	2	4	က	7	-	0
Reset																										0	0	0	0	0	0	0
Access																										RW	RW	N N	W.	N N	N N	₹ Š
Name																										CALOF	CALRDY	AUXHFRCORDY	LFXORDY	LFRCORDY	HFXORDY	HFRCORDY

Bit	Name	Reset	Access	Description
31:7	Reserved	To ensure co	ompatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
6	CALOF	0	RW	Calibration Overflow Interrupt Enable
	Set to enable the Calib	oration Overflow Inte	errupt.	
5	CALRDY	0	RW	Calibration Ready Interrupt Enable
	Set to enable the Calib	oration Ready Interr	upt.	
4	AUXHFRCORDY	0	RW	AUXHFRCO Ready Interrupt Enable
	Set to enable the AUX	HFRCO Ready Inte	errupt.	
3	LFXORDY	0	RW	LFXO Ready Interrupt Enable
	Set to enable the LFX0	O Ready Interrupt.		
2	LFRCORDY	0	RW	LFRCO Ready Interrupt Enable
	Set to enable the LFR	CO Ready Interrupt		
1	HFXORDY	0	RW	HFXO Ready Interrupt Enable
	Set to enable the HFX	O Ready Interrupt.		
0	HFRCORDY	0	RW	HFRCO Ready Interrupt Enable
	Set to enable the HFR	CO Ready Interrupt	t.	

2010-12-21 - d0034_Rev0.90 www.energymicro.com

11.5.17 CMU_HFCORECLKEN0 - High Frequency Core Clock Enable Register 0

Offset															Bi	t Pc	siti	on														
0x040	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	41	13	12	11	10	6	8	7	9	2	4	က	2	-	0
Reset																														0	0	0
Access																														RW	RW	₩ M
Name																														E E	DMA	AES

Bit	Name	Reset	Access	Description
31:3	Reserved	To ensure c	ompatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
2	LE	0	RW	Low Energy Peripheral Interface Clock Enable
	Set to enable the c	lock for LE. Interface u	sed for bus acces	s to Low Energy peripherals.
1	DMA	0	RW	Direct Memory Access Controller Clock Enable
	Set to enable the c	lock for DMA.		
0	AES	0	RW	Advanced Encryption Standard Accelerator Clock Enable
	Set to enable the c	lock for AES.		

11.5.18 CMU_HFPERCLKEN0 - High Frequency Peripheral Clock Enable Register 0

Offset						•									Bi	t Pc	siti	on														
0x044	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	7	10	6	œ	7	9	2	4	е	7	-	0
Reset																					0	0	0	0	0	0	0	0	0	0	0	0
Access																					Z.	RW	W.	W.	M	ΚW	₩ M	W.	S.	W.	W.	§.
Name																					12C0	DAC0	ADC0	PRS	VCMP	GPIO	TIMER1	TIMERO	USART1	USARTO	ACMP1	ACMP0

Bit	Name	Reset	Access	Description
31:12	Reserved	To ensure comp	atibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
11	I2C0	0	RW	I2C 0 Clock Enable
	Set to enable the clock for I2	2C0.		
10	DAC0	0	RW	Digital to Analog Converter 0 Clock Enable
	Set to enable the clock for D	ACO.		
9	ADC0	0	RW	Analog to Digital Converter 0 Clock Enable
	Set to enable the clock for A	DC0.		
8	PRS	0	RW	Peripheral Reflex System Clock Enable
	Set to enable the clock for P	PRS.		
7	VCMP	0	RW	Voltage Comparator Clock Enable
	Set to enable the clock for V	CMP.		
6	GPIO	0	RW	General purpose Input/Output Clock Enable
	Set to enable the clock for G	SPIO.		

Downloaded from E 2010-12-21 - d0034_Rev0.90 117 www.energymicro.com

Bit	Name	Reset	Access	Description
5	TIMER1	0	RW	Timer 1 Clock Enable
	Set to enable the o	clock for TIMER1.		
4	TIMER0	0	RW	Timer 0 Clock Enable
	Set to enable the o	clock for TIMER0.		
3	USART1	0	RW	Universal Synchronous/Asynchronous Receiver/Transmitter 1 Clock Enable
	Set to enable the o	clock for USART1.		
2	USART0	0	RW	Universal Synchronous/Asynchronous Receiver/Transmitter 0 Clock Enable
	Set to enable the o	clock for USART0.		
1	ACMP1	0	RW	Analog Comparator 1 Clock Enable
	Set to enable the o	clock for ACMP1.		
0	ACMP0	0	RW	Analog Comparator 0 Clock Enable
	Set to enable the o	clock for ACMP0.		

11.5.19 CMU_SYNCBUSY - Synchronization Busy Register

Offset		•	•							•		•			Bi	t Po	siti	on														
0x050	33	30	53	78	27	56	22	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	80	7	9	2	4	က	2	-	0
Reset				•							•															0		0		0		0
Access																										~		œ		2		~
Name																										LFBPRESC0		LFBCLKEN0		LFAPRESC0		LFACLKENO

Bit	Name	Reset	Access	Description
31:7	Reserved	To ensure co	ompatibility with fu	uture devices, always write bits to 0. More information in Section 2.1 (p. 3)
6	LFBPRESC0	0	R	Low Frequency B Prescaler 0 Busy
	Used to check the s	synchronization status	of CMU_LFBPRE	ESCO.
	Value	Description		
	1	CMU_LFBPRES	C0 is busy synchror	nizing new value
5	Reserved	To ensure co	ompatibility with fu	uture devices, always write bits to 0. More information in Section 2.1 (p. 3)
4	LFBCLKEN0	0	R	Low Frequency B Clock Enable 0 Busy
	Used to check the s	synchronization status	of CMU_LFBCLK	ENO.
	Value	Description		
	0	CMU_LFBCLKE	N0 is ready for upda	te
	1	CMU_LFBCLKE	N0 is busy synchron	izing new value
3	Reserved	To ensure co	ompatibility with fu	iture devices, always write bits to 0. More information in Section 2.1 (p. 3)
2	LFAPRESC0	0	R	Low Frequency A Prescaler 0 Busy
	Used to check the s	synchronization status	of CMU_LFAPRE	ESCO.
	Value	Description		
	0	CMU_LFAPRES	C0 is ready for upda	ate
	1	CMU_LFAPRES	C0 is busy synchror	nizing new value
1	Reserved	To ensure co	ompatibility with fu	iture devices, always write bits to 0. More information in Section 2.1 (p. 3)
0	LFACLKEN0	0	R	Low Frequency A Clock Enable 0 Busy

2010-12-21 - d0034_Rev0.90 118 **www.energymicro.com**

Used to check the synchronization status of CMU_LFACLKEN0.

Downloaded from I

Bit	Name	Reset Access Description
	Value	Description
	0	CMU_LFACLKEN0 is ready for update
	1	CMU_LFACLKEN0 is busy synchronizing new value

11.5.20 CMU_FREEZE - Freeze Register

Offset															Bi	t Po	siti	on														
0x054	31	30	29	28	27	56	25	24	23	22	21	20	19	18	17	16	15	41	13	12	7	10	6	8	7	9	2	4	က	2	-	0
Reset																																0
Access																																R ₩
Name																																REGFREEZE

Bit	Name	Reset	Access	Description
31:1	Reserved	To ensure o	compatibility with	future devices, always write bits to 0. More information in Section 2.1 (p. 3)
0	REGFREEZE	0	RW	Register Update Freeze

When set, the update of the Low Frequency clock control registers is postponed until this bit is cleared. Use this bit to update several registers simultaneously.

Value	Mode	Description
0		Each write access to a Low Frequency clock control register is updated into the Low Frequency domain as soon as possible.
1	FREEZE	The LE Clock Control registers are not updated with the new written value.

11.5.21 CMU_LFACLKEN0 - Low Frequency A Clock Enable Register 0 (Async Reg)

Offset															Bi	t Po	siti	on														
0x058	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	1	10	6	8	7	9	2	4	က	2	-	0
Reset																													0	0	0	0
Access																													ΑW	ΑW	ΑM	R W
Name																													CCD	LETIMERO	RTC	LESENSE

Bit	Name	Reset	Access	Description
31:4	Reserved	To ensure co	mpatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
3	LCD	0	RW	Liquid Crystal Display Controller Clock Enable
	Set to enable the clo	ck for LCD.		
2	LETIMER0	0	RW	Low Energy Timer 0 Clock Enable
	Set to enable the clo	ck for LETIMER0.		
1	RTC	0	RW	Real-Time Counter Clock Enable
	Set to enable the clo	ck for RTC.		
0	LESENSE	0	RW	Low Energy Sensor Interface Clock Enable
	Set to enable the clo	ck for LESENSE.		

Downloaded from House com

11.5.22 CMU_LFBCLKEN0 - Low Frequency B Clock Enable Register 0 (Async Reg)

Offset															Bit	: Po	siti	on														
0x060	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	41	13	12	11	10	6	∞	7	9	2	4	е	7	-	0
Reset																																0
Access																																₹
Name																																LEUARTO

Bit	Name	Reset	Access	Description
31:1	Reserved	To ensure compa	tibility with futu	re devices, always write bits to 0. More information in Section 2.1 (p. 3)
0	LEUART0	0	RW	Low Energy UART 0 Clock Enable
	Set to enable the clock for L	EUART0.		

11.5.23 CMU_LFAPRESC0 - Low Frequency A Prescaler Register 0 (Async Reg)

Offset															Bi	t Po	siti	on														
0x068	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	7	10	6	8	7	9	5	4	က	2	_	0
Reset			•		•							•							6	000		2	3				0X0				2	<u> </u>
Access																			i	≩ Ƴ			2			-	¥ §				2	 }
Name																			0	<u></u>						(RTC					

Bit	Name	Reset	Access	Description
31:14	Reserved	To ensure co	ompatibility with fu	uture devices, always write bits to 0. More information in Section 2.1 (p. 3)
13:12	LCD	0x0	RW	Liquid Crystal Display Controller Prescaler
	Configure Liqui	d Crystal Display Controlle	r prescaler	
	Value	Mode	Des	scription
	0	DIV16	LFA	ACLK _{LCD} = LFACLK/16
	1	DIV32	LFA	ACLK _{LCD} = LFACLK/32
	2	DIV64	LFA	ACLK _{LCD} = LFACLK/64
	3	DIV128	LFA	ACLK _{LCD} = LFACLK/128
11:8	LETIMER0	0x0	RW	Low Energy Timer 0 Prescaler

Configure Low Energy Timer 0 prescaler

Value	Mode	Description
0	DIV1	LFACLK _{LETIMERO} = LFACLK
1	DIV2	LFACLK _{LETIMERO} = LFACLK/2
2	DIV4	LFACLK _{LETIMER0} = LFACLK/4
3	DIV8	LFACLK _{LETIMER0} = LFACLK/8
4	DIV16	LFACLK _{LETIMER0} = LFACLK/16
5	DIV32	LFACLK _{LETIMER0} = LFACLK/32
6	DIV64	LFACLK _{LETIMER0} = LFACLK/64
7	DIV128	LFACLK _{LETIMER0} = LFACLK/128
8	DIV256	LFACLK _{LETIMER0} = LFACLK/256

Downloaded from H couls com 2010-12-21 - d0034_Rev0.90 120 www.energymicro.com

Bit	Name	Reset	Acces	ss Description
	Value	Mode		Description
	9	DIV512		LFACLK _{LETIMER0} = LFACLK/512
	10	DIV1024		LFACLK _{LETIMER0} = LFACLK/1024
	11	DIV2048		LFACLK _{LETIMER0} = LFACLK/2048
	12	DIV4096		LFACLK _{LETIMER0} = LFACLK/4096
	13	DIV8192		LFACLK _{LETIMER0} = LFACLK/8192
	14	DIV16384		LFACLK _{LETIMER0} = LFACLK/16384
	15	DIV32768		LFACLK _{LETIMER0} = LFACLK/32768
7:4	RTC	0x0	RW	Real-Time Counter Prescaler
	Configure Rea	al-Time Counter prescaler		
	Value	Mode		Description
	0	DIV1		LFACLK _{RTC} = LFACLK
	1	DIV2		LFACLK _{RTC} = LFACLK/2
	2	DIV4		LFACLK _{RTC} = LFACLK/4
	3	DIV8		LFACLK _{RTC} = LFACLK/8
	4	DIV16		LFACLK _{RTC} = LFACLK/16
	5	DIV32		LFACLK _{RTC} = LFACLK/32
	6	DIV64		LFACLK _{RTC} = LFACLK/64
	7	DIV128		LFACLK _{RTC} = LFACLK/128
	8	DIV256		LFACLK _{RTC} = LFACLK/256
	9	DIV512		LFACLK _{RTC} = LFACLK/512
	10	DIV1024		LFACLK _{RTC} = LFACLK/1024
	11	DIV2048		LFACLK _{RTC} = LFACLK/2048
	12	DIV4096		LFACLK _{RTC} = LFACLK/4096
	13	DIV8192		LFACLK _{RTC} = LFACLK/8192
	14	DIV16384		LFACLK _{RTC} = LFACLK/16384
	15	DIV32768		LFACLK _{RTC} = LFACLK/32768
3:2	Reserved	To ensure con	mpatibility w	ith future devices, always write bits to 0. More information in Section 2.1 (p. 3)
1:0	LESENSE	0x0	RW	Low Energy Sensor Interface Prescaler
	Configure Lov	v Energy Sensor Interface pre	escaler	
	Value	Mode		Description
	0	DIV1		LFACLK _{LESENSE} = LFACLK
	1	DIV2		LFACLK _{LESENSE} = LFACLK/2
	2	DIV4		LFACLK _{LESENSE} = LFACLK/4
	3	DIV8		LFACLK _{LESENSE} = LFACLK/8

11.5.24 CMU_LFBPRESC0 - Low Frequency B Prescaler Register 0 (Async Reg)

Offset															Bi	t Pc	siti	on														
0x070	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	œ	7	9	2	4	က	2	-	0
Reset									•			•					•							•				•	•	_	2	
Access																															3	 } L
Name																															OF GV	

Bit	Name	Reset	Access	Description
31:2	Reserved	To ensure compa	atibility with fut	ure devices, always write bits to 0. More information in Section 2.1 (p. 3)

Bit	Name	Reset	Access	Description
1:0	LEUART0	0x0	RW	Low Energy UART 0 Prescaler
	Configure Low En	nergy UART 0 prescaler		
	Value	Mode	С	Description
	0	DIV1	L	FBCLK _{LEUART0} = LFBCLK
	1	DIV2	L	FBCLK _{LEUART0} = LFBCLK/2
	2	DIV4	L	FBCLK _{LEUART0} = LFBCLK/4
	3	DIV8	L	FBCLK _{LEUART0} = LFBCLK/8

11.5.25 CMU_PCNTCTRL - PCNT Control Register

Offset													Bit P	osit	ion					·									
0x078	33	59	28	27	26	6 2	7 23	22	21	20	19	1 3	16	15	4	13	12	=	10	6	80	7	ω ι	n	4	က	2	-	0
Reset						,	'					,		,														0	0
Access																												RW	R ≪
Name																												PCNT0CLKSEL	PCNT0CLKEN
Bit	Nam	е				F	Reset			Α	cce	ss	D	esc	ripti	on													
21.2	Posor	a cod				7	r			- (! - !		.: (I - E.	. (-1!-				.: (- I	.:	- 0 1	4				O) (:	0	4 /	01

31:2	Reserved	To ensure	compatibility with	h future devices, always write bits to 0. More information in Section 2.1 (p. 3)
1	PCNT0CLKSEL	0	RW	PCNT0 Clock Select
	This bit controls v	which clock that is use	d for the PCNT.	
	Value	Mode		Description
	0	LFACLK		LFACLK is clocking PCNT0
	1	PCNT0S0		External pin PCNT0_S0 is clocking PCNT0

PCNT0CLKEN RW **PCNT0 Clock Enable** 0 This bit enables/disables the clock to the PCNT.

11.5.26 CMU_LCDCTRL - LCD Control Register

Offset															Bi	t Po	siti	on														
0x07C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	თ	8	7	9	2	4	က	2	-	0
Reset																											0x2		0		0x0	
Access																											RW		RW		RW	
Name																											VBFDIV		VBOOSTEN		FDIV	

Bit	Name	Reset	Access	Description
31:7	Reserved	To ensure compa	atibility with futu	ure devices, always write bits to 0. More information in Section 2.1 (p. 3)
6:4	VBFDIV	0x2	RW	Voltage Boost Frequency Division

These bits control the voltage boost update frequency division.

	Value	Mode	Description
	0	DIV1	Voltage Boost update Frequency = LFACLK
ĺ	1	DIV2	Voltage Boost update Frequency = LFACLK/2

Bit	Name	Reset	Acce	ess Description
	Value	Mode		Description
	2	DIV4		Voltage Boost update Frequency = LFACLK/4
	3	DIV8		Voltage Boost update Frequency = LFACLK/8
	4	DIV16		Voltage Boost update Frequency = LFACLK/16
	5	DIV32		Voltage Boost update Frequency = LFACLK/32
	6	DIV64		Voltage Boost update Frequency = LFACLK/64
	7	DIV128		Voltage Boost update Frequency = LFACLK/128
3	VBOOSTEN	0	RW	Voltage Boost Enable
	This bit enables	disables the VBOOST fo	unction.	
2:0	FDIV	0x0	RW	Frame Rate Control
		rols the framerate accord CMU_LFACLKEN0 is set		nula: LFACLK _{LCD} = LFACLK _{LCDpre} / (1 + FDIV). Do not change this value while

11.5.27 CMU_ROUTE - I/O Routing Register

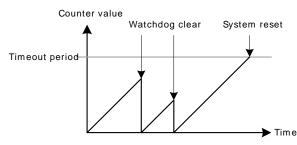
															U																		
Offset															Bit	Posit	ioi																
0x080	31	30	29	28	27	26	25	24	23	22	21	20	6 6	2	17	16	7	4	5 5	7 :	11	10	6	∞	7	9	2	4	က	2	-	0	
Reset																·				•	·					·			000		0	0	
Access																													RW		RW	RW	
Name																													LOCATION		CLKOUT1PEN	CLKOUT0PEN	
Bit	Na	me						Re	set			Ad	cces	SS		Desc	rip	tio	n														
31:5	Re	serve	ed					То	ensi	ıre c	omp	atibili	ity w	ith	future	e devid	ces,	, alv	vays	wri	te b	oits	to 0.	Mor	e ini	forn	natic	n in	Seci	ion 2	.1 (p	. 3)	
4:2	LO	CAT	ION					0x0)			RV	٧		ı	/O Lo	cat	ion											in Section 2.1 (p.				
	De	cides	the	loca	ition	of t	the	CML	I I/O	pins																							
	Va	lue			M	lode	!							D	escrip	tion																	
	0				L	OC0)							Lo	ocatior	า 0																	
	1				L	OC1								Lo	ocatior	า 1																	

1 CLKOUT1PEN 0 RW CLKOUT1 Pin Enable When set, the CLKOUT1 pin is enabled. 0 CLKOUT0PEN 0 RW CLKOUT0 Pin Enable When set, the CLKOUT0 pin is enabled.

11.5.28 CMU_LOCK - Configuration Lock Register

Offset															Bi	t Po	siti	on														
0x084	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	1	10	6	8	7	9	5	4	3	2	1	0
Reset																									000000							
Access																								i	<u>}</u>							
Name																								(LOCKKEY							

Downloaded from Headlescom 2010-12-21 - d0034_Rev0.90 123 www.energymicro.com


Bit	Name	Reset	Access	Description	
31:16	Reserved	To ensure com	patibility with fut	uture devices, always write bits to 0. More information in Section 2.1 (o. 3)
15:0	LOCKKEY	0x0000	RW	Configuration Lock Key	
	CMU_LFCLKSEL, CMU_I CMU_LFBPRESC0, and when the lock is enabled.	HFCORECLKENO, CMU_PCNTCTRL	CMU_HFPER	COCTRL, CMU_AUXHFRCOCTRL, CMU_OSCENCMD, CMU_CRCLKEN0, CMU_LFACLKEN0, CMU_LFBCLKEN0, CMU_LFAPRES Write the unlock code to unlock. When reading the register, bit 0 is	MD, SCO,
	Mode	Value		Description	
	Read Operation				
	UNLOCKED	0		CMU registers are unlocked	
	LOCKED	1		CMU registers are locked	
	Write Operation				
	LOCK	0		Lock CMU registers	
	UNLOCK	0x580E		Unlock CMU registers	

Downloaded from Elecules com

12 WDOG - Watchdog Timer

Quick Facts

What?

The WDOG (Watchdog Timer) resets the system in case of a fault condition, and can be enabled in all energy modes as long as the low frequency clock source is available.

Why?

If a software failure or external event renders the MCU unresponsive, a Watchdog timeout will reset the system to a known, safe state.

How?

An enabled Watchdog Timer implements a configurable timeout period. If the CPU fails to re-start the Watchdog Timer before it times out, a full system reset will be triggered. The Watchdog consumes insignificant power, and allows the device to remain safely in low energy modes for up to 256 seconds at a time.

12.1 Introduction

The purpose of the watchdog timer is to generate a reset in case of a system failure, to increase application reliability. The failure may e.g. be caused by an external event, such as an ESD pulse, or by a software failure.

12.2 Features

- Clock input from selectable oscillators
 - Internal 32.768 kHz RC oscillator
 - Internal 1kHz RC oscillator
 - External 32.768 kHz XTAL oscillator
- Configurable timeout period from 9 to 256k watchdog clock cycles
- Individual selection to keep running or freeze when entering EM2 or EM3
- Selection to keep running or freeze when entering debug mode
- Selection to block the CPU from entering Energy Mode 4
- Selection to block the CMU from disabling the selected watchdog clock

12.3 Functional Description

The watchdog is enabled by setting the EN bit in WDOG_CTRL. When enabled, the watchdog counts up to the period value configured through the PERSEL field in WDOG_CTRL. If the watchdog timer is not cleared to 0(by writing a 1 to the CLEAR bit in WDOG_CMD) before the period is reached, the chip is reset. If a timely clear command is issued, the timer starts counting up from 0 again. The watchdog can optionally be locked by writing the LOCK bit in WDOG_CTRL. Once locked, it cannot be disabled or reconfigured by software.

The watchdog counter is reset when EN is reset.

12.3.1 Clock Source

Three clock sources are available for use with the watchdog, through the CLKSEL field in WDOG_CTRL. The corresponding clocks must be enabled in the CMU. The SWOSCBLOCK bit in WDOG CTRL can be written to prevent accidental disabling of the selected clocks. Also, setting this bit will automatically start the selected oscillator source when the watchdog is enabled. The PERSEL field in WDOG CTRL is used to divide the selected watchdog clock, and the timeout for the watchdog timer can be calculated like this:

WDOG Timeout Equation
$$T_{TIMEOUT} = (2^{3+PERSEL} + 1)/f$$
 (12.1)

where f is the frequency of the selected clock.

It is recommended to clear the watchdog first, if PERSEL is changed while the watchdog is enabled.

To use this module, the LE interface clock must be enabled in CMU_HFCORECLKEN0, in addition to the module clock.

12.3.2 Debug Functionality

The watchdog timer can either keep running or be frozen when the device enters debug mode. This configuration is done through the DEBUGRUN bit in WDOG_CTRL. When the device leaves debug mode, the watchdog will continue counting where it left off.

12.3.3 Energy Mode Handling

The watchdog timer can be configured to either keep on running or freeze when entering EM2 or EM3. The configuration is done individually for each energy mode in the EM2RUN and EM3RUN bits in WDOG_CTRL. When the watchdog has been frozen and is re-entering an energy mode where it is running, the watchdog timer will continue counting where it left off. For the watchdog there is no difference between EM0 and EM1. The watchdog does not run in EM4, and if writing to the EM4BLOCK bit in WDOG_CTRL, the CPU is prevented from entering EM4.

Note

Writing the SWOSCBLOCK bit will effectively prevent the CPU from entering EM3.

12.3.4 Register access

Since this module is a Low Energy Peripheral, and runs off a clock which is asynchronous to the HFCORECLK, special considerations must be taken when accessing registers. Please refer to Section 5.3 (p. 18) for a description on how to perform register accesses to Low Energy Peripherals. note that clearing the EN bit in WDOG_CTRL will reset the WDOG module, which will halt any ongoing register synchronization.

12.4 Register Map

The offset register address is relative to the registers base address.

Offset	Name	Туре	Description
0x000	WDOG_CTRL	RW	Control Register
0x004	WDOG_CMD	W1	Command Register
0x008	WDOG_SYNCBUSY	R	Synchronization Busy Register

12.5 Register Description

12.5.1 WDOG_CTRL - Control Register (Async Reg)

For more information about Asynchronous Registers please see Section 5.3 (p. 18).

Offset			,							•					Bi	t Pc	siti	on						•								
0x000	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	1	10	6	8	7	9	2	4	က	2	-	0
Reset											•	•								0x0		Ļ	L Š			0	0	0	0	0	0	0
Access																				R≷		2	<u>}</u>			N N	RW	RW	W.	₩	ΑM	R W
Name																				CLKSEL		0000	YE KSEL			SWOSCBLOCK	EM4BLOCK	LOCK	EM3RUN	EM2RUN	DEBUGRUN	EN

Bit	Name	Reset	Access	Description
31:14	Reserved	To ensure co	ompatibility with fu	uture devices, always write bits to 0. More information in Section 2.1 (p. 3)
13:12	CLKSEL	0x0	RW	Watchdog Clock Select
	Selects the W	DOG oscillator, ie. the clock	on which the wa	tchdog will run.
	Value	Mode	Des	scription
	0	ULFRCO	ULI	FRCO
	1	LFRCO	LFF	RCO
	2	LFXO	LF)	KO

11:8 PERSEL 0xF RW Watchdog Timeout Period Select.

Select watchdog timeout period.

Value	Description
0	Timeout period of 9 watchdog clock cycles.
1	Timeout period of 17 watchdog clock cycles.
2	Timeout period of 33 watchdog clock cycles.
3	Timeout period of 65 watchdog clock cycles.
4	Timeout period of 129 watchdog clock cycles.
5	Timeout period of 257 watchdog clock cycles.
6	Timeout period of 513 watchdog clock cycles.
7	Timeout period of 1k watchdog clock cycles.
8	Timeout period of 2k watchdog clock cycles.
9	Timeout period of 4k watchdog clock cycles.
10	Timeout period of 8k watchdog clock cycles.
11	Timeout period of 16k watchdog clock cycles.
12	Timeout period of 32k watchdog clock cycles.
13	Timeout period of 64k watchdog clock cycles.
14	Timeout period of 128k watchdog clock cycles.
15	Timeout period of 256k watchdog clock cycles.

Di4	Namo	Paget -	A 00000	Description
Bit	Name	Reset	Access	Description
7	Reserved	To ensure co	ompatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
6	SWOSCBLOCK	0	RW	Software Oscillator Disable Block
	Set to disallow disabl already running.	ing of the selected \	NDOG oscillator.	Writing this bit to 1 will turn on the selected WDOG oscillator if it is not
	Value	Description		
	0	Software is allow registers are lock		elected WDOG oscillator. See CMU for detailed description. Note that also CMU
	1	Software is not a	llowed to disable the	e selected WDOG oscillator.
5	EM4BLOCK	0	RW	Energy Mode 4 Block
	Set to prevent the EM	U from entering EM	4	
	Value	Description		
	0	EM4 can be ente	red. See EMU for de	etailed description.
	1	EM4 cannot be e	ntered.	
4	LOCK	0	RW	Configuration lock
	Set to lock the watch	log configuration. Th	nis bit can only be	cleared by reset.
	Value	Description		
	0	Watchdog config	uration can be chan	ged.
	1	Watchdog config	uration cannot be ch	nanged.
3	EM3RUN	0	RW	Energy Mode 3 Run Enable
	Set to keep watchdog	running in EM3.		
	Value	Description		
	0	Watchdog timer i	s frozen in EM3.	
	1	Watchdog timer i	s running in EM3.	
2	EM2RUN	0	RW	Energy Mode 2 Run Enable
	Set to keep watchdog	running in EM2		
	Value	Description		
	0	Watchdog timer i	s frozen in EM2.	
	1	Watchdog timer i	s running in EM2.	
1	DEBUGRUN	0	RW	Debug Mode Run Enable
	Set to keep watchdog	running in debug m	ode.	
	Value	Description		
	0	Watchdog timer i	s frozen in debug m	ode.
	1	Watchdog timer i	s running in debug r	node.
0	EN	0	RW	Watchdog Timer Enable
	Set to enabled watch	dog timer.		-

12.5.2 WDOG_CMD - Command Register (Async Reg)

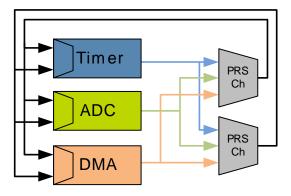
For more information about Asynchronous Registers please see Section 5.3 (p. 18).

Offset															Bi	it Po	siti	on														
0x004	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	41	13	12	7	10	ი	8	7	9	2	4	က	2	-	0
Reset																																0
Access																																*
Name																																CLEAR

Bit	Name	Reset	Access	Description
31:1	Reserved	To ensure co	mpatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
0	CLEAR	0	W1	Watchdog Timer Clear
	Clear watchdog	timer. The bit must be writ	ten 4 watchdog o	cycles before the timeout.
	Value	Mode	Des	cription
	0	UNCHANGED	Wat	chdog timer is unchanged.
	1	CLEARED	Wat	chdog timer is cleared to 0.

12.5.3 WDOG_SYNCBUSY - Synchronization Busy Register

Offset			•												Bi	t Po	siti	on														
0x008	31	30	59	28	27	56	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	2	4	က	2	_	0
Reset																															0	0
Access																															ď	~
Name																															CMD	CTRL


Bit	Name	Reset	Access	Description
31:2	Reserved	To ensure co	ompatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
1	CMD	0	R	WDOG_CMD Register Busy
	Set when the value	written to WDOG_CM	D is being synchr	onized.
0	CTRL	0	R	WDOG_CTRL Register Busy
	Set when the value	written to WDOG_CTF	RL is being synch	ronized.

Downloaded from Hoods, com 2010-12-21 - d0034_Rev0.90 129 www.energymicro.com

13 PRS - Peripheral Reflex System

Quick Facts

What?

The PRS (Peripheral Reflex System) allows configurable, fast, and autonomous communication between the peripherals.

Why?

Events and signals from one peripheral can be used as input signals or triggers by other peripherals and ensure timing-critical operation and reduced software overhead.

How?

Without CPU intervention the peripherals can send Reflex signals (both pulses and level) to each other in single- or chained steps. The peripherals can be set up to perform actions based on the incoming Reflex signals. This results in improved system performance and reduced energy consumption.

13.1 Introduction

The Peripheral Reflex System (PRS) system is a network which lets the different peripheral module communicate directly with each other without involving the CPU. Peripheral modules which send out Reflex signals are called producers. The PRS routes these reflex signals to consumer peripherals which apply actions depending on the Reflex signals received. The format for the Reflex signals is not given, but edge triggers and other functionality can be applied by the PRS.

13.2 Features

- 8 configurable interconnect channels
 - Each channel can be connected to any producing peripheral
 - · Consumers can choose which channel to listen to
 - Selectable edge detector (Rising, falling and both edges)
- Software controlled channel output
 - Configurable level
 - Triggered pulses

13.3 Functional Description

An overview of the PRS module is shown in Figure 13.1 (p. 131). The PRS contains 8 interconnect channels, and each of these can select between all the output Reflex signals offered by the producers. The consumers can then choose which PRS channel to listen to and perform actions based on the Reflex signals routed through that channel. The Reflex signals can be both pulse signals and level signals. Synchronous PRS pulses are one HFPERCLK cycle long, and can either be sent out by a producer (e.g. ADC conversion complete) or be generated from the edge detector in the PRS channel. Level signals can have an arbitrary waveform (e.g. Timer PWM output).

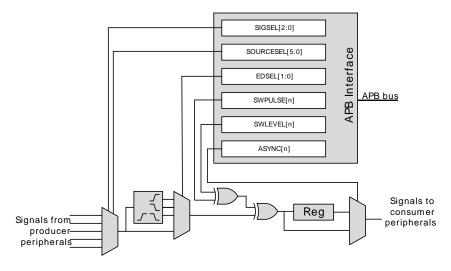
13.3.1 Asynchronous Mode

Many reflex signals can operate in two modes, synchronous or asynchronous. A synchronous reflex is clocked on HFPERCLK, and can be used as an input to all reflex consumers, but since they require HFPERCLK, they will not work in EM2/EM3.

Asynchronous reflexes are not clocked on HFPERCLK, and can be used even in EM2/EM3. There is a limitation to reflexes operating in asynchronous mode though: they can only be used by a subset of the reflex consumers, the ones marked with async support in Table 13.2 (p. 133). Peripherals that can produce asynchronous reflexes are marked with async support in Table 13.1 (p. 132). To use these reflexes asynchronously, set ASYNC in the CHCTRL register for the PRS channel selecting the reflex signal.

Note

If a peripheral channel with ASYNC set is used in a consumer not supporting asynchronous reflexes, the behaviour is undefined


13.3.2 Channel Functions

Different functions can be applied to a reflex signal within the PRS. Each channel includes an edge detector to enable generation of pulse signals from level signals. It is also possible to generate output Reflex signals by configuring the SWPULSE and SWLEVEL bits. SWLEVEL is a programmable level for each channel and holds the value it is programmed to. The SWPULSE will give out a one-cycle high pulse if it is written to 1, otherwise a 0 is asserted. The SWLEVEL and SWPULSE signals are then XOR'ed with the selected input from the producers to form the output signal sent to the consumers listening to the channel.

Note

The edge detector controlled by EDSEL should only be used when working with synchronous reflexes, i.e. ASYNC in CHCTRL is cleared.

Figure 13.1. PRS Overview

13.3.3 Producers

Each PRS channel can choose between signals from several producers, which is configured in SOURCESEL in PRS_CHx_CTRL. Each of these producers outputs one or more signals which can be selected by setting the SIGSEL field in PRS_CHx_CTRL. Setting the SOURCESEL bits to 0 (Off) leads to a constant 0 output from the input mux. An overview of the available producers is given in Table 13.1 (p. 132).

Table 13.1. Reflex Producers

Module	Reflex Output	Output Format	Async Support
ACMP	Comparator Output	Level	Yes
ADC	Single Conversion Done	Pulse	
	Scan Conversion Done	Pulse	
DAC	Channel 0 Conversion Done	Pulse	
	Channel 1 Conversion Done	Pulse	
GPIO	Pin 0 Input	Level	Yes
	Pin 1 Input	Level	Yes
	Pin 2 Input	Level	Yes
	Pin 3 Input	Level	Yes
	Pin 4 Input	Level	Yes
	Pin 5 Input	Level	Yes
	Pin 6 Input	Level	Yes
	Pin 7 Input	Level	Yes
	Pin 8 Input	Level	Yes
	Pin 9 Input	Level	Yes
	Pin 10 Input	Level	Yes
	Pin 11 Input	Level	Yes
	Pin 12 Input	Level	Yes
	Pin 13 Input	Level	Yes
	Pin 14 Input	Level	Yes
	Pin 15 Input	Level	Yes
RTC	Overflow	Pulse	Yes
	Compare Match 0	Pulse	Yes
	Compare Match 1	Pulse	Yes
TIMER	Underflow	Pulse	
	Overflow	Pulse	
	CC0 Output	Level	
	CC1 Output	Level	
	CC2 Output	Level	
LETIMER	СНО	Level	
	CH1	Level	
USART	TX Complete	Pulse	
	RX Data Received	Pulse	

Module	Reflex Output	Output Format	Async Support
	IrDA Decoder Output	Level	
VCMP	Comparator Output	Level	Yes

13.3.4 Consumers

Consumer peripherals (Listed in Table 13.2 (p. 133)) can be set to listen to a PRS channel and perform an action based on the signal received on that channel. Most consumers expect pulse input, while some can handle level inputs as well.

Table 13.2. Reflex Consumers

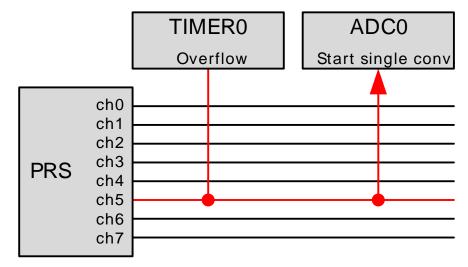
Module	Reflex Input	Input Format	Async Support
ADC	Single Mode Trigger	Pulse	
	Scan Mode Trigger	Pulse	
DAC	Channel 0 Trigger	Pulse	
	Channel 1 Trigger	Pulse	
TIMER	CC0 Input	Pulse/Level	
	CC1 Input	Pulse/Level	
	CC2 Input	Pulse/Level	
USART	TX/RX Enable	Pulse	
	IrDA Encoder Input (USART0 only)	Pulse	
	RX Input	Pulse/Level	Yes
LEUART	RX Input	Pulse/Level	Yes
PCNT	S0 input	Level	Yes
	S1 input	Level	Yes
LESENSE	Start scan	Pulse/Level	Yes
	Decoder Bit 0	Level	Yes
	Decoder Bit 1	Level	Yes
	Decoder Bit 2	Level	Yes
	Decoder Bit 3	Level	Yes

Note

It is possible to output prs channel 0 - channel 3 onto the GPIO by setting CH0PEN, CH1PEN, CH2PEN, or CH3PEN in the PRS_ROUTE register.

13.3.5 Example

The example below (illustrated in Figure 13.2 (p. 134)) shows how to set up ADC0 to start single conversions every time TIMER0 overflows (one HFPERCLK cycle high pulse), using PRS channel 5:


- Set SOURCESEL in PRS_CH5_CTRL to 0b011100 to select TIMER0 as input to PRS channel 5.
- Set SIGSEL in PRS_CH5_CTRL to 0b001 to select the overflow signal (from TIMER0).
- Configure ADC0 with the desired conversion set-up.

- Set SINGLEPRSEN in ADC0_SINGLECTRL to 1 to enable single conversions to be started by a high PRS input signal.
- Set SINGLEPRSSEL in ADC0_SINGLECTRL to 0x5 to select PRS channel 5 as input to start the single conversion.
- Start TIMER0 with the desired TOP value, an overflow PRS signal is output automatically on overflow.

Note that the ADC results needs to be fetched either by the CPU or DMA.

Figure 13.2. TIMER0 overflow starting ADC0 single conversions through PRS channel 5.

13.4 Register Map

The offset register address is relative to the registers base address.

Offset	Name	Туре	Description
0x000	PRS_SWPULSE	W1	Software Pulse Register
0x004	PRS_SWLEVEL	RW	Software Level Register
0x008	PRS_ROUTE	RW	I/O Routing Register
0x010	PRS_CH0_CTRL	RW	Channel Control Register
0x014	PRS_CH1_CTRL	RW	Channel Control Register
0x018	PRS_CH2_CTRL	RW	Channel Control Register
0x01C	PRS_CH3_CTRL	RW	Channel Control Register
0x020	PRS_CH4_CTRL	RW	Channel Control Register
0x024	PRS_CH5_CTRL	RW	Channel Control Register
0x028	PRS_CH6_CTRL	RW	Channel Control Register
0x02C	PRS_CH7_CTRL	RW	Channel Control Register

13.5 Register Description

13.5.1 PRS_SWPULSE - Software Pulse Register

Offset														Bi	t Po	siti	on														
0x000	33	8 8	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	1	10	6	8	7	9	5	4	က	2	-	0
Reset																								0	0	0	0	0	0	0	0
Access																								×	8	W	W	W	W	W N	W1
Name																								CH7PULSE	CH6PULSE	CH5PULSE	CH4PULSE	CH3PULSE	CH2PULSE	CH1PULSE	CHOPULSE
Bit	Nam	e					Res	set			F	Acce	ess		De	scri	ptic	on													
31:8	Rese	rved					То в	ensi	ure c	omp	atib	oility	with	futu	re de	evice	s, a	lway	/S V	vrite	bits	to 0	. Mo	re inf	orm	natio	n in .	Sect	ion 2	.1 (p	. 3)
7	CH7F	PULSE	•				0				٧	V1			Cha	anne	17	Puls	se C	ene	erati	on									
	See b	oit O.																													
6	CH6F	PULSE	Ē				0				٧	V1			Cha	anne	16	Puls	se (ene	erati	on									
	See b	oit O.																													
5	CH5F	PULSE	Ē				0				٧	V1			Cha	anne	15	Puls	se C	ene	erati	on									
	See b	oit O.																													
4	CH4F	PULSE	Ξ.				0				٧	V1			Cha	anne	14	Puls	se C	ene	erati	on									
	See b	oit O.																													
3	CH3F	PULSE					0				٧	V1			Cha	anne	13	Puls	se C	ene	erati	on									
	See b	oit O.																													
2	CH2F	PULSE	Ξ				0				٧	V1			Cha	anne	12	Puls	se C	ene	erati	on									
	See b	oit O.																													
1	CH1F	PULSE	1				0				٧	V1			Cha	anne	11	Puls	se C	ene	erati	on									
	See b	oit O.																													
0	CH0F	PULSE	Ē				0				V	V1			Cha	anne	10	Puls	se C	ene	erati	on									
		to 1 to															хо	R'e	w b	ith th	ne co	orre	spon	ding	bit	in th	ie S\	WLE	VEL	regi	ster

13.5.2 PRS_SWLEVEL - Software Level Register

Offset															Bi	t Po	siti	on														
0x004	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	1	10	6	80	7	9	2	4	က	7	-	0
Reset																									0	0	0	0	0	0	0	0
Access																									% W	RW	RW	₩ W	W.	% W	W.	R W
Name																									CH7LEVEL	CH6LEVEL	CH5LEVEL	CH4LEVEL	CH3LEVEL	CH2LEVEL	CH1LEVEL	CHOLEVEL

Bit	Name	Reset	Access	Description
31:8	Reserved	To ensure co	ompatibility with fu	iture devices, always write bits to 0. More information in Section 2.1 (p. 3)
7	CH7LEVEL	0	RW	Channel 7 Software Level
	See bit 0.			
6	CH6LEVEL	0	RW	Channel 6 Software Level
	See bit 0.			
5	CH5LEVEL	0	RW	Channel 5 Software Level
	See bit 0.			
4	CH4LEVEL	0	RW	Channel 4 Software Level
	See bit 0.			
3	CH3LEVEL	0	RW	Channel 3 Software Level
	See bit 0.			
2	CH2LEVEL	0	RW	Channel 2 Software Level
	See bit 0.			
1	CH1LEVEL	0	RW	Channel 1 Software Level
	See bit 0.			
0	CH0LEVEL	0	RW	Channel 0 Software Level
	The value in this reg the channel output.	ister is XOR'ed with the	e corresponding b	it in the SWPULSE register and the selected PRS input signal to genera

13.5.3 PRS_ROUTE - I/O Routing Register

Offset															Bi	t Pc	siti	on														
0x008	33	30	29	28	27	26	22	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	œ	7	9	2	4	က	7	-	0
Reset		•															•						0×0						0	0	0	0
Access																							™						% §	§ §	₩	W.
Name																							LOCATION						CH3PEN	CH2PEN	CH1PEN	CHOPEN

Bit	Name	Reset	Access	Description
31:11	Reserved	To ensure com	patibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
10:8	LOCATION	0x0	RW	I/O Location

Decides the location of the USART I/O pins.

Value	Mode	Description
0	LOC0	Location 0
1	LOC1	Location 1

Bit	Name	Reset	Acces	s Description
	Value	Mode		Description
	2	LOC2		Location 2
	3	LOC3		Location 3
7:4	Reserved	To ensure	compatibility wit	th future devices, always write bits to 0. More information in Section 2.1 (p. 3)
3	CH3PEN	0	RW	CH3 Pin Enable
	When set, GP	IO output from PRS chanr	nel 3 is enabled	
2	CH2PEN	0	RW	CH2 Pin Enable
	When set, GP	IO output from PRS chanr	nel 2 is enabled	
1	CH1PEN	0	RW	CH1 Pin Enable
	When set, GP	IO output from PRS chanr	nel 1 is enabled	
0	CH0PEN	0	RW	CH0 Pin Enable
	When set, GP	IO output from PRS chanr	nel 0 is enabled	

13.5.4 PRS CHx CTRL - Channel Control Register

13.3.	+ [N	, _')	^_	C		'	- (7 11	an	1116	71	C	<i>)</i>	uo	ч	, C	yı	ıοι	CI												
Offset															В	it Po	ositi	on															
0x010	33	30	29	28	27	26	52	24	23	22	21	20	19	18	17	16	15	4	73	2 2	7	=	10	6	∞	7	9	2	4	က	7	-	0
Reset				0			000							00x0																		0×0	
Access				S. ≷			S S							R ⊗																		≷	
Name				ASYNC			EDSEL							SOURCESEL																		SIGSEL	
Bit	Na	me						Re	set			A	Acc	cess	5	De	escr	ipti	ion														
31:29	Re	serv	ed					То	ensi	ure c	comp	atib	ility	/ witl	h fut	ure d	evice	es, a	alw	ays	writ	e bi	its t	o 0.	Mor	e in	forn	natio	n in	Sect	ion 2	2.1 (p. 3)
28	AS	YNC	;					0				R	RW			As	yncl	nror	nοι	ıs re	efle	x											
	Sa	to c	lisah	ום פו	nchi	oni:	otto	n of	thic	rofl	ov ci	iana																					

Set to disable synchronization of this reflex signal

27:26 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)

25:24 **EDSEL** RW 0x0 **Edge Detect Select**

Select edge detection.

Value	Mode	Description
0	OFF	Signal is left as it is
1	POSEDGE	A one HFPERCLK cycle pulse is generated for every positive edge of the incoming signal $$
2	NEGEDGE	A one HFPERCLK clock cycle pulse is generated for every negative edge of the incoming signal $$
3	BOTHEDGES	A one HFPERCLK clock cycle pulse is generated for every edge of the incoming signal

Reserved 23:22 To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)

21:16 SOURCESEL 0x00 RW Source Select

Select input source to PRS channel.

Value	Mode	Description
0b000000	NONE	No source selected
0b000001	VCMP	Voltage Comparator
0b000010	ACMP0	Analog Comparator 0
0b000011	ACMP1	Analog Comparator 1
0b000110	DAC0	Digital to Analog Converter 0
0b001000	ADC0	Analog to Digital Converter 0
0b010000	USART0	Universal Synchronous/Asynchronous Receiver/Transmitter 0

SIGSEL

2:0

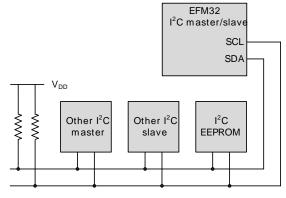
Bit	Name	Reset Acc	ess Description
	Value	Mode	Description
	0b010001	USART1	Universal Synchronous/Asynchronous Receiver/Transmitter 1
	0b011100	TIMER0	Timer 0
	0b011101	TIMER1	Timer 1
	0b101000	RTC	Real-Time Counter
	0b110000	GPIOL	General purpose Input/Output
	0b110001	GPIOH	General purpose Input/Output
	0b110100	LETIMER0	Low Energy Timer 0
	0b111001	LESENSEL	Low Energy Sensor Interface
	0b111010	LESENSEH	Low Energy Sensor Interface
	0b111011	LESENSED	Low Energy Sensor Interface
15:3	Reserved	To ensure compatibility	with future devices, always write bits to 0. More information in Section 2.1 (p. 3)

Signal Select

RW

Select signal input to PRS channel.

Value	Mode	Description
SOURCESEL = 0b000000 (NONE)		2000 pto
0bxxx	OFF	Channel input selection is turned off
SOURCESEL = 0b000001 (VCMP)		
0b000	VCMPOUT	Voltage comparator output VCMPOUT
SOURCESEL = 0b000010 (ACMP0)		
0b000	ACMP0OUT	Analog comparator output ACMP0OUT
SOURCESEL = 0b000011 (ACMP1)		
0b000	ACMP1OUT	Analog comparator output ACMP1OUT
SOURCESEL = 0b000110 (DAC0)		
0b000	DAC0CH0	DAC ch0 conversion done DAC0CH0
0b001	DAC0CH1	DAC ch1 conversion done DAC0CH1
SOURCESEL = 0b001000 (ADC0)		
0b000	ADC0SINGLE	ADC single conversion done ADC0SINGLE
0b001	ADC0SCAN	ADC scan conversion done ADC0SCAN
SOURCESEL = 0b010000 (USART0)		
0b000	USART0IRTX	USART 0 IRDA out USART0IRTX
0b001	USART0TXC	USART 0 TX complete USART0TXC
0b010	USART0RXDATAV	USART 0 RX Data Valid USART0RXDATAV
SOURCESEL = 0b010001 (USART1)		
0b001	USART1TXC	USART 1 TX complete USART1TXC
0b010	USART1RXDATAV	USART 1 RX Data Valid USART1RXDATAV
SOURCESEL = 0b011100 (TIMER0)		
0b000	TIMER0UF	Timer 0 Underflow TIMER0UF
0b001	TIMER0OF	Timer 0 Overflow TIMER0OF
0b010	TIMEROCC0	Timer 0 Compare/Capture 0 TIMER0CC0
0b011	TIMER0CC1	Timer 0 Compare/Capture 1 TIMER0CC1
0b100	TIMEROCC2	Timer 0 Compare/Capture 2 TIMER0CC2
SOURCESEL = 0b011101 (TIMER1)		
0b000	TIMER1UF	Timer 1 Underflow TIMER1UF
0b001	TIMER1OF	Timer 1 Overflow TIMER1OF
0b010	TIMER1CC0	Timer 1 Compare/Capture 0 TIMER1CC0
0b011	TIMER1CC1	Timer 1 Compare/Capture 1 TIMER1CC1
0b100	TIMER1CC2	Timer 1 Compare/Capture 2 TIMER1CC2
SOURCESEL = 0b101000 (RTC)		


Name	Reset Access	Description
Value	Mode	Description
0b000	RTCOF	RTC Overflow RTCOF
0b001	RTCCOMP0	RTC Compare 0 RTCCOMP0
0b010	RTCCOMP1	RTC Compare 1 RTCCOMP1
SOURCESEL =	- 0b110000 (GPIO)	
0b000	GPIOPIN0	GPIO pin 0 GPIOPIN0
0b001	GPIOPIN1	GPIO pin 1 GPIOPIN1
0b010	GPIOPIN2	GPIO pin 2 GPIOPIN2
0b011	GPIOPIN3	GPIO pin 3 GPIOPIN3
0b100	GPIOPIN4	GPIO pin 4 GPIOPIN4
0b101	GPIOPIN5	GPIO pin 5 GPIOPIN5
0b110	GPIOPIN6	GPIO pin 6 GPIOPIN6
0b111	GPIOPIN7	GPIO pin 7 GPIOPIN7
SOURCESEL =	- 0b110001 (GPIO)	
0b000	GPIOPIN8	GPIO pin 8 GPIOPIN8
0b001	GPIOPIN9	GPIO pin 9 GPIOPIN9
0b010	GPIOPIN10	GPIO pin 10 GPIOPIN10
0b011	GPIOPIN11	GPIO pin 11 GPIOPIN11
0b100	GPIOPIN12	GPIO pin 12 GPIOPIN12
0b101	GPIOPIN13	GPIO pin 13 GPIOPIN13
0b110	GPIOPIN14	GPIO pin 14 GPIOPIN14
0b111	GPIOPIN15	GPIO pin 15 GPIOPIN15
SOURCESEL (LETIMER0)	= 0b110100	
0b000	LETIMEROCH0	LETIMER CH0 Out LETIMER0CH0
0b001	LETIMER0CH1	LETIMER CH1 Out LETIMER0CH1
SOURCESEL (LESENSE)	= 0b111001	
0b000	LESENSESCANRES0	LESENSE SCANRES register, bit 0 LESENSESCAN
0b001	LESENSESCANRES1	LESENSE SCANRES register, bit 1 LESENSESCAN
0b010	LESENSESCANRES2	LESENSE SCANRES register, bit 2 LESENSESCAN
0b011	LESENSESCANRES3	LESENSE SCANRES register, bit 3 LESENSESCAN
0b100	LESENSESCANRES4	LESENSE SCANRES register, bit 4 LESENSESCAN
0b101	LESENSESCANRES5	LESENSE SCANRES register, bit 5 LESENSESCAN
0b110	LESENSESCANRES6	LESENSE SCANRES register, bit 6 LESENSESCAN
0b111	LESENSESCANRES7	LESENSE SCANRES register, bit 7 LESENSESCAN
SOURCESEL (LESENSE)	= 0b111010	
0b000	LESENSESCANRES8	LESENSE SCANRES register, bit 8 LESENSESCAN
0b001	LESENSESCANRES9	LESENSE SCANRES register, bit 9 LESENSESCAN
0b010	LESENSESCANRES10	LESENSE SCANRES register, bit LESENSESCANRES10
0b011	LESENSESCANRES11	LESENSE SCANRES register, bit LESENSESCANRES11
0b100	LESENSESCANRES12	LESENSE SCANRES register, bit LESENSESCANRES12
0b101	LESENSESCANRES13	LESENSE SCANRES register, bit LESENSESCANRES13
0b110	LESENSESCANRES14	LESENSE SCANRES register, bit LESENSESCANRES14
0b111	LESENSESCANRES15	LESENSE SCANRES register, bit LESENSESCANRES15
SOURCESEL (LESENSE)	= 0b111011	
0b000	LESENSEDEC0	LESENSE Decoder PRS out 0 LESENSEDEC0
0b001	LESENSEDEC1	LESENSE Decoder PRS out 1 LESENSEDEC1
0b010	LESENSEDEC2	LESENSE Decoder PRS out 2 LESENSEDEC2

Downloaded from Elecules com

14 I²C - Inter-Integrated Circuit Interface

Quick Facts

What?

The I²C interface allows communication on I²C-buses with the lowest energy consumption possible.

Why?

I²C is a popular serial bus that enables communication with a number of external devices using only two I/O pins.

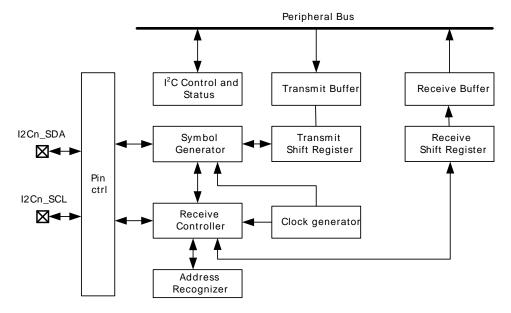
How?

With the help of DMA, the I²C interface allows I²C communication with minimal CPU intervention. Address recognition is available in all energy modes (except EM4), allowing the MCU to wait for data on the I²C-bus with sub-µA current consumption.

14.1 Introduction

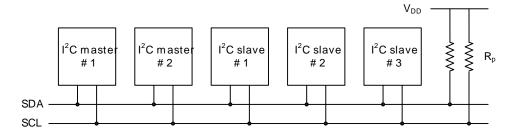
The I²C module provides an interface between the MCU and a serial I²C-bus. It is capable of acting as both a master and a slave, and supports multi-master buses. Both standard-mode, fast-mode and fastmode plus speeds are supported, allowing transmission rates all the way from 10 kbit/s up to 1 Mbit/s. Slave arbitration and timeouts are also provided to allow implementation of an SMBus compliant system. The interface provided to software by the I²C module, allows both fine-grained control of the transmission process and close to automatic transfers. Automatic recognition of slave addresses is provided in all energy modes (except EM4).

14.2 Features


- True multi-master capability
- · Support for different bus speeds
 - Standard-mode (Sm) bitrate up to 100 kbit/s
 - Fast-mode (Fm) bitrate up to 400 kbit/s
 - Fast-mode Plus (Fm+) bitrate up to 1 Mbit/s
- Arbitration for both master and slave (Allows SMBus ARP)
- · Clock synchronization and clock stretching
- · Hardware address recognition
 - 7-bit masked address
 - General call address
 - Active in all energy modes (except EM4)
- 10-bit address support
- Error handling
 - Clock low timeout
 - Clock high timeout
 - Arbitration lost
 - Bus error detection
- · Double buffered data
- Full DMA support

14.3 Functional Description

An overview of the I²C module is shown in Figure 14.1 (p. 141).


Figure 14.1. I²C Overview

14.3.1 I²C-Bus Overview

The I²C-bus uses two wires for communication; a serial data line (SDA) and a serial clock line (SCL) as shown in Figure 14.2 (p. 141). As a true multi-master bus it includes collision detection and arbitration to resolve situations where multiple masters transmit data at the same time without data loss.

Figure 14.2. l^2 C-Bus Example

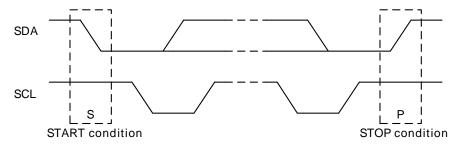
Each device on the bus is addressable by a unique address, and an I²C master can address all the devices on the bus, including other masters.

Both the bus lines are open-drain. The maximum value of the pull-up resistor can be calculated as a function of the maximal rise-time tr for the given bus speed, and the estimated bus capacitance Cb as shown in Equation 14.1 (p. 141).

$$f^2$$
C Pull-up Resistor Equation
$$Rp(max) = tr/0.8473 \times Cb$$
(14.1)

The maximal rise times for 100 kHz, 400 kHz and 1 MHz I²C are 1 µs, 300 ns and 120 ns respectively.

Note



The GPIO drive strength can be used to control slew rate.

14.3.1.1 START and STOP Conditions

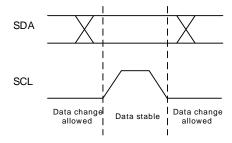

START and STOP conditions are used to initiate and stop transactions on the I²C-bus. All transactions on the bus begin with a START condition (S) and end with a STOP condition (P). As shown in Figure 14.3 (p. 142), a START condition is generated by pulling the SDA line low while SCL is high, and a STOP condition is generated by pulling the SDA line high while SCL is high.

Figure 14.3. I²C START and STOP Conditions

The START and STOP conditions are easily identifiable bus events as they are the only conditions on the bus where a transition is allowed on SDA while SCL is high. During the actual data transmission, SDA is only allowed to change while SCL is low, and must be stable while SCL is high. One bit is transferred per clock pulse on the I²C-bus as shown in Figure 14.2 (p. 141).

Figure 14.4. f²C Bit Transfer on f²C-Bus

14.3.1.2 Bus Transfer

When a master wants to initiate a transfer on the bus, it waits until the bus is idle and transmits a START condition on the bus. The master then transmits the address of the slave it wishes to interact with and a single R/W bit telling whether it wishes to read from the slave (R/W bit set to 1) or write to the slave (R/W bit set to 0).

After the 7-bit address and the R/W bit, the master releases the bus, allowing the slave to acknowledge the request. During the next bit-period, the slave pulls SDA low (ACK) if it acknowledges the request, or keeps it high if it does not acknowledge it (NACK).

Following the address acknowledge, either the slave or master transmits data, depending on the value of the R/W bit. After every 8-bit byte transmitted on the SDA line, the transmitter releases the line to allow the receiver to transmit an ACK or a NACK. Both the data and the address are transmitted with the most significant bit first.

The number of bytes in a bus transfer is unrestricted. The master ends the transmission after a (N)ACK by sending a STOP condition on the bus. After a STOP condition, any master wishing to initiate a transfer on the bus can try to gain control of it. If the current master wishes to make another transfer immediately after the current, it can start a new transfer directly by transmitting a repeated START condition (Sr) instead of a STOP followed by a START.

Examples of I²C transfers are shown in Figure 14.5 (p. 143), Figure 14.6 (p. 143), and Figure 14.7 (p. 143) . The identifiers used are:

- ADDR Address
- DATA Data
- S Start bit
- Sr Repeated start bit
- P Stop bit
- W/R Read(1)/Write(0)
- A ACK
- N NACK

Figure 14.5. I²C Single Byte Write to Slave

Figure 14.6. I²C Double Byte Read from Slave

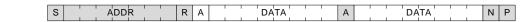


Figure 14.7. I²C Single Byte Write, then Repeated Start and Single Byte Read

	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1 1101	D 4 T 4	' ^ ~	1 1 0 0 0 1 1		' DA'TA	
181	ADDR	IVVIAI	DATA	I A I Sr I	ADDR	IRIAI	DATA	INIPI
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				7,55.1	1 1 1 1 1		

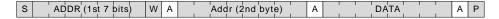
14.3.1.3 Addresses

I²C supports both 7-bit and 10-bit addresses. When using 7-bit addresses, the first byte transmitted after the START-condition contains the address of the slave the master wants to contact. In the 7-bit address space, several addresses are reserved. These addresses are summarized in Table 14.1 (p. 143), and include a General Call address which can be used to broadcast a message to all slaves on the I²C-bus.

Table 14.1. I²C Reserved I²C Addresses

I ² C Address	R/W	Description
0000-000	0	General Call address
0000-000	1	START byte
0000-001	X	Reserved for the C-Bus format
0000-010	X	Reserved for a different bus format
0000-011	X	Reserved for future purposes
0000-1XX	Х	Reserved for future purposes
1111-1XX	X	Reserved for future purposes
1111-0XX	X	10 Bit slave addressing mode

14.3.1.4 10-bit Addressing


To address a slave using a 10-bit address, two bytes are required to specify the address instead of one. The seven first bits of the first byte must then be 1111 0XX, where XX are the two most significant bits of the 10-bit address. As with 7-bit addresses, the eight bit of the first byte determines whether the master wishes to read from or write to the slave. The second byte contains the eight least significant bits of the slave address.

When a slave receives a 10-bit address, it must acknowledge both the address bytes if they match the address of the slave.

When performing a master transmitter operation, the master transmits the two address bytes and then the remaining data, as shown in Figure 14.8 (p. 144).

Figure 14.8. I²C Master Transmitter/Slave Receiver with 10-bit Address

When performing a master receiver operation however, the master first transmits the two address bytes in a master transmitter operation, then sends a repeated START followed by the first address byte and then receives data from the addressed slave. The slave addressed by the 10-bit address in the first two address bytes must remember that it was addressed, and respond with data if the address transmitted after the repeated start matches its own address. An example of this, with one byte transmitted is shown in Figure 14.9 (p. 144) .

Figure 14.9. I²C Master Receiver/Slave Transmitter with 10-bit Address

14.3.1.5 Arbitration, Clock Synchronization, Clock Stretching

Arbitration and clock synchronization are features aimed at allowing multi-master buses. Arbitration occurs when two devices try to drive the bus at the same time. If one device drives it low, while the other drives it high, the one attempting to drive it high will not be able to do so due to the open-drain bus configuration. Both devices sample the bus, and the one that was unable to drive the bus in the desired direction detects the collision and backs off, letting the other device continue communication on the bus undisturbed.

Clock synchronization is a means of synchronizing the clock outputs from several masters driving the bus at once, and is a requirement for effective arbitration.

Slaves on the bus are allowed to force the clock output on the bus low in order to pause the communication on the bus and give themselves time to process data or perform any real-time tasks they might have. This is called clock stretching.

Arbitration is supported by the I²C module for both masters and slaves. Clock synchronization and clock stretching is also supported.

14.3.2 Enable and Reset

The I²C is enabled by setting the EN bit in the I2Cn_CTRL register. Whenever this bit is cleared, the internal state of the I²C is reset, terminating any ongoing transfers.

Note

When re-enabling the I²C, the ABORT command or the Bus Idle Timeout feature must be applied prior to use even if the BUSY flag is not set.

14.3.3 Safely disabling and changing slave configuration

The I²C slave is partially asynchronous, and some precautions may be necessary to always ensure a safe slave disable or configuration change. If the user cannot guarantee that an address match will not occur at the exact time of slave disable or slave configuration change while the slave is enabled, these measures should be taken.

Worst case consequences for an address match while disabling slave or changing configuration is that the slave may end up in an undefined state. To reset the slave back to a known state, the EN bit in

I2Cn_CTRL must be reset. This should be done regardless of whether the slave is going to be re-enabled or not.

14.3.4 Clock Generation

The SCL clock signal generated by the I^2 C master determines maximum transmission rate on the bus. The clock is generated as a division of the peripheral clock, and is given by Equation 14.2 (p. 145):

²C Maximum Transmission Rate

$$f_{SCL} = f_{HFPERCLK}/(((N_{low} + N_{high}) \times (DIV + 1)) + 4)$$
 (14.2)

N_{low} and N_{high} specify the number of prescaled clock cycles in the low and high periods of the clock signal respectively. The worst case low and high periods of the signal are:

²C High and Low Cycles Equations

$$T_{high} = (N_{high} \times (DIV + 1) + 3)/f_{HFPERCLK}$$

$$T_{low} = (N_{low} \times (DIV + 1) + 3)/f_{HFPERCLK}$$
(14.3)

The values of N_{low} and N_{high} and thus the ratio between the high and low parts of the clock signal is controlled by CLHR in the I2Cn_CTRL register. The available modes are summarized in Table 14.2 (p. 145) along with the highest I²C-bus frequencies in the given modes that can be achieved without violating the timing specifications of the I²C-bus. The frequencies are calculated taking the maximum allowed rise and fall times of SDA and SCL into account. Higher frequencies may be achieved in practice. The 3 extra cycles are synchronization, and must be taken into consideration when DIV in the I2Cn_CLKDIV register has a low value.

Note

DIV must be 1 or higher when slave is enabled.

Table 14.2. I²C Clock Modes

Mode	CLHR	N _{low} : N _{high}	Sm max frequency	Fm max frequency	Fm+ max frequency
STANDARD	0	4:4	93 kHz	313 kHz	806 kHz
ASYMMETRIC	1	6:3	75 kHz	392 kHz	980 kHz
FAST	2	11:6	79 kHz	383 kHz	987 kHz

14.3.5 Arbitration

Arbitration is enabled by default, but can be disabled by setting the ARBDIS bit in I2Cn_CTRL. When arbitration is enabled, the value on SDA is sensed after each time the I²C module attempts to change its value. If the sensed value is different than the value the I²C module tried to output, it is interpreted as a simultaneous transmission by another device, and the I²C module has lost arbitration.

Whenever arbitration is lost, the ARBLOST interrupt flag in I2Cn_IF is set, any lines held are released, and the I²C device goes idle. If an I²C master loses arbitration during the transmission of an address, another master may be trying to address it. The master therefore receives the rest of the address, and if the address matches the slave address of the master, the master goes into either slave transmitter or slave receiver mode.

Note

Arbitration can be lost both when operating as a master and when operating as a slave.

14.3.6 Buffers

14.3.6.1 Transmit Buffer and Shift Register

The I²C transmitter is double buffered through the transmit buffer and transmit shift register as shown in Figure 14.1 (p. 141). A byte is loaded into the transmit buffer by writing to I2Cn_TXDATA. When the transmit shift register is empty and ready for new data, a byte from the transmit buffer is loaded into the shift register if available. The byte is then kept in the shift register until it is transmitted. When a byte has been transmitted, a new byte is loaded into the shift register if available. If the transmit buffer is empty, the shift register remains empty, and the TXC flag in I2Cn_STATUS and the TXC interrupt flags in I2Cn_IF are set, signaling that the shift register transmitter is out of data. TXC is cleared when new data becomes available, but the TXC interrupt flag must be cleared by software.

Whenever a byte is loaded from the transmit buffer to the transmit shift register, the TXBL flag in I2Cn_STATUS and the TXBL interrupt flag in I2Cn_IF are set, indicating that there is room in the buffer for more data. TXBL is cleared automatically when data is written to the buffer.

If a write is attempted to the transmit buffer while it is not empty, the TXOF interrupt flag in I2Cn_IF is set, indicating the overflow. The data already in the buffer is in that case preserved, and no data is written.

The transmit buffer, including the transmit shift register can be cleared by setting command bit CLEARTX in I2Cn_CMD. This will prevent the I²C module from transmitting the data in the buffer and shift register, and will make them available for new data. Any byte currently being transmitted will not be aborted. Transmission of this byte will be completed.

14.3.6.2 Receive Buffer and Shift Register

Like the transmitter, the I²C receiver is double buffered. The receiver uses the receive buffer and receive shift register as shown in Figure 14.1 (p. 141). When a byte has been fully received by the receive shift register, it is loaded into the receive buffer if there is room for it. Else, the byte waits in the shift register until space is available in the buffer.

When a byte becomes available in the receive buffer, the RXDATAV in I2Cn_STATUS and RXDATAV interrupt flag in I2Cn_IF are set, and the data can be fetched from the buffer using I2Cn_RXDATA. Reading from this register will pull a byte out of the buffer, making room for a new byte and clearing RXDATAV in I2Cn_STATUS and RXDATAV in I2Cn_IF in the process.

If a read from the receive buffer is attempted through I2Cn_RXDATA while the buffer is empty, the RXUF interrupt flag in I2Cn_IF is set, and the data read from the buffer is undefined.

I2Cn_RXDATAP can be used to read data from the receive buffer without removing it from the buffer. The RXUF interrupt flag in I2Cn_IF will never be set as a result of reading from I2Cn_RXDATAP, but the data read through I2Cn_RXDATAP when the receive buffer is empty is still undefined.

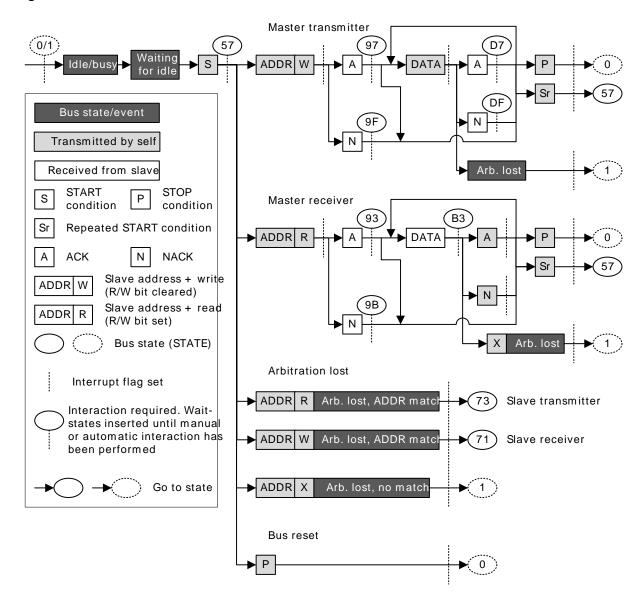
14.3.7 Master Operation

A bus transaction is initiated by transmitting a START condition (S) on the bus. This is done by setting the START bit in I2Cn_CMD. The command schedules a START condition, and makes the I²C module generate a start condition whenever the bus becomes free.

The I²C-bus is considered busy whenever another device on the bus transmits a START condition. Until a STOP condition is detected, the bus is owned by the master issuing the START condition. The bus is considered free when a STOP condition is transmitted on the bus. After a STOP is detected, all masters that have data to transmit send a START condition and begin transmitting data. Arbitration ensures that collisions are avoided.

When the START condition has been transmitted, the master must transmit a slave address (ADDR) with an R/W bit on the bus. If this address is available in the transmit buffer, the master transmits it immediately, but if the buffer is empty, the master holds the I²C-bus while waiting for software to write the address to the transmit buffer.

After the address has been transmitted, a sequence of bytes can be read from or written to the slave, depending on the value of the R/W bit (bit 0 in the address byte). If the bit was cleared, the master has entered a master transmitter role, where it now transmits data to the slave. If the bit was set, it has entered a master receiver role, where it now should receive data from the slave. In either case, an unlimited number of bytes can be transferred in one direction during the transmission.


At the end of the transmission, the master either transmits a repeated START condition (Sr) if it wishes to continue with another transfer, or transmits a STOP condition (P) if it wishes to release the bus.

14.3.7.1 Master State Machine

The master state machine is shown in Figure 14.10 (p. 147). A master operation starts in the far left of the state machine, and follows the solid lines through the state machine, ending the operation or continuing with a new operation when arriving at the right side of the state machine.

Branches in the path through the state machine are the results of bus events and choices made by software, either directly or indirectly. The dotted lines show where I²C-specific interrupt flags are set along the path and the full-drawn circles show places where interaction may be required by software to let the transmission proceed.

Figure 14.10. I²C Master State Machine

14.3.7.2 Interactions

Whenever the I²C module is waiting for interaction from software, it holds the bus clock SCL low, freezing all bus activities, and the BUSHOLD interrupt flag in I2Cn_IF is set. The action(s) required by software depends on the current state the of the I²C module. This state can be read from the I2Cn_STATE register.

As an example, Table 14.4 (p. 150) shows the different states the I²C goes through when operating as a Master Transmitter, i.e. a master that transmits data to a slave. As seen in the table, when a start condition has been transmitted, a requirement is that there is an address and an R/W bit in the transmit buffer. If the transmit buffer is empty, then the BUSHOLD interrupt flag is set, and the bus is held until data becomes available in the buffer. While waiting for the address, I2Cn_STATE has a value 0x57, which can be used to identify exactly what the I²C module is waiting for.

Note

The bus would never stop at state 0x57 if the address was available in the transmit buffer.

The different interactions used by the I²C module are listed in Table 14.3 (p. 148) in prioritized order. If a set of different courses of action are possible from a given state, the course of action using the highest priority interactions, that first has everything it is waiting for is the one that is taken.

Table 14.3. I²C Interactions in Prioritized Order

Interaction	Priority	Software action	Automatically continues if
STOP*	1	Set the STOP command bit in I2Cn_CMD	PSTOP is set (STOP pending) in I2Cn_STATUS
ABORT	2	Set the ABORT command bit in I2Cn_CMD	Never, the transmission is aborted
CONT*	3	Set the CONT command bit in I2Cn_CMD	PCONT is set in I2Cn_STATUS (CONT pending)
NACK*	4	Set the NACK command bit in I2Cn_CMD	PNACK is set in I2Cn_STATUS (NACK pending)
ACK*	5	Set the ACK command bit in I2Cn_CMD	AUTOACK is set in I2Cn_CTRL or PACK is set in I2Cn_STATUS (ACK pending)
ADDR+W -> TXDATA	6	Write an address to the transmit buffer with the R/W bit set	Address is available in transmit buffer with R/W bit set
ADDR+R -> TXDATA	7	Write an address to the transmit buffer with the R/W bit cleared	Address is available in transmit buffer with R/W bit cleared
START*	8	Set the START command bit in I2Cn_CMD	PSTART is set in I2Cn_STATUS (START pending)
TXDATA	9	Write data to the transmit buffer	Data is available in transmit buffer
RXDATA	10	Read data from receive buffer	Space is available in receive buffer
None	11	No interaction is required	

The commands marked with a * in Table 14.3 (p. 148) can be issued before an interaction is required. When such a command is issued before it can be used/consumed by the I²C module, the command is

set in a pending state, which can be read from the STATUS register. A pending START command can for instance be identified by PSTART having a high value.

Whenever the I²C module requires an interaction, it checks the pending commands. If one or a combination of these can fulfill an interaction, they are consumed by the module and the transmission continues without setting the BUSHOLD interrupt flag in I2Cn_IF to get an interaction from software. The pending status of a command goes low when it is consumed.

When several interactions are possible from a set of pending commands, the interaction with the highest priority, i.e. the interaction closest to the top of Table 14.3 (p. 148) is applied to the bus.

Pending commands can be cleared by setting the CLEARPC command bit in I2Cn_CMD.

14.3.7.2.1 Automatic ACK Interaction

When receiving addresses and data, an ACK command in I2Cn_CMD is normally required after each received byte. When AUTOACK is set in I2Cn_CTRL, an ACK is always pending, and the ACK-pending bit PACK in I2Cn_STATUS is thus always set, even after an ACK has been consumed. This can be used to reduce the amount of software interaction required during a transfer.

14.3.7.3 Reset State

After a reset, the state of the I²C-bus is unknown. To avoid interrupting transfers on the I²C-bus after a reset of the I²C module or the entire MCU, the I²C-bus is assumed to be busy when coming out of a reset, and the BUSY flag in I2Cn_STATUS is thus set. To be able to carry through master operations on the I²C-bus, the bus must be idle.

The bus goes idle when a STOP condition is detected on the bus, but on buses with little activity, the time before the I²C module detects that the bus is idle can be significant. There are two ways of assuring that the I²C module gets out of the busy state.

- Use the ABORT command in I2Cn CMD. When the ABORT command is issued, the I2C module is instructed that the bus is idle. The I²C module can then initiate master operations.
- Use the Bus Idle Timeout. When SCL has been high for a long period of time, it is very likely that the bus is idle. Set BITO in I2Cn CTRL to an appropriate timeout period and set GIBITO in I2Cn CTRL. If activity has not been detected on the bus within the timeout period, the bus is then automatically assumed idle, and master operations can be initiated.

Note

If operating in slave mode, the above approach is not necessary.

14.3.7.4 Master Transmitter

To transmit data to a slave, the master must operate as a master transmitter. Table 14.4 (p. 150) shows the states the I²C module goes through while acting as a master transmitter. Every state where an interaction is required has the possible interactions listed, along with the result of the interactions. The table also shows which interrupt flags are set in the different states. The interrupt flags enclosed in parenthesis may be set. If the BUSHOLD interrupt in I2Cn_IF is set, the module is waiting for an interaction, and the bus is frozen. The value of I2Cn_STATE will be equal to the values given in the table when the BUSHOLD interrupt flag is set, and can be used to determine which interaction is required to make the transmission continue.

The interrupt flag START in I2Cn_IF is set when the I²C module transmits the START.

A master operation is started by issuing a START command by setting START in I2Cn CMD. ADDR +W, i.e. the address of the slave to address + the R/W bit is then required by the I2C module. If this is not available in the transmit buffer, then the bus is held and the BUSHOLD interrupt flag is set. The

value of I2Cn_STATE will then be 0x57. As seen in the table, the I²C module also stops in this state if the address is not available after a repeated start condition.

To continue, write a byte to I2Cn_TXDATA with the address of the slave in the 7 most significant bits and the least significant bit cleared (ADDR+W). This address will then be transmitted, and the slave will reply with an ACK or a NACK. If no slave replies to the address, the response will also be NACK. If the address was acknowledged, the master now has four choices. If another byte is made available in I2Cn_TXDATA, this byte is transmitted. The master can also stop the transmission by sending a STOP, it can send a repeated start by sending START, or it can send a STOP and then a START as soon as possible.

If a NACK was received, the master has to issue a CONT command in addition to providing data in order to continue transmission. This is not standard I²C, but is provided for flexibility. The rest of the options are similar to when an ACK was received.

If a new byte was transmitted, an ACK or NACK is received after the transmission of the byte, and the master has the same options as for when the address was sent.

The master may lose arbitration at any time during transmission. In this case, the ARBLOST interrupt flag in I2Cn_IF is set. If the arbitration was lost during the transfer of an address, and SLAVE in I2Cn_CTRL is set, the master then checks which address was transmitted. If it was the address of the master, then the master goes to slave mode.

After a master has transmitted a START and won any arbitration, it owns the bus until it transmits a STOP. After a STOP, the bus is released, and arbitration decides which bus master gains the bus next. The MSTOP interrupt flag in I2Cn_IF is set when a STOP condition is transmitted by the master.

Table 14.4. I²C Master Transmitter

I2Cn_STA	Description	I2Cn_IF	Required interaction	Response
0x57	Start transmitted	START interrupt flag (BUSHOLD interrupt flag)	ADDR +W -> TXDATA	ADDR+W will be sent
			STOP	STOP will be sent and bus released.
			STOP + START	STOP will be sent and bus released. Then a START will be sent when bus becomes idle.
0x57	transmitted (BL	START interrupt flag (BUSHOLD interrupt flag)	ADDR +W -> TXDATA	ADDR+W will be sent
			STOP	STOP will be sent and bus released.
			STOP + START	STOP will be sent and bus released. Then a START will be sent when bus becomes idle.
-	ADDR+W transmitted	TXBL interrupt flag (TXC interrupt flag)	None	
0x97	ADDR+W transmitted,	ACK interrupt flag	TXDATA	DATA will be sent
	ACK received	(BUSHOLD interrupt flag)	STOP	STOP will be sent. Bus will be released
			START	Repeated start condition will be sent
			STOP + START	STOP will be sent and the bus released. Then a START will be sent when the bus becomes idle
0x9F	transmitted,NACK	NACK (BUSHOLD interrupt flag)	CONT + TXDATA	DATA will be sent
	received		STOP	STOP will be sent. Bus will be released

I2Cn_STA	Description	I2Cn_IF	Required interaction	Response
			START	Repeated start condition will be sent
			STOP + START	STOP will be sent and the bus released. Then a START will be sent when the bus becomes idle
-	Data transmitted	TXBL interrupt flag (TXC interrupt flag)	None	
0xD7	Data transmitted,ACK	ACK interrupt flag	TXDATA	DATA will be sent
	received	(BUSHOLD interrupt flag)	STOP	STOP will be sent. Bus will be released
			START	Repeated start condition will be sent
			STOP + START	STOP will be sent and the bus released. Then a START will be sent when the bus becomes idle
0xDF	Data transmitted,NACK	,	CONT + TXDATA	DATA will be sent
	received		STOP	STOP will be sent. Bus will be released
			START	Repeated start condition will be sent
			STOP + START	STOP will be sent and the bus released. Then a START will be sent when the bus becomes idle
-	Stop transmitted	MSTOP interrupt flag	None	
			START	START will be sent when bus becomes idle
-	Arbitration lost	ARBLOST interrupt flag	None	
			START	START will be sent when bus becomes idle

14.3.7.5 Master Receiver

To receive data from a slave, the master must operate as a master receiver, see Table 14.5 (p. 152). This is done by transmitting ADDR+R as the address byte instead of ADDR+W, which is transmitted to become a master transmitter. The address byte loaded into the data register thus has to contain the 7bit slave address in the 7 most significant bits of the byte, and have the least significant bit set.

When the address has been transmitted, the master receives an ACK or a NACK. If an ACK is received, the ACK interrupt flag in I2Cn IF is set, and if space is available in the receive shift register, reception of a byte from the slave begins. If the receive buffer and shift register is full however, the bus is held until data is read from the receive buffer or another interaction is made. Note that the STOP and START interactions have a higher priority than the data-available interaction, so if a STOP or START command is pending, the highest priority interaction will be performed, and data will not be received from the slave.

If a NACK was received, the CONT command in I2Cn CMD has to be issued in order to continue receiving data, even if there is space available in the receive buffer and/or shift register.

After a data byte has been received the master must ACK or NACK the received byte. If an ACK is pending or AUTOACK in I2Cn_CTRL is set, an ACK is sent automatically and reception continues if space is available in the receive buffer.

If a NACK is sent, the CONT command must be used in order to continue transmission. If an ACK or NACK is issued along with a START or STOP or both, then the ACK/NACK is transmitted and the reception is ended. If START in I2Cn CMD is set alone, a repeated start condition is transmitted after the ACK/NACK. If STOP in I2Cn_CMD is set, a stop condition is sent regardless of whether START is set. If START is set in this case, it is set as pending.

As when operating as a master transmitter, arbitration can be lost as a master receiver. When this happens the ARBLOST interrupt flag in I2Cn_IF is set, and the master has a possibility of being selected as a slave given the correct conditions.

Table 14.5. I²C Master Receiver

I2Cn_STAT	Description	I2Cn_IF	Required interaction	Response
0x57	START transmitted	START interrupt flag (BUSHOLD interrupt flag)	ADDR +R -> TXDATA	ADDR+R will be sent
			STOP	STOP will be sent and bus released.
			STOP + START	STOP will be sent and bus released. Then a START will be sent when bus becomes idle.
0x57	Repeated START transmitted	START interrupt flag(BUSHOLD interrupt flag)	ADDR +R -> TXDATA	ADDR+R will be sent
			STOP	STOP will be sent and bus released.
			STOP + START	STOP will be sent and bus released. Then a START will be sent when bus becomes idle.
-	ADDR+R transmitted	TXBL interrupt flag (TXC interrupt flag)	None	
0x93	ADDR+R transmitted,	ACK interrupt	RXDATA	Start receiving
	ACK received	flag(BUSHOLD)	STOP	STOP will be sent and the bus released
			START	Repeated START will be sent
			STOP + START	STOP will be sent and the bus released. Then a START will be sent when the bus becomes idle
0x9B	ADDR+R transmitted,NACK	NACK(BUSHOLD)	CONT + RXDATA	Continue, start receiving
	received		STOP	STOP will be sent and the bus released
			START	Repeated START will be sent
			STOP + START	STOP will be sent and the bus released. Then a START will be sent when the bus becomes idle
0xB3	Data received	RXDATA interrupt flag(BUSHOLD	ACK + RXDATA	ACK will be transmitted, reception continues
		interrupt flag)	NACK + CONT + RXDATA	NACK will be transmitted, reception continues
			ACK/ NACK + STOP	ACK/NACK will be sent and the bus will be released.
			ACK/ NACK + START	ACK/NACK will be sent, and then a repeated start condition.
			ACK/ NACK + STOP + START	ACK/NACK will be sent and the bus will be released. Then a START will be sent when the bus becomes idle
-	Stop received	MSTOP interrupt flag	None	

I2Cn_STAT	Description	I2Cn_IF	Required interaction	Response
			START	START will be sent when bus becomes idle
-	- Arbitration lost ARBLOST interrupt flag	ARBLOST interrupt	None	
		nag	START	START will be sent when bus becomes idle

14.3.8 Bus States

The I2Cn_STATE register can be used to determine which state the I²C module and the I2C bus are in at a given time. The register consists of the STATE bit-field, which shows which state the I²C module is at in any ongoing transmission, and a set of single-bits, which reveal the transmission mode, whether the bus is busy or idle, and whether the bus is held by this I²C module waiting for a software response.

The possible values of the STATE field are summarized in Table 14.6 (p. 153). When this field is cleared, the I²C module is not a part of any ongoing transmission. The remaining status bits in the I2Cn_STATE register are listed in Table 14.7 (p. 153).

Table 14.6. PC STATE Values

Mode	Value	Description	
IDLE	0	No transmission is being performed by this module.	
WAIT	1	Waiting for idle. Will send a start condition as soon as the bus is idle.	
START	2	Start being transmitted	
ADDR	3	Address being transmitted or has been received	
ADDRACK	4	Address ACK/NACK being transmitted or received	
DATA	5	Data being transmitted or received	
DATAACK	6	Data ACK/NACK being transmitted or received	

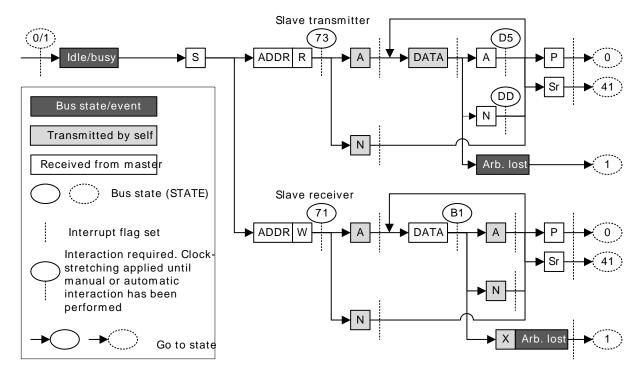
Table 14.7. f²C Transmission Status

Bit	Description
BUSY	Set whenever there is activity on the bus. Whether or not this module is responsible for the activity cannot be determined by this byte.
MASTER	Set when operating as a master. Cleared at all other times.
TRANSMITTER	Set when operating as a transmitter; either a master transmitter or a slave transmitter. Cleared at all other times
BUSHOLD	Set when the bus is held by this I ² C module because an action is required by software.
NACK	Only valid when bus is held and STATE is ADDRACK or DATAACK. In that case it is set if a NACK was received. In all other cases, the bit is cleared.

Note

I2Cn_STATE reflects the internal state of the I²C module, and therefore only held constant as long as the bus is held, i.e. as long as BUSHOLD in I2Cn STATUS is set.

14.3.9 Slave Operation


The I²C module operates in master mode by default. To enable slave operation, i.e. to allow the device to be addressed as an I²C slave, the SLAVE bit in I2Cn_CTRL must be set. In this case the slave operates in a mixed mode, both capable of starting transmissions as a master, and being addressed as a slave.

14.3.9.1 Slave State Machine

The slave state machine is shown in Figure 14.11 (p. 154). The dotted lines show where I²C-specific interrupt flags are set. The full-drawn circles show places where interaction may be required by software to let the transmission proceed.

Figure 14.11. I²C Slave State Machine

14.3.9.2 Address Recognition

The I²C module provides automatic address recognition for 7-bit addresses. 10-bit address recognition is not fully automatic, but can be assisted by the 7-bit address comparator as shown in Section 14.3.11 (p. 158). Address recognition is supported in all energy modes (except EM4).

The slave address, i.e. the address which the I²C module should be addressed with, is defined in the I2Cn_SADDR register. In addition to the address, a mask must be specified, telling the address comparator which bits of an incoming address to compare with the address defined in I2Cn_SADDR. The mask is defined in I2Cn_SADDRMASK, and for every zero in the mask, the corresponding bit in the slave address is treated as a don't-care.

An incoming address that fails address recognition is automatically replied to with a NACK. Since only the bits defined by the mask are checked, a mask with a value 0x00 will result in all addresses being accepted. A mask with a value 0x7F will only match the exact address defined in I2Cn_SADDR, while a mask 0x70 will match all addresses where the three most significant bits in I2Cn_SADDR and the incoming address are equal.

If GCAMEN in I2Cn_CTRL is set, the general call address is always accepted regardless of the result of the address recognition. The start-byte, i.e. the general call address with the R/W bit set is ignored unless it is included in the defined slave address.

When an address is accepted by the address comparator, the decision of whether to ACK or NACK the address is passed to software.

14.3.9.3 Slave Transmitter

When SLAVE in I2Cn_CTRL is set, the RSTART interrupt flag in I2Cn_IF will be set when repeated START conditions are detected. No interaction is required on this event however.

After a START or repeated START condition, the bus master will transmit an address along with an R/ W bit. If there is no room in the receive shift register for the address, the bus will be held by the slave until room is available in the shift register. Transmission then continues and the address is loaded into the shift register. If this address does not pass address recognition, it is automatically NACK'ed by the slave, and the slave goes to an idle state. The address byte is in this case discarded, making the shift register ready for a new address. It is not loaded into the receive buffer.

If the address was accepted and the R/W bit was set (R), indicating that the master wishes to read from the slave, the slave now goes into the slave transmitter mode. Software interaction is now required to decide whether the slave wants to acknowledge the request or not. The accepted address byte is loaded into the receive buffer like a regular data byte. If no valid interaction is pending, the bus is held until the slave responds with a command. The slave can reject the request with a single NACK command.

The slave will in that case go to an idle state, and wait for the next start condition. To continue the transmission, the slave must make sure data is loaded into the transmit buffer and send an ACK. The loaded data will then be transmitted to the master, and an ACK or NACK will be received from the master.

Data transmission can also continue after a NACK if a CONT command is issued along with the NACK. This is not standard I²C however.

If the master responds with an ACK, it may expect another byte of data, and data should be made available in the transmit buffer. If data is not available, the bus is held until data is available.

If the response is a NACK however, this is an indication of that the master has received enough bytes and wishes to end the transmission. The slave now automatically goes idle, unless CONT in I2Cn_CMD is set and data is available for transmission. The latter is not standard I²C.

The master ends the transmission by sending a STOP or a repeated START. The SSTOP interrupt flag in I2Cn_IF is set when the master transmits a STOP condition. If the transmission is ended with a repeated START, then the SSTOP interrupt flag is not set.

Note

The SSTOP interrupt flag in I2Cn_IF will be set regardless of whether the slave is participating in the transmission or not, as long as SLAVE in I2Cn_CTRL is set and a STOP condition is detected

If arbitration is lost at any time during transmission, the ARBLOST interrupt flag in I2Cn IF is set, the bus is released and the slave goes idle.

See Table 14.8 (p. 156) for more information.

Table 14.8. f²C Slave Transmitter

I2Cn_STAT	Description	I2Cn_IF	Required interaction	Response
0x41	Repeated START received	RSTART interrupt flag (BUSHOLD interrupt flag)	RXDATA	Receive and compare address
0x73	ADDR + R received	ADDR interrupt flag	ACK + TXDATA	ACK will be sent, then DATA
		RXDATA interrupt flag	NACK	NACK will be sent, slave goes idle
		(BUSHOLD interrupt flag)	NACK + CONT + TXDATA	NACK will be sent, then DATA.
-	Data transmitted	TXBL interrupt flag (TXC interrupt flag)	None	
0xD5	Data transmitted, ACK received	ACK interrupt flag (BUSHOLD interrupt flag)	TXDATA	DATA will be transmitted
0xDD	Data transmitted,	NACK interrupt flag	None	The slave goes idle
	NACK received	(BUSHOLD interrupt flag)	CONT + TXDATA	DATA will be transmitted
-	Stop received	SSTOP interrupt flag	None	The slave goes idle
			START	START will be sent when bus becomes idle
-	Arbitration lost	ARBLOST interrupt	None	The slave goes idle
		flag	START	START will be sent when the bus becomes idle

14.3.9.4 Slave Receiver

A slave receiver operation is started in the same way as a slave transmitter operation, with the exception that the address transmitted by the master has the R/W bit cleared (W), indicating that the master wishes to write to the slave. The slave then goes into slave receiver mode.

To receive data from the master, the slave should respond to the address with an ACK and make sure space is available in the receive buffer. Transmission will then continue, and the slave will receive a byte from the master.

If a NACK is sent without a CONT, the transmission is ended for the slave, and it goes idle. If the slave issues both the NACK and CONT commands and has space available in the receive buffer, it will be open for continuing reception from the master.

When a byte has been received from the master, the slave must ACK or NACK the byte. The responses here are the same as for the reception of the address byte.

The master ends the transmission by sending a STOP or a repeated START. The SSTOP interrupt flag is set when the master transmits a STOP condition. If the transmission is ended with a repeated START, then the SSTOP interrupt flag in I2Cn_IF is not set.

Note

The SSTOP interrupt flag in I2Cn_IF will be set regardless of whether the slave is participating in the transmission or not, as long as SLAVE in I2Cn_CTRL is set and a STOP condition is detected

If arbitration is lost at any time during transmission, the ARBLOST interrupt flag in I2Cn_IF is set, the bus is released and the slave goes idle.

See Table 14.9 (p. 157) for more information.

Table 14.9. f²C - Slave Receiver

I2Cn_STA	Description	I2Cn_IF	Required interaction	Response
-	Repeated START received	RSTART interrupt flag (BUSHOLD interrupt flag)	RXDATA	Receive and compare address
0x71	ADDR + W received	RXDATA interrupt flag	ACK + RXDATA	ACK will be sent and data will be received
		(BUSHOLD interrupt flag)	NACK	NACK will be sent, slave goes idle
			NACK + CONT + RXDATA	NACK will be sent and DATA will be received.
0xB1	Data received	RXDATA interrupt flag (BUSHOLD interrupt flag)	ACK + RXDATA	ACK will be sent and data will be received
			NACK	NACK will be sent and slave will go idle
			NACK + CONT + RXDATA	NACK will be sent and data will be received
-	Stop received	SSTOP interrupt flag	None	The slave goes idle
			START	START will be sent when bus becomes idle
-	Arbitration lost	ARBLOST interrupt flag	None	The slave goes idle
			START	START will be sent when the bus becomes idle

14.3.10 Transfer Automation

The I²C can be set up to complete transfers with a minimal amount of interaction.

14.3.10.1 DMA

DMA can be used to automatically load data into the transmit buffer and load data out from the receive buffer. When using DMA, software is thus relieved of moving data to and from memory after each transferred byte.

14.3.10.2 Automatic ACK

When AUTOACK in I2Cn_CTRL is set, an ACK is sent automatically whenever an ACK interaction is possible and no higher priority interactions are pending.

14.3.10.3 Automatic STOP

A STOP can be generated automatically on two conditions. These apply only to the master transmitter.

If AUTOSN in I2Cn_CTRL is set, the I²C module ends a transmission by transmitting a STOP condition when operating as a master transmitter and a NACK is received.

If AUTOSE in I2Cn_CTRL is set, the I2C module always ends a transmission when there is no more data in the transmit buffer. If data has been transmitted on the bus, the transmission is ended after the (N)ACK has been received by the slave. If a START is sent when no data is available in the transmit buffer and AUTOSE is set, then the STOP condition is sent immediately following the START. Software must thus make sure data is available in the transmit buffer before the START condition has been fully transmitted if data is to be transferred.

14.3.11 Using 10-bit Addresses

When using 10-bit addresses in slave mode, set the I2Cn_SADDR register to 1111 0XX where XX are the two most significant bits of the 10-bit address, and set I2Cn_SADDRMASK to 0xFF. Address matches will now be given on all 10-bit addresses where the two most significant bits are correct.

When receiving an address match, the slave must acknowledge the address and receive the first data byte. This byte contains the second part of the 10-bit address. If it matches the address of the slave, the slave should ACK the byte to continue the transmission, and if it does not match, the slave should NACK it.

When the master is operating as a master transmitter, the data bytes will follow after the second address byte. When the master is operating as a master receiver however, a repeated START condition is sent after the second address byte. The address sent after this repeated START is equal to the first of the address bytes transmitted previously, but now with the R/W byte set, and only the slave that found a match on the entire 10-bit address in the previous message should ACK this address. The repeated start should take the master into a master receiver mode, and after the single address byte sent this time around, the slave begins transmission to the master.

14.3.12 Error Handling

14.3.12.1 ABORT command

Some bus errors may require software intervention to be resolved. The I²C module provides an ABORT command, which can be set in I2Cn_CMD, to help resolve bus errors.

When the bus for some reason is locked up and the I²C module is in the middle of a transmission it cannot get out of, or for some other reason the I²C wants to abort a transmission, the ABORT command can be used.

Setting the ABORT command will make the I²C module discard any data currently being transmitted or received, release the SDA and SCL lines and go to an idle mode. ABORT effectively makes the I²C module forget about any ongoing transfers.

14.3.12.2 Bus Reset

A bus reset can be performed by setting the START and STOP commands in I2Cn_CMD while the transmit buffer is empty. A START condition will then be transmitted, immediately followed by a STOP condition. A bus reset can also be performed by transmitting a START command with the transmit buffer empty and AUTOSE set.

14.3.12.3 I²C-Bus Errors

An I^2 C-bus error occurs when a START or STOP condition is misplaced, which happens when the value on SDA changes while SCL is high during bit-transmission on the I^2 C-bus. If the I^2 C module is part of the current transmission when a bus error occurs, any data currently being transmitted or received is discarded, SDA and SCL are released, the BUSERR interrupt flag in I^2 CC in Table 14.10 (p. 158) .

Table 14.10. f²C Bus Error Response

In a master/slave operation	Treated as START, Receive address.	Go idle. Perform any pending actions.
	Misplaced START	Misplaced STOP

14.3.12.4 Bus Lockup

A lockup occurs when a master or slave on the I²C-bus has locked the SDA or SCL at a low value, preventing other devices from putting high values on the bus, and thus making communication on the bus impossible.

Many slave-only devices operating on an I²C-bus are not capable of driving SCL low, but in the rare case that SCL is stuck LOW, the advice is to apply a hardware reset signal to the slaves on the bus. If this does not work, cycle the power to the devices in order to make them release SCL.

When SDA is stuck low and SCL is free, a master should send 9 clock pulses on SCL while tristating the SDA. This procedure is performed in the GPIO module after clearing the I2C_ROUTE register and disabling the I2C module. The device that held the bus low should release it sometime within those 9 clocks. If not, use the same approach as for when SCL is stuck, resetting and possibly cycling power to the slaves.

Lockup of SDA can be detected by keeping count of the number of continuous arbitration losses during address transmission. If arbitration is also lost during the transmission of a general call address, i.e. during the transmission of the STOP condition, which should never happen during normal operation, this is a good indication of SDA lockup.

Detection of SCL lockups can be done using the timeout functionality defined in Section 14.3.12.6 (p. 159)

14.3.12.5 Bus Idle Timeout

When SCL has been high for a significant amount of time, this is a good indication of that the bus is idle. On an SMBus system, the bus is only allowed to be in this state for a maximum of 50 µs before the bus is considered idle.

The bus idle timeout BITO in I2Cn_CTRL can be used to detect situations where the bus goes idle in the middle of a transmission. The timeout can be configured in BITO, and when the bus has been idle for the given amount of time, the BITO interrupt flag in I2Cn_IF is set. The bus can also be set idle automatically on a bus idle timeout. This is enabled by setting GIBITO in I2Cn_CTRL.

When the bus idle timer times out, it wraps around and continues counting as long as its condition is true. If the bus is not set idle using GIBITO or the ABORT command in I2Cn_CMD, this will result in periodic timeouts.

Note

This timeout will be generated even if SDA is held low.

The bus idle timeout is active as long as the bus is busy, i.e. BUSY in I2Cn_STATUS is set. The timeout can be used to get the I²C module out of the busy-state it enters when reset, see Section 14.3.7.3 (p. 149).

14.3.12.6 Clock Low Timeout

The clock timeout, which can be configured in CLTO in I2Cn_CTRL, starts counting whenever SCL goes low, and times out if SCL does not go high within the configured timeout. A clock low timeout results in CLTOIF in I2Cn_IF being set, allowing software to take action.

When the timer times out, it wraps around and continues counting as long as SCL is low. An SCL lockup will thus result in periodic clock low timeouts as long as SCL is low.

14.3.13 DMA Support

The I²C module has full DMA support. The DMA controller can write to the transmit buffer using the I2Cn_TXDATA register, and it can read from the receive buffer using the RXDATA register. A request for the DMA controller to read from the I²C receive buffer can come from the following source:

· Data available in the receive buffer

A write request can come from one of the following sources:

- · Transmit buffer and shift register empty. No data to send
- · Transmit buffer empty

14.3.14 Interrupts

The interrupts generated by the I²C module are combined into one interrupt vector, I2C_INT. If I²C interrupts are enabled, an interrupt will be made if one or more of the interrupt flags in I2Cn_IF and their corresponding bits in I2Cn_IEN are set.

14.3.15 Wakeup

The I²C receive section can be active all the way down to energy mode EM3, and can wake up the CPU on address interrupt. All address match modes are supported.

Downloaded from H couls com 2010-12-21 - d0034_Rev0.90 160 www.energymicro.com

14.4 Register Map

The offset register address is relative to the registers base address.

Offset	Name	Туре	Description
0x000	I2Cn_CTRL	RW	Control Register
0x004	I2Cn_CMD	W1	Command Register
0x008	I2Cn_STATE	R	State Register
0x00C	I2Cn_STATUS	R	Status Register
0x010	I2Cn_CLKDIV	RW	Clock Division Register
0x014	I2Cn_SADDR	RW	Slave Address Register
0x018	I2Cn_SADDRMASK	RW	Slave Address Mask Register
0x01C	I2Cn_RXDATA	R	Receive Buffer Data Register
0x020	I2Cn_RXDATAP	R	Receive Buffer Data Peek Register
0x024	I2Cn_TXDATA	W	Transmit Buffer Data Register
0x028	I2Cn_IF	R	Interrupt Flag Register
0x02C	I2Cn_IFS	W1	Interrupt Flag Set Register
0x030	I2Cn_IFC	W1	Interrupt Flag Clear Register
0x034	I2Cn_IEN	RW	Interrupt Enable Register
0x038	I2Cn_ROUTE	RW	I/O Routing Register

14.5 Register Description

14.5.1 I2Cn_CTRL - Control Register

Offset															Bi	t Po	siti	on														
0x000	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	7	10	တ	8	7	9	2	4	က	2	-	0
Reset															0x0		0		3	0x0			2	S S		0	0	0	0	0	0	0
Access															RW		RW		Š	≷			7	<u>}</u>		RW	RW	W.	RW	RW	RW	₩ W
Name															CLTO		GIBITO		C	OIII			9	2		GCAMEN	ARBDIS	AUTOSN	AUTOSE	AUTOACK	SLAVE	Z Z

18:16	CLTO	0x0	RW	Clock Low Timeout
31:19	Reserved	To ensure comp	atibility with fut	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
Bit	Name	Reset	Access	Description

Use to generate a timeout when CLK has been low for the given amount of time. Wraps around and continues counting when the timeout is reached.

Val	lue	Mode	Description
0		OFF	Timeout disabled
1		40PCC	Timeout after 40 prescaled clock cycles. In standard mode at 100 kHz, this results in a 50us timeout.
2		80PCC	Timeout after 80 prescaled clock cycles. In standard mode at 100 kHz, this results in a 100us timeout.
3		160PCC	Timeout after 160 prescaled clock cycles. In standard mode at 100 kHz, this results in a 200us timeout.
4		320PPC	Timeout after 320 prescaled clock cycles. In standard mode at 100 kHz, this results in a 400us timeout.
5		1024PPC	Timeout after 1024 prescaled clock cycles. In standard mode at 100 kHz, this results in a 1280us timeout.

15 **GIBITO** 0 RW Go Idle on Bus Idle Timeout

	Name	Reset	Access	Description
	When set, the	bus automatically goes idle	on a bus idle tim	neout, allowing new transfers to be initiated.
	Value	Description		
	0	A bus idle timeout	t has no effect on t	the bus state.
	1	A bus idle timeout	t tells the I ² C modu	ule that the bus is idle, allowing new transfers to be initiated.
14	Reserved	To ensure co	mpatibility with f	uture devices, always write bits to 0. More information in Section 2.1 (p. 3
13:12	BITO	0x0	RW	Bus Idle Timeout
	bus transaction by BITO, it see idle timeout is STOP condition	on, i.e. the BUSY flag is set, its the BITO interrupt flag. The active as long as BUSY is	a timer is starte ne BITO interrup set. It is thus s	a given amount time between a START and STOP condition. When in ed whenever SCL goes high. When the timer reaches the value define at flag will then be set periodically as long as SCL remains high. The bustopped automatically on a timeout if GIBITO is set. It is also stopped and is issued. The timeout is activated whenever the bus goes BUSY, i.
	Value	Mode	De	scription
	0	OFF	Tin	neout disabled
	1	40PCC		neout after 40 prescaled clock cycles. In standard mode at 100 kHz, this results i 30us timeout.
	2	80PCC		neout after 80 prescaled clock cycles. In standard mode at 100 kHz, this results i 00us timeout.
	3	160PCC	Tin	neout after 160 prescaled clock cycles. In standard mode at 100 kHz, this result a 200us timeout.
11:10	Reserved	To ensure co	mpatibility with f	uture devices, always write bits to 0. More information in Section 2.1 (p. 3
9:8	CLHR	0x0	RW	Clock Low High Ratio
	-			e clock signal generated on SCL as master.
		e ratio between the low and	riigii parts oi trie	s clock signal generated on OOL as master.
	Value	Mode		scription
	0	STANDARD		e ratio is 4:4. Both low and high periods lasts 4 prescaled clock cycles
	1	ASYMMETRIC		e ratio is 6:3. Low period lasts 6 and high period lasts 4 prescaled clock cycles
	2	FAST	Ih	e ratio is 11:6. Low period lasts 16 and high period lasts 9 prescaled clock cycles
7	Reserved	To ensure co	mpatibility with f	uture devices, always write bits to 0. More information in Section 2.1 (p. 3
6	GCAMEN	0	RW	General Call Address Match Enable
	Set to enable	address match on general ca	all in addition to	the programmed slave address.
	Set to enable	address match on general ca	all in addition to	the programmed slave address.
		Description		the programmed slave address. ed if it is not included by the slave address and address mask.
	Value	Description General call addre	ess will be NACK'e	
5	Value 0 1	Description General call addre	ess will be NACK'e	ed if it is not included by the slave address and address mask.
5	Value 0 1 ARBDIS	Description General call addre When a general c	ess will be NACK'e all address is rece	ed if it is not included by the slave address and address mask. ived, a software response is required. Arbitration Disable
5	Value 0 1 ARBDIS A master or si	Description General call addre When a general co 0 ave will not release the bus of	ess will be NACK'e all address is rece	ed if it is not included by the slave address and address mask. ived, a software response is required. Arbitration Disable
5	Value 0 1 ARBDIS A master or sl	Description General call addre When a general c 0 lave will not release the bus of Description	ess will be NACK'e all address is rece RW upon losing arbit	ed if it is not included by the slave address and address mask. ived, a software response is required. Arbitration Disable tration.
5	Value 0 1 ARBDIS A master or sl Value 0	Description General call addre When a general color 0 ave will not release the bus of the properties of the properti	ess will be NACK'e all address is rece RW upon losing arbit	ed if it is not included by the slave address and address mask. ived, a software response is required. Arbitration Disable tration. ARB interrupt flag is set and the bus is released.
5	Value 0 1 ARBDIS A master or sl	Description General call addre When a general color 0 ave will not release the bus of the properties of the properti	ess will be NACK'e all address is rece RW upon losing arbit	ed if it is not included by the slave address and address mask. ived, a software response is required. Arbitration Disable tration.
	Value 0 1 ARBDIS A master or sl Value 0	Description General call addre When a general color 0 ave will not release the bus of the properties of the properti	ess will be NACK'e all address is rece RW upon losing arbit	ed if it is not included by the slave address and address mask. ived, a software response is required. Arbitration Disable tration. ARB interrupt flag is set and the bus is released.
	Value 0 1 ARBDIS A master or si Value 0 1 AUTOSN	Description General call address When a general company of the property of t	ess will be NACK'e all address is rece RW upon losing arbit ses arbitration, the	ed if it is not included by the slave address and address mask. ived, a software response is required. Arbitration Disable tration. ARB interrupt flag is set and the bus is released. ARB interrupt flag is set, but communication proceeds.
	Value 0 1 ARBDIS A master or si Value 0 1 AUTOSN	Description General call address When a general company of the property of t	ess will be NACK'e all address is rece RW upon losing arbit ses arbitration, the	ad if it is not included by the slave address and address mask. aived, a software response is required. Arbitration Disable tration. ARB interrupt flag is set and the bus is released. ARB interrupt flag is set, but communication proceeds. Automatic STOP on NACK
	Value 0 1 ARBDIS A master or si Value 0 1 AUTOSN Write to 1 to n	Description General call addre When a general co O Lave will not release the bus of the properties	ess will be NACK'e all address is rece RW upon losing arbit ses arbitration, the ses arbitration, the RW nd a STOP whe	ad if it is not included by the slave address and address mask. aived, a software response is required. Arbitration Disable tration. ARB interrupt flag is set and the bus is released. ARB interrupt flag is set, but communication proceeds. Automatic STOP on NACK
	Value 0 1 ARBDIS A master or sl Value 0 1 AUTOSN Write to 1 to n	Description General call addre When a general co O Lave will not release the bus of the properties	ess will be NACK'e all address is rece RW upon losing arbit ses arbitration, the ses arbitration, the RW nd a STOP whe	and if it is not included by the slave address and address mask. Arbitration Disable tration. ARB interrupt flag is set and the bus is released. ARB interrupt flag is set, but communication proceeds. Automatic STOP on NACK In a NACK is received from a slave.
4	Value 0 1 ARBDIS A master or si Value 0 1 AUTOSN Write to 1 to n Value 0 1	Description General call addre When a general co O Tave will not release the bus of Description When a device los When a device los O Take a master transmitter se Description Stop is not autom The master auton	ess will be NACK'e all address is recently address is recently appointed by the ses arbitration, the ses arbitration arb	ad if it is not included by the slave address and address mask. Arbitration Disable tration. ARB interrupt flag is set and the bus is released. ARB interrupt flag is set, but communication proceeds. Automatic STOP on NACK In a NACK is received from a slave. ACK is received from a slave. ACK is received from a slave.
1	Value 0 1 ARBDIS A master or si Value 0 1 AUTOSN Write to 1 to n Value 0 1 AUTOSE	Description General call addre When a general co O Description When a device los When a device los O nake a master transmitter se Description Stop is not autom The master auton	ess will be NACK'e all address is rece RW upon losing arbit ses arbitration, the ses arbitration, the RW nd a STOP whe atically sent if a Natically sends a S	ed if it is not included by the slave address and address mask. ived, a software response is required. Arbitration Disable tration. ARB interrupt flag is set and the bus is released. ARB interrupt flag is set, but communication proceeds. Automatic STOP on NACK In a NACK is received from a slave. ACK is received from a slave.
4	Value 0 1 ARBDIS A master or si Value 0 1 AUTOSN Write to 1 to n Value 0 1 AUTOSE Write to 1 to n	Description General call address When a general company of the property of the	ess will be NACK'e all address is rece RW upon losing arbit ses arbitration, the ses arbitration, the RW nd a STOP whe atically sent if a Natically sends a S	and if it is not included by the slave address and address mask. Arbitration Disable tration. ARB interrupt flag is set and the bus is released. ARB interrupt flag is set, but communication proceeds. Automatic STOP on NACK In a NACK is received from a slave. ACK is received from a slave. Automatic STOP when Empty
5 4	Value 0 1 ARBDIS A master or si Value 0 1 AUTOSN Write to 1 to n Value 0 1 AUTOSE	Description General call address When a general companies of the busing several call address On the properties of the busing several call address On the properties of the busing several call address Description When a device loss When a device loss On the properties of the busing several call address Description Stop is not automore the master automore call address On the properties of the prop	ess will be NACK'e call address is recently address is recently appointed by the ses arbitration, the ses arbitration are selected by the ses arbitration	and if it is not included by the slave address and address mask. Arbitration Disable tration. ARB interrupt flag is set and the bus is released. ARB interrupt flag is set, but communication proceeds. Automatic STOP on NACK In a NACK is received from a slave. ACK is received from a slave. AUTOP if a NACK is received from a slave. Automatic STOP when Empty In no more data is available for transmission.
4	Value 0 1 ARBDIS A master or sl Value 0 1 AUTOSN Write to 1 to n Value 0 1 AUTOSE Write to 1 to n Value	Description General call addre When a general co O Description When a device los When a device los When a device los O nake a master transmitter se Description Stop is not autom The master autom O nake a master transmitter se Description A stop must be se	ess will be NACK'e call address is recently address is recently appointed by the ses arbitration, the ses arbitration are ses	and if it is not included by the slave address and address mask. Arbitration Disable tration. ARB interrupt flag is set and the bus is released. ARB interrupt flag is set, but communication proceeds. Automatic STOP on NACK In a NACK is received from a slave. ACK is received from a slave. Automatic STOP when Empty
4	Value 0 1 ARBDIS A master or sl Value 0 1 AUTOSN Write to 1 to n Value 0 1 AUTOSE Write to 1 to n Value 0 0 1	Description General call addre When a general co O Description When a device los When a device los When a device los O nake a master transmitter se Description Stop is not autom The master autom O nake a master transmitter se Description A stop must be se	ess will be NACK'e call address is recently address is recently appointed by the ses arbitration, the ses arbitration are ses	and if it is not included by the slave address and address mask. Arbitration Disable tration. ARB interrupt flag is set and the bus is released. ARB interrupt flag is set, but communication proceeds. Automatic STOP on NACK In a NACK is received from a slave. ACK is received from a slave. Automatic STOP when Empty In no more data is available for transmission.

Downloaded from Electrical 2010-12-21 - d0034_Rev0.90 162 www.energymicro.com

Bit	Name	Reset	Access	Description
	Value	Description		
	0	Software must giv	e one ACK comma	and for each ACK transmitted on the I ² C bus.
	1	Addresses that a	re not automatically	NACK'ed, and all data is automatically acknowledged.
1	SLAVE	0	RW	Addressable as Slave
	Set this bit to allo	ow the device to be select	ed as an I ² C slav	re.
	Value	Description		
	0	All addresses will	be responded to w	ith a NACK
	1			od slave address or the general call address (if enabled) require a response from natically responded to with a NACK.
0	EN	0	RW	I ² C Enable
	Use this bit to er	able or disable the I ² C m	odule.	
	Value	Description		
	0	The I ² C module is	s disabled. And its in	nternal state is cleared
	1	The I ² C module is	s enabled.	

14.5.2 I2Cn_CMD - Command Register

Offset															Bi	t Po	siti	on														
0x004	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	1	10	ი	8	7	9	2	4	က	7	-	0
Reset			•																						0	0	0	0	0	0	0	0
Access																									W	W	W	W	W	×	W	W
Name																									CLEARPC	CLEARTX	ABORT	CONT	NACK	ACK	STOP	START

Bit	Name	Reset	Access	Description
31:8	Reserved	To ensure co	ompatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
7	CLEARPC	0	W1	Clear Pending Commands
	Set to clear pending	g commands.		
6	CLEARTX	0	W1	Clear TX
	Set to clear transmi	t buffer and shift regist	ter. Will not abort	ongoing transfer.
5	ABORT	0	W1	Abort transmission
				en used in combination with STOP, a STOP condition is sent as soon as on is subject to clock synchronization.
4	CONT	0	W1	Continue transmission
	Set to continue tran	smission after a NAC	K has been receiv	ed.
3	NACK	0	W1	Send NACK
	Set to transmit a NA	ACK the next time an a	acknowledge is re	quired.
2	ACK	0	W1	Send ACK
	Set to transmit an A	CK the next time an a	cknowledge is red	quired.
1	STOP	0	W1	Send stop condition
	Set to send stop co	ndition as soon as pos	sible.	
0	START	0	W1	Send start condition
	as the bus is idle. If	the current transmission	on is owned by thi	ission is ongoing and not owned, the start condition will be sent as soon s module, a repeated start condition will be sent. Use in combination with TART when the bus becomes idle.

Downloaded from Elecules com

14.5.3 I2Cn_STATE - State Register

Offset															Bi	t Po	siti	on														
0x008	31	30	59	78	27	56	25	24	23	22	21	20	19	18	17	16	15	4	13	12	1	10	6	∞	7	9	2	4	က	2	-	0
Reset																										000		0	0	0	0	-
Access																								-		22		œ	œ	~	~	~
Name																										STATE		BUSHOLD	NACKED	TRANSMITTER	MASTER	BUSY

				TRA
Bit	Name	Reset	Acce	ess Description
31:8	Reserved	To ensure c	ompatibility	with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
7:5	STATE	0x0	R	Transmission State
	The state of any	current transmission. Cle	eared if the I	² C module is idle.
	Value	Mode		Description
	0	IDLE		No transmission is being performed.
	1	WAIT		Waiting for idle. Will send a start condition as soon as the bus is idle.
	2	START		Start transmitted or received
	3	ADDR		Address transmitted or received
	4	ADDRACK		Address ack/nack transmitted or received
	5	DATA		Data transmitted or received
	6	DATAACK		Data ack/nack transmitted or received
4	BUSHOLD	0	R	Bus Held
	Set if the bus is	currently being held by th	nis I ² C modu	le.
3	NACKED	0	R	Nack Received
	Set if a NACK w	as received and STATE i	is ADDRACI	K or DATAACK.
2	TRANSMITTER	0	R	Transmitter
		ing as a master transmitt or the current mode is no		transmitter. When cleared, the system may be operating as a master receiver,
1	MASTER	0	R	Master
	Set when operat	ting as an I ² C master. Wh	nen cleared,	the system may be operating as an I ² C slave.
0	BUSY	1	R	Bus Busy
	Set when the bu	us is busy. Whether the I	² C module i	is in control of the bus or not has no effect on the value of this bit. When the

14.5.4 I2Cn_STATUS - Status Register

to force the I²C module out of the BUSY state.

Offset												,			Bi	t Po	siti	on				,		,								
0x00C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	1	10	6	8	7	9	2	4	က	2	-	0
Reset																								0	-	0	0	0	0	0	0	0
Access																								œ	œ	œ	~	~	~	~	œ	22
Name																								RXDATAV	TXBL	TXC	PABORT	PCONT	PNACK	PACK	PSTOP	PSTART

MCU comes out of reset, the state of the bus is not known, and thus BUSY is set. Use the ABORT command or a bus idle timeout

Bit	Name	Reset	Access	Description
31:9	Reserved	To ensure compa	atibility with fut	ure devices, always write bits to 0. More information in Section 2.1 (p. 3)

Downloaded from House com

Bit	Name	Reset	Access	Description
8	RXDATAV	0	R	RX Data Valid
	Set when data is available	in the receive buffe	er. Cleared whe	en the receive buffer is empty.
7	TXBL	1	R	TX Buffer Level
	Indicates the level of the tra	ansmit buffer. Set v	when the transi	mit buffer is empty, and cleared when it is full.
6	TXC	0	R	TX Complete
	Set when a transmission ha	as completed and n	o more data is	available in the transmit buffer. Cleared when a new transmission starts.
5	PABORT	0	R	Pending abort
	An abort is pending and wi	II be transmitted as	soon as possi	ble.
4	PCONT	0	R	Pending continue
	A continue is pending and	will be transmitted	as soon as pos	ssible.
3	PNACK	0	R	Pending NACK
	A not-acknowledge is pend	ding and will be tran	smitted as soc	on as possible.
2	PACK	0	R	Pending ACK
	An acknowledge is pending	g and will be transm	nitted as soon	as possible.
1	PSTOP	0	R	Pending STOP
	A stop condition is pending	and will be transm	itted as soon a	as possible.
0	PSTART	0	R	Pending START
	A start condition is pending	g and will be transm	itted as soon a	as possible.

14.5.5 I2Cn_CLKDIV - Clock Division Register

Offset		•			•										Bi	t Po	siti	on						•								
0x010	31	30	29	78	27	26	22	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	∞	7	9	2	4	က	2	-	0
Reset																												000x0				
Access																												ΑW				
Name																												Ald				

Bit	Name	Reset	Access	Description
31:9	Reserved	To ensure comp	atibility with fut	ure devices, always write bits to 0. More information in Section 2.1 (p. 3)
8:0	DIV	0x000	RW	Clock Divider
	Specifies the clock divider	for the I ² C. Note th	at DIV must be	1 or higher when slave is enabled.

14.5.6 I2Cn_SADDR - Slave Address Register

Offset															Bi	t Po	siti	on														
0x014	31	30	29	28	27	26	22	24	23	22	21	20	19	18	17	16	15	14	13	12	1	10	6	8	7	9	2	4	3	2	-	0
Reset																												0000				
Access																												RW				
Name																												ADDR				

Bit	Name	Reset	Access	Description
31:8	Reserved	To ensure compa	atibility with fut	ure devices, always write bits to 0. More information in Section 2.1 (p. 3)
7:1	ADDR	0x00	RW	Slave address
	Specifies the slave address	of the device.		
0	Reserved	To ensure compa	atibility with fut	ure devices, always write bits to 0. More information in Section 2.1 (p. 3)

14.5.7 I2Cn_SADDRMASK - Slave Address Mask Register

Offset															Bi	t Pc	siti	on														
0x018	31	30	29	28	27	26	22	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	ი	∞	7	9	2	4	က	2	-	0
Reset																												0x00				
Access																												Ν×				
Name																												MASK				

Bit	Name	Reset	Access	Description
31:8	Reserved	To ensure comp	patibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
7:1	MASK	0x00	RW	Slave Address Mask
	Specifies the significant bi match the exact address s		0	e mask to 0x00 will match all addresses, while setting it to 0x7F will only
0	Reserved	To ensure comp	patibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)

14.5.8 I2Cn_RXDATA - Receive Buffer Data Register

Offset															Bi	t Pc	siti	on														
0x01C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	9	5	4	3	2	-	0
Reset																												(0000			
Access																												(ď			
Name																												į	RXDATA			

Bit	Name	Reset	Access	Description
31:8	Reserved	To ensure co	ompatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
7:0	RXDATA	0x00	R	RX Data
	Use this register to rea	ad from the receive	buffer. Buffer is er	mptied on read access.

2010-12-21 - d0034_Rev0.90 www.energymicro.com

14.5.9 I2Cn_RXDATAP - Receive Buffer Data Peek Register

Offset															Bi	t Po	siti	on														
0x020	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	41	13	12	1	10	6	8	7	9	2	4	က	7	-	0
Reset																													0000			
Access																													ĸ			
Name																												į	RXDATAP			

Bit	Name	Reset	Access	Description
31:8	Reserved	To ensure co	ompatibility with fu	uture devices, always write bits to 0. More information in Section 2.1 (p. 3)
7:0	RXDATAP	0x00	R	RX Data Peek
	Use this register to	read from the receive	buffer. Buffer is n	ot emptied on read access.

14.5.10 I2Cn_TXDATA - Transmit Buffer Data Register

Offset															Bi	t Pc	siti	on														
0x024	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	7	10	0	8	7	9	2	4	က	2	-	0
Reset																													0000			
Access																												-	≥			
Name																												į	IXDAIA			

Bit	Name	Reset	Access	Description
31:8	Reserved	To ensure co	ompatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
7:0	TXDATA	0x00	W	TX Data
	Use this register to wr	ite a byte to the tran	smit buffer.	

14.5.11 I2Cn_IF - Interrupt Flag Register

Offset															Bi	t Po	siti	on														
0x028	31	30	29	28	27	56	22	24	23	22	21	20	19	18	17	16	15	4	13	12	1	10	6	œ	7	9	2	4	က	2	-	0
Reset					•					•						0	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0
Access																22	œ	œ	2	œ	22	œ	œ	œ	œ	22	œ	~	œ	œ	22	œ
Name																SSTOP	CLTO	BITO	RXUF	TXOF	BUSHOLD	BUSERR	ARBLOST	MSTOP	NACK	ACK	RXDATAV	TXBL	TXC	ADDR	RSTART	START

Bit	Name	Reset	Access	Description
31:17	Reserved	To ensure compa	atibility with futu	ure devices, always write bits to 0. More information in Section 2.1 (p. 3)
16	SSTOP	0	R	Slave STOP condition Interrupt Flag
	Set when a STOP condition	has been received	d. Will be set re	egardless of the EFM32 being involved in the transaction or not.
15	CLTO	0	R	Clock Low Timeout Interrupt Flag

Downloaded from E 2010-12-21 - d0034_Rev0.90 167 www.energymicro.com

Bit	Name	Reset	Access	Description
	Set on each clock lo	ow timeout. The timeou	ıt value can be se	t in CLTO bitfield in the I2Cn_CTRL register.
14	BITO	0	R	Bus Idle Timeout Interrupt Flag
	Set on each bus idl	e timeout. The timeout	value can be set	in the BITO bitfield in the I2Cn_CTRL register.
13	RXUF	0	R	Receive Buffer Underflow Interrupt Flag
	Set when data is re	ad from the receive bu	ffer through the I2	Cn_RXDATA register while the receive buffer is empty.
12	TXOF	0	R	Transmit Buffer Overflow Interrupt Flag
	Set when data is wi	ritten to the transmit bu	ffer while the tran	smit buffer is full.
11	BUSHOLD	0	R	Bus Held Interrupt Flag
	Set when the bus b	ecomes held by the I ² 0	c module.	
10	BUSERR	0	R	Bus Error Interrupt Flag
	Set when a bus erro	or is detected. The bus	error is resolved	automatically, but the current transfer is aborted.
9	ARBLOST	0	R	Arbitration Lost Interrupt Flag
	Set when arbitration	n is lost.		
8	MSTOP	0	R	Master STOP Condition Interrupt Flag
		condition has been sucterrupt flag is not set.	ccessfully transmi	tted. If arbitration is lost during the transmission of the STOP condition,
7	NACK	0	R	Not Acknowledge Received Interrupt Flag
	Set when a NACK I	nas been received.		
6	ACK	0	R	Acknowledge Received Interrupt Flag
	Set when an ACK h	as been received.		
5	RXDATAV	0	R	Receive Data Valid Interrupt Flag
	Set when data is av	vailable in the receive b	uffer. Cleared aut	omatically when the receive buffer is read.
4	TXBL	1	R	Transmit Buffer Level Interrupt Flag
	Set when the transr	mit buffer becomes em	pty. Cleared autor	matically when new data is written to the transmit buffer.
3	TXC	0	R	Transfer Completed Interrupt Flag
	Set when the transr	mit shift register becom	es empty and the	re is no more data in the transmit buffer.
2	ADDR	0	R	Address Interrupt Flag
	Set when incoming	address is accepted, i.	e. own address o	r general call address is received.
1	RSTART	0	R	Repeated START condition Interrupt Flag
	Set when a repeate	d start condition is det	ected.	
0	START	0	R	START condition Interrupt Flag
	Set when a start co	ndition is successfully	transmitted.	

14.5.12 I2Cn_IFS - Interrupt Flag Set Register

Offset															Bi	t Po	siti	on														
0x02C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	41	13	12	7	10	თ	∞	7	9	2	4	က	7	-	0
Reset																0	0	0	0	0	0	0	0	0	0	0			0	0	0	0
Access																W	W1	W	W1	W	W1	W	W	W1	W	W1			W1	W	W1	W
Name																SSTOP	CLTO	ВІТО	RXUF	TXOF	BUSHOLD	BUSERR	ARBLOST	MSTOP	NACK	ACK			TXC	ADDR	RSTART	START

Bit	Name	Reset	Access	Description
31:17	Reserved	To ensure compa	atibility with fut	ure devices, always write bits to 0. More information in Section 2.1 (p. 3)

Bit	Name	Reset	Access	Description
16	SSTOP	0	W1	Set SSTOP Interrupt Flag
	Write to 1 to set th	ne SSTOP interrupt flag.		
15	CLTO	0	W1	Set Clock Low Interrupt Flag
	Write to 1 to set th	e CLTO interrupt flag.		
14	BITO	0	W1	Set Bus Idle Timeout Interrupt Flag
	Write to 1 to set th	e BITO interrupt flag.		
13	RXUF	0	W1	Set Receive Buffer Underflow Interrupt Flag
	Write to 1 to set th	e RXUF interrupt flag.		
12	TXOF	0	W1	Set Transmit Buffer Overflow Interrupt Flag
	Write to 1 to set th	e TXOF interrupt flag.		
11	BUSHOLD	0	W1	Set Bus Held Interrupt Flag
	Write to 1 to set th	ne BUSHOLD interrupt flag	J .	
10	BUSERR	0	W1	Set Bus Error Interrupt Flag
	Write to 1 to set th	e BUSERR interrupt flag.		
9	ARBLOST	0	W1	Set Arbitration Lost Interrupt Flag
	Write to 1 to set th	e ARBLOST interrupt flag		
8	MSTOP	0	W1	Set MSTOP Interrupt Flag
	Write to 1 to set th	e MSTOP interrupt flag.		
7	NACK	0	W1	Set Not Acknowledge Received Interrupt Flag
	Write to 1 to set th	e NACK interrupt flag.		
6	ACK	0	W1	Set Acknowledge Received Interrupt Flag
	Write to 1 to set th	e ACK interrupt flag.		
5:4	Reserved	To ensure com	patibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
3	TXC	0	W1	Set Transfer Completed Interrupt Flag
	Write to 1 to set th	e TXC interrupt flag.		
2	ADDR	0	W1	Set Address Interrupt Flag
	Write to 1 to set th	e ADDR interrupt flag.		
1	RSTART	0	W1	Set Repeated START Interrupt Flag
	Write to 1 to set th	e RSTART interrupt flag.		
0	START	0	W1	Set START Interrupt Flag
	Write to 1 to set th	e START interrupt flag.		

14.5.13 I2Cn_IFC - Interrupt Flag Clear Register

Offset															Bi	t Po	ositi	on														
0x030	33	30	59	78	27	56	25	24	23	22	21	20	19	18	17	16	15	4	13	12	11	10	6	æ	7	9	2	4	က	2	-	0
Reset				•												0	0	0	0	0	0	0	0	0	0	0			0	0	0	0
Access																W	W	W	W1	N M	W	W	٧ ا	W W	W	N 1			W	ž	W W	×
Name																SSTOP	CLTO	ВІТО	RXUF	TXOF	BUSHOLD	BUSERR	ARBLOST	MSTOP	NACK	ACK			TXC	ADDR	RSTART	START

Bit	Name	Reset	Access	Description
31:17	Reserved	To ensure compa	atibility with fut	ure devices, always write bits to 0. More information in Section 2.1 (p. 3)
16	SSTOP	0	W1	Clear SSTOP Interrupt Flag

Bit	Name	Reset	Access	Description
				Description
	Write to 1 to clear the			
15	CLTO	0	W1	Clear Clock Low Interrupt Flag
	Write to 1 to clear the			
14	BITO	0	W1	Clear Bus Idle Timeout Interrupt Flag
	Write to 1 to clear the	BITO interrupt flag.		
13	RXUF	0	W1	Clear Receive Buffer Underflow Interrupt Flag
	Write to 1 to clear the	RXUF interrupt flag.		
12	TXOF	0	W1	Clear Transmit Buffer Overflow Interrupt Flag
	Write to 1 to clear the	TXOF interrupt flag.		
11	BUSHOLD	0	W1	Clear Bus Held Interrupt Flag
	Write to 1 to clear the	BUSHOLD interrupt fla	ag.	
10	BUSERR	0	W1	Clear Bus Error Interrupt Flag
	Write to 1 to clear the	BUSERR interrupt flag	j .	
9	ARBLOST	0	W1	Clear Arbitration Lost Interrupt Flag
	Write to 1 to clear the	ARBLOST interrupt fla	ag.	
8	MSTOP	0	W1	Clear MSTOP Interrupt Flag
	Write to 1 to clear the	MSTOP interrupt flag.		
7	NACK	0	W1	Clear Not Acknowledge Received Interrupt Flag
	Write to 1 to clear the	NACK interrupt flag.		
6	ACK	0	W1	Clear Acknowledge Received Interrupt Flag
	Write to 1 to clear the	ACK interrupt flag.		·
5:4	Reserved		patibilitv with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
3	TXC	0	W1	Clear Transfer Completed Interrupt Flag
· ·	Write to 1 to clear the	•	***	ordan mandrer compressed interrupt mag
2	ADDR	0	W1	Clear Address Interrupt Flag
_	Write to 1 to clear the	· ·	** 1	olos. Asserbs interrupt ring
1	RSTART	0	W1	Clear Penested START Interrupt Flor
I	_	•		Clear Repeated START Interrupt Flag
	Write to 1 to clear the			
0	START	0	W1	Clear START Interrupt Flag
	Write to 1 to clear the	START interrupt flag.		

14.5.14 I2Cn_IEN - Interrupt Enable Register

Offset	Bit	Posi	ion								·	·			
0x034	2 2 3 4 4 5 6 6 7 7 8 8 8 8 8 8 8 8 8 8 8 8 9 8 10	16	4	13	=	10	6	8	7	9 1	ر د	4 ო	, ~	-	0
Reset		0 0	0	0 0	0	0	0	0	0	0	0	o 0	0	0	0
Access		W W	RW	% %	RW	RW W	RW	R W	RW	W.	W S	<u> </u>	<u> </u>	R	RW W
Name		SSTOP	BITO	RXUF	BUSHOLD	BUSERR	ARBLOST	MSTOP	NACK	AC.	RXDATAV	TYC	ADDR	RSTART	START

Bit	Name	Reset	Access	Description
31:17	Reserved	To ensure co	ompatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
16	SSTOP	0	RW	SSTOP Interrupt Enable
	Enable interrupt on S	STOP.		

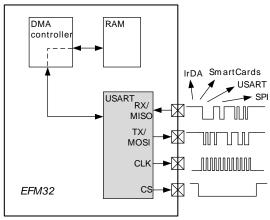
Bit	Name	Reset	Access	Description
5	CLTO	0	RW	Clock Low Interrupt Enable
	Enable interrupt on o	clock low timeout.		
4	BITO	0	RW	Bus Idle Timeout Interrupt Enable
	Enable interrupt on I	ous idle timeout.		
3	RXUF	0	RW	Receive Buffer Underflow Interrupt Enable
	Enable interrupt on i	receive buffer underflow	<i>I</i> .	
2	TXOF	0	RW	Transmit Buffer Overflow Interrupt Enable
	Enable interrupt on t	transmit buffer overflow		
1	BUSHOLD	0	RW	Bus Held Interrupt Enable
	Enable interrupt on I	bus-held.		
0	BUSERR	0	RW	Bus Error Interrupt Enable
	Enable interrupt on I	bus error.		
	ARBLOST	0	RW	Arbitration Lost Interrupt Enable
	Enable interrupt on I	oss of arbitration.		
	MSTOP	0	RW	MSTOP Interrupt Enable
	Enable interrupt on I	MSTOP.		
,	NACK	0	RW	Not Acknowledge Received Interrupt Enable
	Enable interrupt whe	en not-acknowledge is r	eceived.	
i	ACK	0	RW	Acknowledge Received Interrupt Enable
	Enable interrupt on a	acknowledge received.		
	RXDATAV	0	RW	Receive Data Valid Interrupt Enable
	Enable interrupt on i	receive buffer full.		
	TXBL	0	RW	Transmit Buffer level Interrupt Enable
	Enable interrupt on t	transmit buffer level.		
	TXC	0	RW	Transfer Completed Interrupt Enable
	Enable interrupt on t	transfer completed.		
	ADDR	0	RW	Address Interrupt Enable
	Enable interrupt on i	recognized address.		·
	RSTART	0	RW	Repeated START condition Interrupt Enable
	Enable interrupt on t	transmitted or received	repeated STAR	·
)	START	0	RW	START Condition Interrupt Enable
		transmitted or received		•

14.5.15 I2Cn_ROUTE - I/O Routing Register

Offset	Bit Position																															
0x038	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	1	10	ი	∞	7	9	2	4	က	7	-	0
Reset										0x0								0	0													
Access										M								RW	R W													
Name																							LOCATION								SCLPEN	SDAPEN

Bit	Name	Reset	Access	Description
31:11	Reserved	To ensure compa	atibility with fut	ure devices, always write bits to 0. More information in Section 2.1 (p. 3)

Downloaded from Elecules com



Bit	Name	Reset	Acces	s Description					
10:8	LOCATION	0x0	RW	I/O Location					
	Decides the loca	ation of the I ² C I/O pins.							
	Value	Mode	Ĭ	Description					
	0	LOC0		Location 0					
	1	LOC1		Location 1					
	2	LOC2		Location 2					
	3	LOC3		Location 3					
7:2	Reserved	To ensure con	mpatibility wit	h future devices, always write bits to 0. More information in Section 2.1 (p. 3)					
1	SCLPEN	0	RW	SCL Pin Enable					
	When set, the SCL pin of the I ² C is enabled.								
0	SDAPEN	0	RW	SDA Pin Enable					
	When set, the S	SDA pin of the I ² C is enable	ed.						

15 USART - Universal Synchronous Asynchronous Receiver/Transmitter

Quick Facts

What?

The USART handles high-speed UART, SPIbus, SmartCards, and IrDA communication.

Why?

Serial communication is frequently used in embedded systems and the USART allows efficient communication with a wide range of external devices.

How?

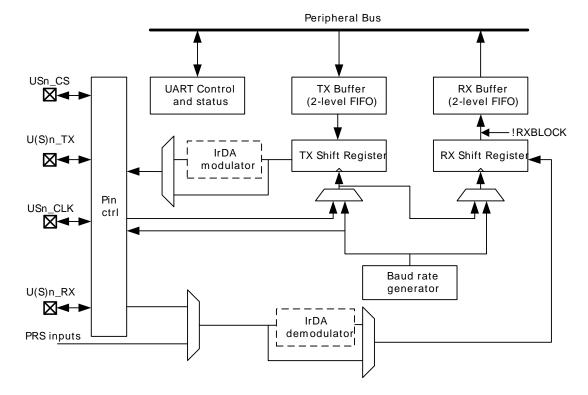
The USART has a wide selection of operating modes, frame formats and baud rates. The multi-processor mode allows the USART to remain idle when not addressed. Triple buffering and DMA support makes high datarates possible with minimal CPU intervention and it is possible to transmit and receive large frames while the MCU remains in EM1.

15.1 Introduction

The Universal Synchronous Asynchronous serial Receiver and Transmitter (USART) is a very flexible serial I/O module. It supports full duplex asynchronous UART communication as well as RS-485, SPI, MicroWire and 3-wire. It can also interface with ISO7816 SmartCards, and IrDA devices.

15.2 Features

- · Asynchronous and synchronous (SPI) communication
- Full duplex and half duplex
- Separate TX/RX enable
- Separate receive / transmit 2-level buffers, with additional separate shift registers
- Programmable baud rate, generated as an fractional division from the peripheral clock (HFPERCLK_{USARTn})
- Max bit-rate
 - SPI master mode, peripheral clock rate/2
 - SPI slave mode, peripheral clock rate/8
 - UART mode, peripheral clock rate/16, 8, 6, or 4
- Asynchronous mode supports
 - · Majority vote baud-reception
 - · False start-bit detection
 - Break generation/detection
 - · Multi-processor mode
- Synchronous mode supports
 - All 4 SPI clock polarity/phase configurations
 - · Master and slave mode
- Data can be transmitted LSB first or MSB first



- Configurable number of data bits, 4-16 (plus the parity bit, if enabled)
 - HW parity bit generation and check
- Configurable number of stop bits in asynchronous mode: 0.5, 1, 1.5, 2
- · HW collision detection
- Multi-processor mode
- IrDA modulator on USART0
- SmartCard (ISO7816) mode
- I2S mode
- Separate interrupt vectors for receive and transmit interrupts
- · Loopback mode
 - · Half duplex communication
 - · Communication debugging
- PRS RX input

15.3 Functional Description

An overview of the USART module is shown in Figure 15.1 (p. 174).

Figure 15.1. USART Overview

15.3.1 Modes of Operation

The USART operates in either asynchronous or synchronous mode.

In synchronous mode, a separate clock signal is transmitted with the data. This clock signal is generated by the bus master, and both the master and slave sample and transmit data according to this clock. Both master and slave modes are supported by the USART. The synchronous communication mode is compatible with the Serial Peripheral Interface Bus (SPI) standard.

In asynchronous mode, no separate clock signal is transmitted with the data on the bus. The USART receiver thus has to determine where to sample the data on the bus from the actual data. To make this

possible, additional synchronization bits are added to the data when operating in asynchronous mode, resulting in a slight overhead.

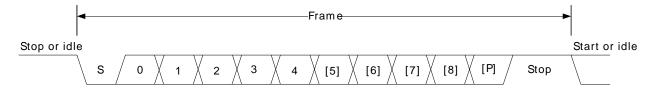
Asynchronous or synchronous mode can be selected by configuring SYNC in USARTn_CTRL. The options are listed with supported protocols in Table 15.1 (p. 175) . Full duplex and half duplex communication is supported in both asynchronous and synchronous mode.

Table 15.1. USART Asynchronous vs. Synchronous Mode

SYNC	Communication Mode	Supported Protocols					
0	Asynchronous	RS-232, RS-485 (w/external driver), IrDA, ISO 7816					
1	Synchronous	SPI, MicroWire, 3-wire					

Table 15.2 (p. 175) explains the functionality of the different USART pins when the USART operates in different modes. Pin functionality enclosed in square brackets is optional, and depends on additional configuration parameters. LOOPBK and MASTER are discussed in Section 15.3.2.5 (p. 183) and Section 15.3.3.3 (p. 190) respectively.

Table 15.2. USART Pin Usage


			Pin functionality								
SYNC	LOOPBK	MASTER	U(S)n_TX (MOSI)	U(S)n_RX (MISO)	USn_CLK	USn_CS					
0	0	х	Data out	Data in	-	[Driver enable]					
1	1	х	Data out/in	-	-	[Driver enable]					
1	0	0	Data in	Data out	Clock in	Slave select					
1	0	1	Data out	Data in	Clock out	[Auto slave select]					
1	1	0	Data out/in	-	Clock in	Slave select					
1	1	1	Data out/in	-	Clock out	[Auto slave select]					

15.3.2 Asynchronous Operation

15.3.2.1 Frame Format

The frame format used in asynchronous mode consists of a set of data bits in addition to bits for synchronization and optionally a parity bit for error checking. A frame starts with one start-bit (S), where the line is driven low for one bit-period. This signals the start of a frame, and is used for synchronization. Following the start bit are 4 to 16 data bits and an optional parity bit. Finally, a number of stop-bits, where the line is driven high, end the frame. An example frame is shown in Figure 15.2 (p. 175).

Figure 15.2. USART Asynchronous Frame Format

The number of data bits in a frame is set by DATABITS in USARTn_FRAME, see Table 15.3 (p. 176), and the number of stop-bits is set by STOPBITS in USARTn_FRAME, see Table 15.4 (p. 176). Whether or not a parity bit should be included, and whether it should be even or odd is defined by PARITY, also in USARTn_FRAME. For communication to be possible, all parties of an asynchronous transfer must agree on the frame format being used.

Table 15.3. USART Data Bits

DATA BITS [3:0]	Number of Data bits
0001	4
0010	5
0011	6
0100	7
0101	8 (Default)
0110	9
0111	10
1000	11
1001	12
1010	13
1011	14
1100	15
1101	16

Table 15.4. USART Stop Bits

STOP BITS [1:0]	Number of Stop bits
00	0.5
01	1 (Default)
10	1.5
11	2

The order in which the data bits are transmitted and received is defined by MSBF in USARTn_CTRL. When MSBF is cleared, data in a frame is sent and received with the least significant bit first. When it is set, the most significant bit comes first.

The frame format used by the transmitter can be inverted by setting TXINV in USARTn_CTRL, and the format expected by the receiver can be inverted by setting RXINV in USARTn_CTRL. These bits affect the entire frame, not only the data bits. An inverted frame has a low idle state, a high start-bit, inverted data and parity bits, and low stop-bits.

15.3.2.1.1 Parity bit Calculation and Handling

When parity bits are enabled, hardware automatically calculates and inserts any parity bits into outgoing frames, and verifies the received parity bits in incoming frames. This is true for both asynchronous and synchronous modes, even though it is mostly used in asynchronous communication. The possible parity modes are defined in Table 15.5 (p. 177). When even parity is chosen, a parity bit is inserted to make the number of high bits (data + parity) even. If odd parity is chosen, the parity bit makes the total number of high bits odd.

Table 15.5. USART Parity Bits

STOP BITS [1:0]	Description
00	No parity bit (Default)
01	Reserved
10	Even parity
11	Odd parity

15.3.2.2 Clock Generation

The USART clock defines the transmission and reception data rate. When operating in asynchronous mode, the baud rate (bit-rate) is given by Equation 15.1 (p. 177)

where f_{HFPERCLK} is the peripheral clock (HFPERCLK_{USARTn}) frequency and oversample is the oversampling rate as defined by OVS in USARTn_CTRL, see Table 15.6 (p. 177).

Table 15.6. USART Oversampling

OVS [1:0]	oversample
00	16
01	8
10	6
11	4

The USART has a fractional clock divider to allow the USART clock to be controlled more accurately than what is possible with a standard integral divider.

The clock divider used in the USART is a 15-bit value, with a 13-bit integral part and a 2-bit fractional part. The fractional part is configured in the two LSBs of DIV in USART_CLKDIV. The lowest achievable baud rate at 32 MHz is about 244 bauds/sec.

Fractional clock division is implemented by distributing the selected fraction over four baud periods. The fractional part of the divider tells how many of these periods should be extended by one peripheral clock cycle.

Given a desired baud rate brdesired, the clock divider USARTn_CLKDIV can be calculated by using Equation 15.2 (p. 177):

Table 15.7 (p. 178) shows a set of desired baud rates and how accurately the USART is able to generate these baud rates when running at a 4 MHz peripheral clock, using 16x or 8x oversampling.

Table 15.7. USART Baud Rates @ 4MHz Peripheral Clock

Desired	USART	n_OVS =00		USARTn_OVS =01				
baud rate [baud/s]	USARTn_CLKDIV/256	Actual baud rate [baud/s]	Error %	USARTn_CLKDIV/256	Actual baud rate [baud/s]	Error %		
600	415,75	599,88	-0,02	832,25	600,06	0,01		
1200	207,25	1200,48	0,04	415,75	1199,76	-0,02		
2400	103,25	2398,082	-0,08	207,25	2400,96	0,04		
4800	51	4807,692	0,16	103,25	4796,163	-0,08		
9600	25	9615,385	0,16	51	9615,385	0,16		
14400	16,25	14492,75	0,64	33,75	14388,49	-0,08		
19200	12	19230,77	0,16	25	19230,77	0,16		
28800	7,75	28571,43	-0,79	16,25	28985,51	0,64		
38400	5,5	38461,54	0,16	12	38461,54	0,16		
57600	3,25	58823,53	2,12	7,75	57142,86	-0,79		
76800	2,25	76923,08	0,16	5,5	76923,08	0,16		
115200	1,25	111111,1	-3,55	3,25	117647,1	2,12		
230400	0	250000	8,51	1,25	222222,2	-3,55		

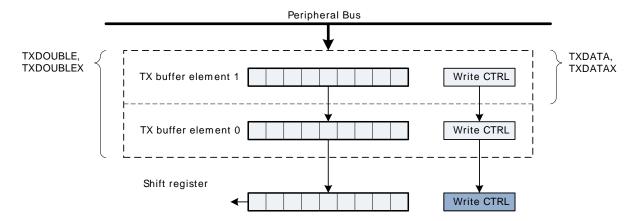
15.3.2.3 Data Transmission

Asynchronous data transmission is initiated by writing data to the transmit buffer using one of the methods described in Section 15.3.2.3.1 (p. 178). When the transmission shift register is empty and ready for new data, a frame from the transmit buffer is loaded into the shift register, and if the transmitter is enabled, transmission begins. When the frame has been transmitted, a new frame is loaded into the shift register if available, and transmission continues. If the transmit buffer is empty, the transmitter goes to an idle state, waiting for a new frame to become available.

Transmission is enabled through the command register USARTn_CMD by setting TXEN, and disabled by setting TXDIS in the same command register. When the transmitter is disabled using TXDIS, any ongoing transmission is aborted, and any frame currently being transmitted is discarded. When disabled, the TX output goes to an idle state, which by default is a high value. Whether or not the transmitter is enabled at a given time can be read from TXENS in USARTn_STATUS.

When the USART transmitter is enabled and there is no data in the transmit shift register or transmit buffer, the TXC flag in USARTn_STATUS and the TXC interrupt flag in USARTn_IF are set, signaling that the transmitter is idle. The TXC status flag is cleared when a new frame becomes available for transmission, but the TXC interrupt flag must be cleared by software.

15.3.2.3.1 Transmit Buffer Operation


The transmit-buffer is a 2-level FIFO buffer. A frame can be loaded into the buffer by writing to USARTn_TXDATA, USARTn_TXDATAX, USARTn_TXDOUBLE or USARTn_TXDOUBLEX. Using USARTn_TXDATA allows 8 bits to be written to the buffer, while using USARTn_TXDOUBLE will write 2 frames of 8 bits to the buffer. If 9-bit frames are used, the 9th bit of the frames will in these cases be set to the value of BIT8DV in USARTn_CTRL.

To set the 9th bit directly and/or use transmission control, USARTn_TXDATAX and USARTn_TXDOUBLEX must be used. USARTn_TXDATAX allows 9 data bits to be written, as well as a set of control bits regarding the transmission of the written frame. Every frame in the buffer is stored with 9 data bits and additional transmission control bits. USARTn_TXDOUBLEX allows two

frames, complete with control bits to be written at once. When data is written to the transmit buffer using USARTn_TXDATAX and USARTn_TXDOUBLEX, the 9th bit(s) written to these registers override the value in BIT8DV in USARTn_CTRL, and alone define the 9th bits that are transmitted if 9-bit frames are used. Figure 15.3 (p. 179) shows the basics of the transmit buffer when DATABITS in USARTn_FRAME is configured to less than 10 bits.

Figure 15.3. USART Transmit Buffer Operation

When writing more frames to the transmit buffer than there is free space for, the TXOF interrupt flag in USARTn_IF will be set, indicating the overflow. The data already in the transmit buffer is preserved in this case, and no data is written.

In addition to the interrupt flag TXC in USARTn_IF and status flag TXC in USARTn_STATUS which are set when the transmitter is idle, TXBL in USARTn_STATUS and the TXBL interrupt flag in USARTn_IF are used to indicate the level of the transmit buffer. TXBIL in USARTn_CTRL controls the level at which these bits are set. If TXBIL is cleared, they are set whenever the transmit buffer becomes empty, and if TXBIL is set, they are set whenever the transmit buffer goes from full to half-full or empty. Both the TXBL status flag and the TXBL interrupt flag are cleared automatically when their condition becomes false

The transmit buffer, including the transmit shift register can be cleared by setting CLEARTX in USARTn_CMD. This will prevent the USART from transmitting the data in the buffer and shift register, and will make them available for new data. Any frame currently being transmitted will not be aborted. Transmission of this frame will be completed.

15.3.2.3.2 Frame Transmission Control

The transmission control bits, which can be written using USARTn_TXDATAX and USARTn_TXDOUBLEX, affect the transmission of the written frame. The following options are available:

- Generate break: By setting TXBREAK, the output will be held low during the stop-bit period to generate
 a framing error. A receiver that supports break detection detects this state, allowing it to be used e.g.
 for framing of larger data packets. The line is driven high before the next frame is transmitted so the
 next start condition can be identified correctly by the recipient. Continuous breaks lasting longer than
 a USART frame are thus not supported by the USART. GPIO can be used for this.
- Disable transmitter after transmission: If TXDISAT is set, the transmitter is disabled after the frame has been fully transmitted.
- Enable receiver after transmission: If RXENAT is set, the receiver is enabled after the frame has been fully transmitted. It is enabled in time to detect a start-bit directly after the last stop-bit has been transmitted.
- Unblock receiver after transmission: If UBRXAT is set, the receiver is unblocked and RXBLOCK is cleared after the frame has been fully transmitted.
- Tristate transmitter after transmission: If TXTRIAT is set, TXTRI is set after the frame has been
 fully transmitted, tristating the transmitter output. Tristating of the output can also be performed
 automatically by setting AUTOTRI. If AUTOTRI is set TXTRI is always read as 0.

Note

When in SmartCard mode with repeat enabled, none of the actions, except generate break, will be performed until the frame is transmitted without failure. Generation of a break in SmartCard mode with repeat enabled will cause the USART to detect a NACK on every frame

15.3.2.4 Data Reception

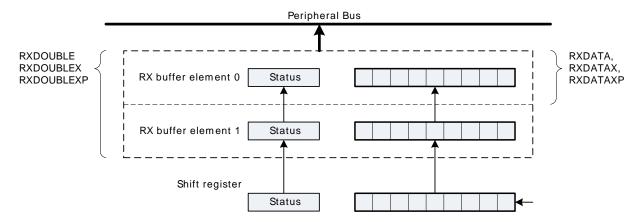
Data reception is enabled by setting RXEN in USARTn_CMD. When the receiver is enabled, it actively samples the input looking for a transition from high to low indicating the start baud of a new frame. When a start baud is found, reception of the new frame begins if the receive shift register is empty and ready for new data. When the frame has been received, it is pushed into the receive buffer, making the shift register ready for another frame of data, and the receiver starts looking for another start baud. If the receive buffer is full, the received frame remains in the shift register until more space in the receive buffer is available. If an incoming frame is detected while both the receive buffer and the receive shift register are full, the data in the shift register is overwritten, and the RXOF interrupt flag in USARTn_IF is set to indicate the buffer overflow.

The receiver can be disabled by setting the command bit RXDIS in USARTn_CMD. Any frame currently being received when the receiver is disabled is discarded. Whether or not the receiver is enabled at a given time can be read out from RXENS in USARTn_STATUS.

15.3.2.4.1 Receive Buffer Operation

When data becomes available in the receive buffer, the RXDATAV flag in USARTn_STATUS, and the RXDATAV interrupt flag in USARTn_IF are set, and when the buffer becomes full, RXFULL in USARTn_STATUS and the RXFULL interrupt flag in USARTn_IF are set. The status flags RXDATAV and RXFULL are automatically cleared by hardware when their condition is no longer true. This also goes for the RXDATAV interrupt flag, but the RXFULL interrupt flag must be cleared by software. When the RXFULL flag is set, notifying that the buffer is full, space is still available in the receive shift register for one more frame.

Data can be read from the receive buffer in a number of ways. USARTn_RXDATA gives access to the 8 least significant bits of the received frame, and USARTn_RXDOUBLE makes it possible to read the 8 least significant bits of two frames at once, pulling two frames from the buffer. To get access to the 9th, most significant bit, USARTn_RXDATAX must be used. This register also contains status information regarding the frame. USARTn_RXDOUBLEX can be used to get two frames complete with the 9th bits and status bits.


When a frame is read from the receive buffer using USARTn_RXDATA or USARTn_RXDATAX, the frame is pulled out of the buffer, making room for a new frame. USARTn_RXDOUBLE and USARTn_RXDOUBLEX pull two frames out of the buffer. If an attempt is done to read more frames from the buffer than what is available, the RXUF interrupt flag in USARTn_IF is set to signal the underflow, and the data read from the buffer is undefined.

Frames can be read from the receive buffer without removing the data by using USARTn_RXDATAXP and USARTn_RXDOUBLEXP. USARTn_RXDATAXP gives access the first frame in the buffer with status bits, while USARTn_RXDOUBLEXP gives access to both frames with status bits. The data read from these registers when the receive buffer is empty is undefined. If the receive buffer contains one valid frame, the first frame in USARTn_RXDOUBLEXP will be valid. No underflow interrupt is generated by a read using these registers, i.e. RXUF in USARTn_IF is never set as a result of reading from USARTn_RXDATAXP or USARTn_RXDOUBLEXP.

The basic operation of the receive buffer when DATABITS in USARTn_FRAME is configured to less than 10 bits is shown in Figure 15.4 (p. 181).

Figure 15.4. USART Receive Buffer Operation

The receive buffer, including the receive shift register can be cleared by setting CLEARRX in USARTn_CMD. Any frame currently being received will not be discarded.

15.3.2.4.2 Blocking Incoming Data

When using hardware frame recognition, as detailed in Section 15.3.2.8 (p. 186) and Section 15.3.2.9 (p. 187), it is necessary to be able to let the receiver sample incoming frames without passing the frames to software by loading them into the receive buffer. This is accomplished by blocking incoming data.

Incoming data is blocked as long as RXBLOCK in USARTn_STATUS is set. When blocked, frames received by the receiver will not be loaded into the receive buffer, and software is not notified by the RXDATAV flag in USARTn_STATUS or the RXDATAV interrupt flag in USARTn_IF at their arrival. For data to be loaded into the receive buffer, RXBLOCK must be cleared in the instant a frame is fully received by the receiver. RXBLOCK is set by setting RXBLOCKEN in USARTn_CMD and disabled by setting RXBLOCKDIS also in USARTn_CMD. There is one exception where data is loaded into the receive buffer even when RXBLOCK is set. This is when an address frame is received when operating in multi-processor mode. See Section 15.3.2.8 (p. 186) for more information.

Frames received containing framing or parity errors will not result in the FERR and PERR interrupt flags in USARTn_IF being set while RXBLOCK in USARTn_STATUS is set. Hardware recognition is not applied to these erroneous frames, and they are silently discarded.

Note

If a frame is received while RXBLOCK in USARTn_STATUS is cleared, but stays in the receive shift register because the receive buffer is full, the received frame will be loaded into the receive buffer when space becomes available even if RXBLOCK is set at that time.

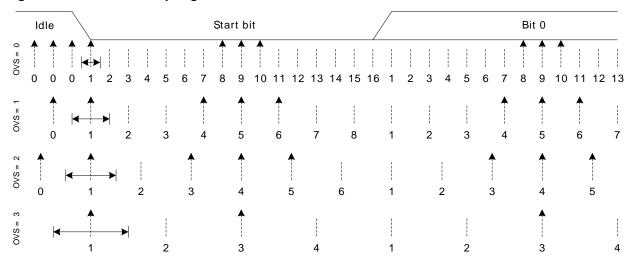
The overflow interrupt flag RXOF in USARTn_IF will be set if a frame in the receive shift register, waiting to be loaded into the receive buffer is overwritten by an incoming frame even though RXBLOCK in USARTn_STATUS is set.

15.3.2.4.3 Clock Recovery and Filtering

The receiver samples the incoming signal at a rate 16, 8, 6 or 4 times higher than the given baud rate, depending on the oversampling mode given by OVS in USARTn_CTRL. Lower oversampling rates make higher baud rates possible, but give less room for errors.

When a high-to-low transition is registered on the input while the receiver is idle, this is recognized as a start-bit, and the baud rate generator is synchronized with the incoming frame.

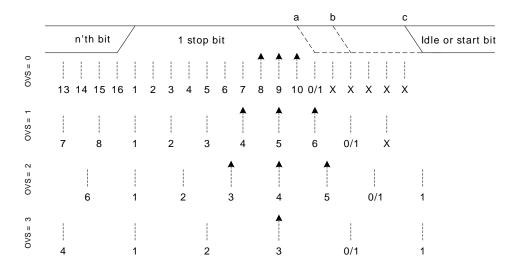
For oversampling modes 16, 8 and 6, every bit in the incoming frame is sampled three times to gain a level of noise immunity. These samples are aimed at the middle of the bit-periods, as visualized in Figure 15.5 (p. 182). With OVS=0 in USARTn_CTRL, the start and data bits are thus sampled at


locations 8, 9 and 10 in the figure, locations 4, 5 and 6 for OVS=1 and locations 3, 4, and 5 for OVS=2. The value of a sampled bit is determined by majority vote. If two or more of the three bit-samples are high, the resulting bit value is high. If the majority is low, the resulting bit value is low.

Majority vote is used for all oversampling modes except 4x oversampling. In this mode, a single sample is taken at position 3 as shown in Figure 15.5 (p. 182).

Majority vote can be disabled by setting MVDIS in USARTn_CTRL.

If the value of the start bit is found to be high, the reception of the frame is aborted, filtering out false start bits possibly generated by noise on the input.


Figure 15.5. USART Sampling of Start and Data Bits

If the baud rate of the transmitter and receiver differ, the location each bit is sampled will be shifted towards the previous or next bit in the frame. This is acceptable for small errors in the baud rate, but for larger errors, it will result in transmission errors.

When the number of stop bits is 1 or more, stop bits are sampled like the start and data bits as seen in Figure 15.6 (p. 182). When a stop bit has been detected by sampling at positions 8, 9 and 10 for normal mode, or 4, 5 and 6 for smart mode, the USART is ready for a new start bit. As seen in Figure 15.6 (p. 182), a stop-bit of length 1 normally ends at c, but the next frame will be received correctly as long as the start-bit comes after position a for OVS=0 and OVS=3, and b for OVS=1 and OVS=2.

Figure 15.6. USART Sampling of Stop Bits when Number of Stop Bits are 1 or More

When working with stop bit lengths of half a baud period, the above sampling scheme no longer suffices. In this case, the stop-bit is not sampled, and no framing error is generated in the receiver if the stop-bit is not generated. The line must still be driven high before the next start bit however for the USART to successfully identify the start bit.

15.3.2.4.4 Parity Error

When parity bits are enabled, a parity check is automatically performed on incoming frames. When a parity error is detected in an incoming frame, the data parity error bit PERR in the frame is set, as well as the interrupt flag PERR in USARTn_IF. Frames with parity errors are loaded into the receive buffer like regular frames.

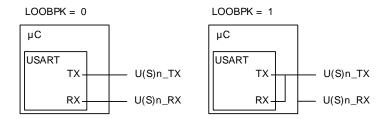
PERR can be accessed by reading the frame from the receive buffer using the USARTn_RXDATAX, USARTn_RXDATAXP, USARTn_RXDOUBLEX or USARTn_RXDOUBLEXP registers.

If ERRSTX in USARTn_CTRL is set, the transmitter is disabled on received parity and framing errors. If ERRSRX in USARTn_CTRL is set, the receiver is disabled on parity and framing errors.

15.3.2.4.5 Framing Error and Break Detection

A framing error is the result of an asynchronous frame where the stop bit was sampled to a value of 0. This can be the result of noise and baud rate errors, but can also be the result of a break generated by the transmitter on purpose.

When a framing error is detected in an incoming frame, the framing error bit FERR in the frame is set. The interrupt flag FERR in USARTn_IF is also set. Frames with framing errors are loaded into the receive buffer like regular frames.


FERR can be accessed by reading the frame from the receive buffer using the USARTn_RXDATAX, USARTn_RXDATAXP, USARTn_RXDOUBLEX or USARTn_RXDOUBLEXP registers.

If ERRSTX in USARTn_CTRL is set, the transmitter is disabled on parity and framing errors. If ERRSRX in USARTn_CTRL is set, the receiver is disabled on parity and framing errors.

15.3.2.5 Local Loopback

The USART receiver samples U(S)n_RX by default, and the transmitter drives U(S)n_TX by default. This is not the only option however. When LOOPBK in USARTn_CTRL is set, the receiver is connected to the U(S)n_TX pin as shown in Figure 15.7 (p. 183) . This is useful for debugging, as the USART can receive the data it transmits, but it is also used to allow the USART to read and write to the same pin, which is required for some half duplex communication modes. In this mode, the U(S)n_TX pin must be enabled as an output in the GPIO.

Figure 15.7. USART Local Loopback

15.3.2.6 Asynchronous Half Duplex Communication

When doing full duplex communication, two data links are provided, making it possible for data to be sent and received at the same time. In half duplex mode, data is only sent in one direction at a time. There are several possible half duplex setups, as described in the following sections.

15.3.2.6.1 Single Data-link

In this setup, the USART both receives and transmits data on the same pin. This is enabled by setting LOOPBK in USARTn_CTRL, which connects the receiver to the transmitter output. Because they are both connected to the same line, it is important that the USART transmitter does not drive the line when receiving data, as this would corrupt the data on the line.

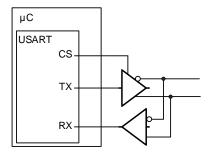
When communicating over a single data-link, the transmitter must thus be tristated whenever not transmitting data. This is done by setting the command bit TXTRIEN in USARTn_CMD, which tristates the transmitter. Before transmitting data, the command bit TXTRIDIS, also in USARTn_CMD, must be set to enable transmitter output again. Whether or not the output is tristated at a given time can be read from TXTRI in USARTn_STATUS. If TXTRI is set when transmitting data, the data is shifted out of the shift register, but is not put out on U(S)n_TX.

When operating a half duplex data bus, it is common to have a bus master, which first transmits a request to one of the bus slaves, then receives a reply. In this case, the frame transmission control bits, which can be set by writing to USARTn_TXDATAX, can be used to make the USART automatically disable transmission, tristate the transmitter and enable reception when the request has been transmitted, making it ready to receive a response from the slave.

Tristating the transmitter can also be performed automatically by the USART by using AUTOTRI in USARTn_CTRL. When AUTOTRI is set, the USART automatically tristates U(S)n_TX whenever the transmitter is idle, and enables transmitter output when the transmitter goes active. If AUTOTRI is set TXTRI is always read as 0.

Note

Another way to tristate the transmitter is to enable wired-and or wired-or mode in GPIO. For wired-and mode, outputting a 1 will be the same as tristating the output, and for wired-or mode, outputting a 0 will be the same as tristating the output. This can only be done on buses with a pull-up or pull-down resistor respectively.


15.3.2.6.2 Single Data-link with External Driver

Some communication schemes, such as RS-485 rely on an external driver. Here, the driver has an extra input which enables it, and instead of tristating the transmitter when receiving data, the external driver must be disabled.

This can be done manually by assigning a GPIO to turn the driver on or off, or it can be handled automatically by the USART. If AUTOCS in USARTn_CTRL is set, the USn_CS output is automatically activated one baud period before the transmitter starts transmitting data, and deactivated when the last bit has been transmitted and there is no more data in the transmit buffer to transmit, or the transmitter becomes disabled. This feature can be used to turn the external driver on when transmitting data, and turn it off when the data has been transmitted.

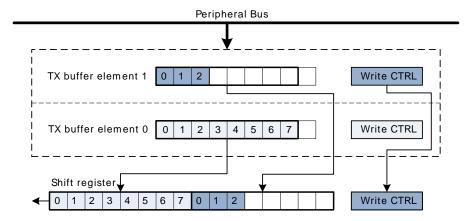
Figure 15.8 (p. 184) shows an example configuration where USn_CS is used to automatically enable and disable an external driver.

Figure 15.8. USART Half Duplex Communication with External Driver

The USn_CS output is active low by default, but its polarity can be changed with CSINV in USARTn_CTRL. AUTOCS works regardless of which mode the USART is in, so this functionality can also be used for automatic chip/slave select when in synchronous mode (e.g. SPI).

15.3.2.6.3 Two Data-links

Some limited devices only support half duplex communication even though two data links are available. In this case software is responsible for making sure data is not transmitted when incoming data is expected.


15.3.2.7 Large Frames

As each frame in the transmit and receive buffers holds a maximum of 9 bits, both the elements in the buffers are combined when working with USART-frames of 10 or more data bits.

To transmit such a frame, at least two elements must be available in the transmit buffer. If only one element is available, the USART will wait for the second element before transmitting the combined frame. Both the elements making up the frame are consumed when transmitting such a frame.

When using large frames, the 9th bits in the buffers are unused. For an 11 bit frame, the 8 least significant bits are thus taken from the first element in the buffer, and the 3 remaining bits are taken from the second element as shown in Figure 15.9 (p. 185). The first element in the transmit buffer, i.e. element 0 in Figure 15.9 (p. 185) is the first element written to the FIFO, or the least significant byte when writing two bytes at a time using USARTn_TXDOUBLE.

Figure 15.9. USART Transmission of Large Frames

As shown in Figure 15.9 (p. 185), frame transmission control bits are taken from the second element in FIFO.

The two buffer elements can be written at the same time using the USARTn_TXDOUBLE or USARTn_TXDOUBLEX register. The TXDATAX0 bitfield then refers to buffer element 0, and TXDATAX1 refers to buffer element 1.

Figure 15.10. USART Transmission of Large Frames, MSBF

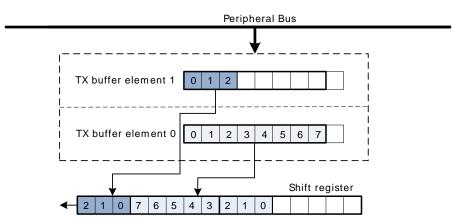
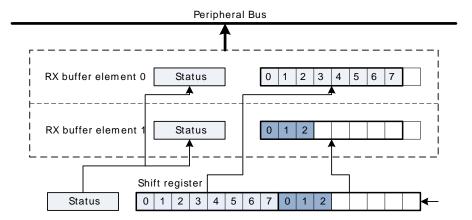



Figure 15.10 (p. 186) illustrates the order of the transmitted bits when an 11 bit frame is transmitted with MSBF set. If MSBF is set and the frame is smaller than 10 bits, only the contents of transmit buffer 0 will be transmitted.

When receiving a large frame, BYTESWAP in USARTn_CTRL determines the order the way the large frame is split into the two buffer elements. If BYTESWAP is cleared, the least significant 8 bits of the received frame are loaded into the first element of the receive buffer, and the remaining bits are loaded into the second element, as shown in Figure 15.11 (p. 186). The first byte read from the buffer thus contains the 8 least significant bits. Set BYTESWAP to reverse the order.

The status bits are loaded into both elements of the receive buffer. The frame is not moved from the receive shift register before there are two free spaces in the receive buffer.

Figure 15.11. USART Reception of Large Frames

The two buffer elements can be read at the same time using the USARTn_RXDOUBLE or USARTn_RXDOUBLEX register. RXDATA0 then refers to buffer element 0 and RXDATA1 refers to buffer element 1.

Large frames can be used in both asynchronous and synchronous modes.

15.3.2.8 Multi-Processor Mode

To simplify communication between multiple processors, the USART supports a special multi-processor mode. In this mode the 9th data bit in each frame is used to indicate whether the content of the remaining 8 bits is data or an address.

When multi-processor mode is enabled, an incoming 9-bit frame with the 9th bit equal to the value of MPAB in USARTn_CTRL is identified as an address frame. When an address frame is detected, the

Downloaded from H 2010-12-21 - d0034_Rev0.90 186 www.energymicro.com

MPAF interrupt flag in USARTn_IF is set, and the address frame is loaded into the receive register. This happens regardless of the value of RXBLOCK in USARTn_STATUS.

Multi-processor mode is enabled by setting MPM in USARTn_CTRL, and the value of the 9th bit in address frames can be set in MPAB. Note that the receiver must be enabled for address frames to be detected. The receiver can be blocked however, preventing data from being loaded into the receive buffer while looking for address frames.

Example 15.1 (p. 187) explains basic usage of the multi-processor mode:

Example 15.1. USART Multi-processor Mode Example

- 1. All slaves enable multi-processor mode and, enable and block the receiver. They will now not receive data unless it is an address frame. MPAB in USARTn CTRL is set to identify frames with the 9th bit high as address frames.
- 2. The master sends a frame containing the address of a slave and with the 9th bit set
- 3. All slaves receive the address frame and get an interrupt. They can read the address from the receive buffer. The selected slave unblocks the receiver to start receiving data from the master.
- 4. The master sends data with the 9th bit cleared
- 5. Only the slave with RX enabled receives the data. When transmission is complete, the slave blocks the receiver and waits for a new address frame.

When a slave has received an address frame and wants to receive the following data, it must make sure the receiver is unblocked before the next frame has been completely received in order to prevent data loss.

BIT8DV in USARTn_CTRL can be used to specify the value of the 9th bit without writing to the transmit buffer with USARTn_TXDATAX or USARTn_TXDOUBLEX, giving higher efficiency in multi-processor mode, as the 9th bit is only set when writing address frames, and 8-bit writes to the USART can be used when writing the data frames.

15.3.2.9 Collision Detection

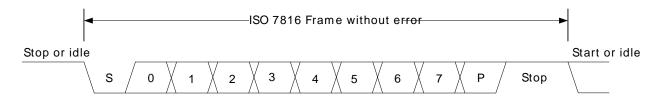
The USART supports a basic form of collision detection. When the receiver is connected to the output of the transmitter, either by using the LOOPBK bit in USARTn_CTRL or through an external connection, this feature can be used to detect whether data transmitted on the bus by the USART did get corrupted by a simultaneous transmission by another device on the bus.

For collision detection to be enabled, CCEN in USARTn_CTRL must be set, and the receiver enabled. The data sampled by the receiver is then continuously compared with the data output by the transmitter. If they differ, the CCF interrupt flag in USARTn_IF is set. The collision check includes all bits of the transmitted frames. The CCF interrupt flag is set once for each bit sampled by the receiver that differs from the bit output by the transmitter. When the transmitter output is disabled, i.e. the transmitter is tristated, collisions are not registered.

15.3.2.10 SmartCard Mode

In SmartCard mode, the USART supports the ISO 7816 I/O line T0 mode. With exception of the stopbits (quard time), the 7816 data frame is equal to the regular asynchronous frame. In this mode, the receiver pulls the line low for one baud, half a baud into the guard time to indicate a parity error. This NAK can for instance be used by the transmitter to re-transmit the frame. SmartCard mode is a half duplex asynchronous mode, so the transmitter must be tristated whenever not transmitting data.

To enable SmartCard mode, set SCMODE in USARTn_CTRL, set the number of databits in a frame to and configure the number of stopbits to 1.5 by writing to STOPBITS in USARTn_FRAME.


The SmartCard mode relies on half duplex communication on a single line, so for it to work, both the receiver and transmitter must work on the same line. This can be achieved by setting LOOPBK in

USARTn_CTRL or through an external connection. The TX output should be configured as open-drain in the GPIO module.

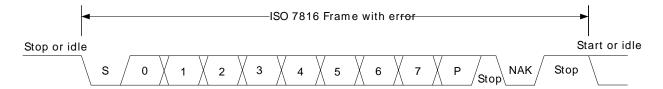
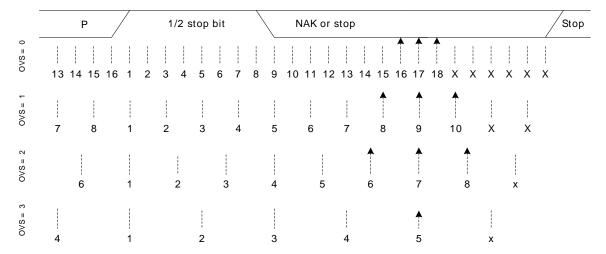

When no parity error is identified by the receiver, the data frame is as shown in Figure 15.12 (p. 188) . The frame consists of 8 data bits, a parity bit, and 2 stop bits. The transmitter does not drive the output line during the guard time.

Figure 15.12. USART ISO 7816 Data Frame Without Error

If a parity error is detected by the receiver, it pulls the line I/O line low after half a stop bit, see Figure 15.13 (p. 188). It holds the line low for one bit-period before it releases the line. In this case, the guard time is extended by one bit period before a new transmission can start, resulting in a total of 3 stop bits.

Figure 15.13. USART ISO 7816 Data Frame With Error

On a parity error, the NAK is generated by hardware. The NAK generated by the receiver is sampled as the stop-bit of the frame. Because of this, parity errors when in SmartCard mode are reported with both a parity error and a framing error.


When transmitting a T0 frame, the USART receiver on the transmitting side samples position 16, 17 and 18 in the stop-bit to detect the error signal when in 16x oversampling mode as shown in Figure 15.14 (p. 189). Sampling at this location places the stop-bit sample in the middle of the bit-period used for the error signal (NAK).

If a NAK is transmitted by the receiver, it will thus appear as a framing error at the transmitter, and the FERR interrupt flag in USARTn_IF will be set. If SCRETRANS USARTn_CTRL is set, the transmitter will automatically retransmit a NACK'ed frame. The transmitter will retransmit the frame until it is ACK'ed by the receiver. This only works when the number of databits in a frame is configured to 8.

Set SKIPPERRF in USARTn_CTRL to make the receiver discard frames with parity errors. The PERR interrupt flag in USARTn_IF is set when a frame is discarded because of a parity error.

Figure 15.14. USART SmartCard Stop Bit Sampling

For communication with a SmartCard, a clock signal needs to be generated for the card. This clock output can be generated using one of the timers. See the ISO 7816 specification for more info on this clock signal.

SmartCard T1 mode is also supported. The T1 frame format used is the same as the asynchronous frame format with parity bit enabled and one stop bit. The USART must then be configured to operate in asynchronous half duplex mode.

15.3.3 Synchronous Operation

Most of the features in asynchronous mode are available in synchronous mode. Multi-processor mode can be enabled for 9-bit frames, loopback is available and collision detection can be performed.

15.3.3.1 Frame Format

The frames used in synchronous mode need no start and stop bits since a single clock is available to all parts participating in the communication. Parity bits cannot be used in synchronous mode.

The USART supports frame lengths of 4 to 16 bits per frame. Larger frames can be simulated by transmitting multiple smaller frames, i.e. a 22 bit frame can be sent using two 11-bit frames, and a 21 bit frame can be generated by transmitting three 7-bit frames. The number of bits in a frame is set using DATABITS in USARTn_FRAME.

The frames in synchronous mode are by default transmitted with the least significant bit first like in asynchronous mode. The bit-order can be reversed by setting MSBF in USARTn CTRL.

The frame format used by the transmitter can be inverted by setting TXINV in USARTn_CTRL, and the format expected by the receiver can be inverted by setting RXINV, also in USARTn_CTRL.

15.3.3.2 Clock Generation

The bit-rate in synchronous mode is given by Equation 15.3 (p. 189). As in the case of asynchronous operation, the clock division factor have a 13-bit integral part and a 2-bit fractional part.

USART Synchronous Mode Bit Rate

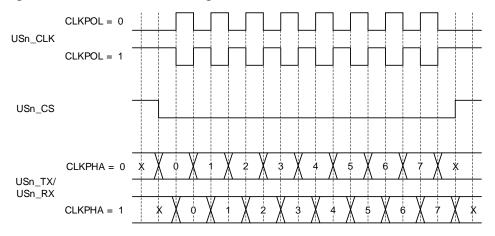
$$br = f_{HFPERCLK}/(2 \times (1 + USARTn_CLKDIV/256))$$
(15.3)

Given a desired baud rate brdesired, the clock divider USARTn_CLKDIV can be calculated using Equation 15.4 (p. 189)

USART Synchronous Mode Clock Division Factor

$$USARTn_CLKDIV = 256 \times (f_{HFPERCLK}/(2 \times brdesired) - 1)$$
 (15.4)

When the USART operates in master mode, the highest possible bit rate is half the peripheral clock rate. When operating in slave mode however, the highest bit rate is an eight of the peripheral clock:


Master mode: br_{max} = f_{HFPERCLK}/2
 Slave mode: br_{max} = f_{HFPERCLK}/8

On every clock edge data on the data lines, MOSI and MISO, is either set up or sampled. When CLKPHA in USARTn_CTRL is cleared, data is sampled on the leading clock edge and set-up is done on the trailing edge. If CLKPHA is set however, data is set-up on the leading clock edge, and sampled on the trailing edge. In addition to this, the polarity of the clock signal can be changed by setting CLKPOL in USARTn_CTRL, which also defines the idle state of the clock. This results in four different modes which are summarized in Table 15.8 (p. 190). Figure 15.15 (p. 190) shows the resulting timing of data set-up and sampling relative to the bus clock.

Table 15.8. USART SPI Modes

SPI mode	CLKPOL	CLKPHA	Leading edge	Trailing edge
0	0	0	Rising, sample	Falling, set-up
1	0	1	Rising, set-up	Falling, sample
2	1	0	Falling, sample	Rising, set-up
3	1	1	Falling, set-up	Rising, sample

Figure 15.15. USART SPI Timing

If CPHA=1, the TX underflow flag, TXUF, will be set on the first setup clock edge of a frame in slave mode if TX data is not available. If CPHA=0, TXUF is set if data is not available in the transmit buffer three HFPERCLK cycles prior to the first sample clock edge. The RXDATAV flag is updated on the last sample clock edge of a transfer, while the RX overflow interrupt flag, RXOF, is set on the first sample clock edge if the receive buffer overflows. When a transfer has been performed, interrupt flags TXBL and TXC are updated on the first setup clock edge of the succeeding frame, or when CS is deasserted.

15.3.3.3 Master Mode

When in master mode, the USART is in full control of the data flow on the synchronous bus. When operating in full duplex mode, the slave cannot transmit data to the master without the master transmitting to the slave. The master outputs the bus clock on USn_CLK.

Communication starts whenever there is data in the transmit buffer and the transmitter is enabled. The USART clock then starts, and the master shifts bits out from the transmit shift register using the internal clock.

Downloaded from H 2010-12-21 - d0034_Rev0.90 190 www.energymicro.com

When there are no more frames in the transmit buffer and the transmit shift register is empty, the clock stops, and communication ends. When the receiver is enabled, it samples data using the internal clock when the transmitter transmits data. Operation of the RX and TX buffers is as in asynchronous mode.

15.3.3.3.1 Operation of USn CS Pin

When operating in master mode, the USn_CS pin can have one of two functions, or it can be disabled.

If USn_CS is configured as an output, it can be used to automatically generate a chip select for a slave by setting AUTOCS in USARTn CTRL. If AUTOCS is set, USn CS is activated when a transmission begins, and deactivated directly after the last bit has been transmitted and there is no more data in the transmit buffer. By default, USn_CS is active low, but its polarity can be inverted by setting CSINV in USARTn_CTRL.

When USn CS is configured as an input, it can be used by another master that wants control of the bus to make the USART release it. When USn CS is driven low, or high if CSINV is set, the interrupt flag SSM in USARTn_IF is set, and if CSMA in USARTn_CTRL is set, the USART goes to slave mode.

15.3.3.3.2 AUTOTX

A synchronous master is required to transmit data to a slave in order to receive data from the slave. In some cases, only a few words are transmitted and a lot of data is then received from the slave. In that case, one solution is to keep feeding the TX with data to transmit, but that consumes system bandwidth. Instead AUTOTX can be used.

When AUTOTX in USARTn_CTRL is set, the USART transmits data as long as there is available space in the RX shift register for the chosen frame size. This happens even though there is no data in the TX buffer. The TX underflow interrupt flag TXUF in USARTn_IF is set on the first word that is transmitted which does not contain valid data.

During AUTOTX the USART will always send the previous sent bit, thus reducing the number of transitions on the TX output. So if the last bit sent was a 0, 0's will be sent during AUTOTX and if the last bit sent was a 1, 1's will be sent during AUTOTX.

15.3.3.4 Slave Mode

When the USART is in slave mode, data transmission is not controlled by the USART, but by an external master. The USART is therefore not able to initiate a transmission, and has no control over the number of bytes written to the master.

The output and input to the USART are also swapped when in slave mode, making the receiver take its input from USn_TX (MOSI) and the transmitter drive USn_RX (MISO).

To transmit data when in slave mode, the slave must load data into the transmit buffer and enable the transmitter. The data will remain in the USART until the master starts a transmission by pulling the USn CS input of the slave low and transmitting data. For every frame the master transmits to the slave, a frame is transferred from the slave to the master. After a transmission, MISO remains in the same state as the last bit transmitted. This also applies if the master transmits to the slave and the slave TX buffer is empty.

If the transmitter is enabled in synchronous slave mode and the master starts transmission of a frame, the underflow interrupt flag TXUF in USARTn_IF will be set if no data is available for transmission to the master.

If the slave needs to control its own chip select signal, this can be achieved by clearing CSPEN in the ROUTE register. The internal chip select signal can then be controlled through CSINV in the CTRL register. The chip select signal will be CSINV inverted, i.e. if CSINV is cleared, the chip select is active and vice versa.

15.3.3.5 Synchronous Half Duplex Communication

Half duplex communication in synchronous mode is very similar to half duplex communication in asynchronous mode as detailed in Section 15.3.2.6 (p. 183). The main difference is that in this mode, the master must generate the bus clock even when it is not transmitting data, i.e. it must provide the slave with a clock to receive data. To generate the bus clock, the master should transmit data with the transmitter tristated, i.e. TXTRI in USARTn_STATUS set, when receiving data. If 2 bytes are expected from the slave, then transmit 2 bytes with the transmitter tristated, and the slave uses the generated bus clock to transmit data to the master. TXTRI can be set by setting the TXTRIEN command bit in USARTn_CMD.

Note

When operating as SPI slave in half duplex mode, TX has to be tristated (not disabled) during data reception if the slave is to transmit data in the current transfer.

15.3.3.6 I2S

I2S is a synchronous format for transmission of audio data. The frame format is 32-bit, but since data is always transmitted with MSB first, an I2S device operating with 16-bit audio may choose to only process the 16 msb of the frame, and only transmit data in the 16 msb of the frame.

In addition to the bit clock used for regular synchronous transfers, I2S mode uses a separate word clock. When operating in mono mode, with only one channel of data, the word clock pulses once at the start of each new word. In stereo mode, the word clock toggles at the start of new words, and also gives away whether the transmitted word is for the left or right audio channel; A word transmitted while the word clock is low is for the left channel, and a word transmitted while the word clock is high is for the right.

When operating in I2S mode, the CS pin is used as a the word clock. In master mode, this is automatically driven by the USART, and in slave mode, the word clock is expected from an external master.

15.3.3.6.1 Word Format

The general I2S word format is 32 bits wide, but the USART also supports 16-bit and 8-bit words. In addition to this, it can be specified how many bits of the word should actually be used by the USART. These parameters are given by FORMAT in USARTn_I2SCTRL.

As an example, configuring FORMAT to using a 32-bit word with 16-bit data will make each word on the I2S bus 32-bits wide, but when receiving data through the USART, only the 16 most significant bits of each word can be read out of the USART. Similarly, only the 16 most significant bits have to be written to the USART when transmitting. The rest of the bits will be transmitted as zeroes.

15.3.3.6.2 Major Modes

The USART supports a set of different I2S formats as shown in Table 15.9 (p. 192), but it is not limited to these modes. MONO, JUSTIFY and DELAY in USARTn_I2SCTRL can be mixed and matched to create an appropriate format. MONO enables mono mode, i.e. one data stream instead of two which is the default. JUSTIFY aligns data within a word on the I2S bus, either left or right which can bee seen in figures Figure 15.18 (p. 193) and Figure 15.19 (p. 194). Finally, DELAY specifies whether a new I2S word should be started directly on the edge of the word-select signal, or one bit-period after the edge.

Table 15.9. USART I2S Modes

Mode	MONO	JUSTIFY	DELAY	CLKPOL
Regular I2S	0	0	1	0
Left-Justified	0	0	0	1
Right-Justified	0	1	0	1
Mono	1	0	0	0

The regular I2S waveform is shown in Figure 15.16 (p. 193) and Figure 15.17 (p. 193). The first figure shows a waveform transmitted with full accuracy. The wordlength can be configured to 32-bit, 16-bit or 8-bit using FORMAT in USARTn_I2SCTRL. In the second figure, I2S data is transmitted with reduced accuracy, i.e. the data transmitted has less bits than what is possible in the bus format.

Note that the msb of a word transmitted in regular I2S mode is delayed by one cycle with respect to word select

Figure 15.16. USART Standard I2S waveform

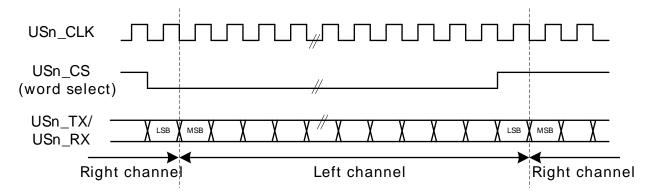
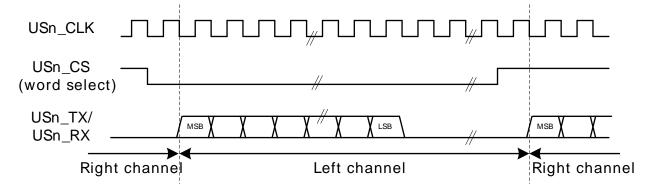
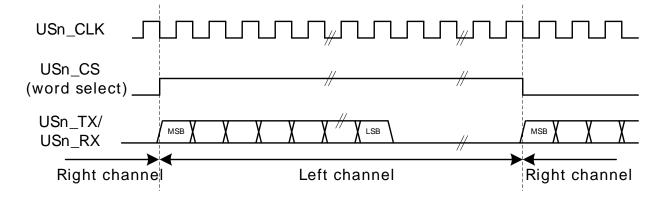




Figure 15.17. USART Standard I2S waveform (reduced accuracy)

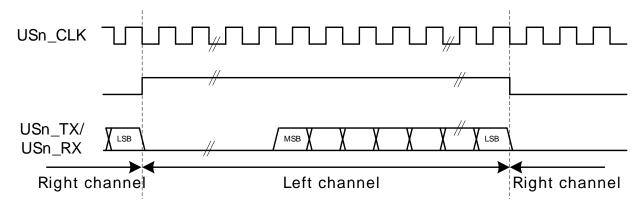

A left-justified stream is shown in Figure 15.18 (p. 193). Note that the MSB comes directly after the edge on the word-select signal in contradiction to the regular I2S waveform where it comes one bit-period after.

Figure 15.18. USART Left-justified I2S waveform

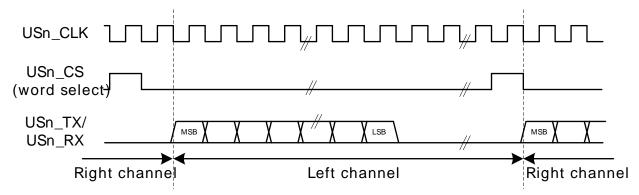

A right-justified stream is shown in Figure 15.19 (p. 194). The left and right justified streams are equal when the data-size is equal to the word-width.

Figure 15.19. USART Right-justified I2S waveform

In mono-mode, the word-select signal pulses at the beginning of each word instead of toggling for each word. Mono I2S waveform is shown in Figure 15.20 (p. 194).

Figure 15.20. USART Mono I2S waveform

15.3.3.6.3 Using I2S Mode

When using the USART in I2S mode, DATABITS in USARTn_FRAME must be set to 8 or 16 data-bits. 8 databits can be used in all modes, and 16 can be used in the modes where the number of bytes in the I2S word is even. In addition to this, MSBF in USARTn_CTRL should be set, and CLKPOL and CLKPHA in USARTn_CTRL should be cleared.

The USART does not have separate TX and RX buffers for left and right data, so when using I2S in stereo mode, the application must keep track of whether the buffers contain left or right data. This can be done by observing TXBLRIGHT, RXDATAVRIGHT and RXFULLRIGHT in USARTn_STATUS. TXBLRIGHT tells whether TX is expecting data for the left or right channel. It will be set with TXBL if right data is expected. The receiver will set RXDATAVRIGHT if there is at least one right element in the buffer, and RXFULLRIGHT if the buffer is full of right elements.

When using I2S with DMA, separate DMA requests can be used for left and right data by setting DMASPLIT in USARTn_I2SCTRL.

In both master and slave mode the USART always starts transmitting on the LEFT channel after being enabled. In master mode, the transmission will stop if TX becomes empty. In that case, TXC is set. Continuing the transmission in this case will make the data-stream continue where it left off. To make the USART start on the LEFT channel after going empty, disable and re-enable TX.

15.3.4 PRS-triggered Transmissions

If a transmission must be started on an event with very little delay, the PRS system can be used to trigger the transmission. The PRS channel to use as a trigger can be selected using TSEL in USARTn_TRIGCTRL. When a positive edge is detected on this signal, the receiver is enabled if RXTEN

in USARTn_TRIGCTRL is set, and the transmitter is enabled if TXTEN in USARTn_TRIGCTRL is set. Only one signal input is supported by the USART.

The AUTOTX feature can also be enabled via PRS. If an external SPI device sets a pin high when there is data to be read from the device, this signal can be routed to the USART through the PRS system and be used to make the USART clock data out of the external device. If AUTOTXTEN in USARTn_TRIGCTRL is set, the USART will transmit data whenever the PRS signal selected by TSEL is high given that there is enough room in the RX buffer for the chosen frame size. Note that if there is no data in the TX buffer when using AUTOTX, the TX underflow interrupt will be set.

AUTOTXTEN can also be combined with TXTEN to make the USART transmit a command to the external device prior to clocking out data. To do this, disable TX using the TXDIS command, load the TX buffer with the command and enable AUTOTXTEN and TXTEN. When the selected PRS input goes high, the USART will now transmit the loaded command, and then continue clocking out while both the PRS input is high and there is room in the RX buffer

15.3.5 PRS RX Input

The USART can be configured to receive data directly from a PRS channel by setting RXPRS in USARTn_INPUT. The PRS channel used is selected using RXPRSSEL in USARTn_INPUT. This way, for example, a differential RX signal can be input to the ACMP and the output routed via PRS to the USART.

15.3.6 DMA Support

The USART has full DMA support. The DMA controller can write to the transmit buffer using the registers USARTn_TXDATA, USARTn_TXDATAX, USARTn_TXDOUBLE and USARTn_TXDOUBLEX, and it can read from the receive buffer using the registers USARTn_RXDATA, USARTn_RXDATAX, USARTn_RXDOUBLE and USARTn_RXDOUBLEX. This enables single byte transfers, 9 bit data + control/status bits, double byte and double byte + control/status transfers both to and from the USART.

A request for the DMA controller to read from the USART receive buffer can come from the following source:

- Data available in the receive buffer
- Data available in the receive buffer and data is for the RIGHT I2S channel. Only used in I2S mode.

A write request can come from one of the following sources:

- Transmit buffer and shift register empty. No data to send.
- Transmit buffer has room for more data
- Transmit buffer has room for RIGHT I2S data. Only used in I2S mode

Even though there are two sources for write requests to the DMA, only one should be used at a time, since the requests from both sources are cleared even though only one of the requests are used.

In some cases, it may be sensible to temporarily stop DMA access to the USART when an error such as a framing error has occurred. This is enabled by setting ERRSDMA in USARTn_CTRL.

15.3.7 Transmission Delay

By configuring TXDELAY in USARTn_CTRL, the transmitter can be forced to wait a number of bitperiods from it is ready to transmit data, to it actually transmits the data. This delay is only applied to the first frame transmitted after the transmitter has been idle. When transmitting frames back-to-back the delay is not introduced between the transmitted frames.

This is useful on half duplex buses, because the receiver always returns received frames to software during the first stop-bit. The bus may still be driven for up to 3 baud periods, depending on the current

frame format. Using the transmission delay, a transmission can be started when a frame is received, and it is possible to make sure that the transmitter does not begin driving the output before the frame on the bus is completely transmitted.

TXDELAY in USARTn_CTRL only applies to asynchronous transmission.

15.3.8 Interrupts

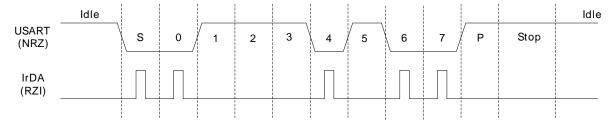
The interrupts generated by the USART are combined into two interrupt vectors. Interrupts related to reception are assigned to one interrupt vector, and interrupts related to transmission are assigned to the other. Separating the interrupts in this way allows different priorities to be set for transmission and reception interrupts.

The transmission interrupt vector groups the transmission-related interrupts generated by the following interrupt flags:

- TXC
- TXBL
- TXOF
- CCF

The reception interrupt on the other hand groups the reception-related interrupts, triggered by the following interrupt flags:

- RXDATAV
- RXFULL
- RXOF
- RXUF
- PERR
- FERR
- MPAF SSM


If USART interrupts are enabled, an interrupt will be made if one or more of the interrupt flags in USART_IF and their corresponding bits in USART_IEN are set.

15.3.9 IrDA Modulator/ Demodulator

The IrDA modulator on USART0 implements the physical layer of the IrDA specification, which is necessary for communication over IrDA. The modulator takes the signal output from the USART module, and modulates it before it leaves USART0. In the same way, the input signal is demodulated before it enters the actual USART module. The modulator is only available on USART0, and supports speeds from 2.4 kbps to 1.152 Mbps.

The data from and to the USART is represented in a NRZ (Non Return to Zero) format, where the signal value is at the same level through the entire bit period. For IrDA, the required format is RZI (Return to Zero Inverted), a format where a "1" is signalled by holding the line low, and a "0" is signalled by a short high pulse. An example is given in Figure 15.21 (p. 196).

Figure 15.21. USART Example RZI Signal for a given Asynchronous USART Frame

The IrDA module is enabled by setting IREN. The USART transmitter output and receiver input is then routed through the IrDA modulator.

The width of the pulses generated by the IrDA modulator is set by configuring IRPW in USARTn_IRCTRL. Four pulse widths are available, each defined relative to the configured bit period as listed in Table 15.10 (p. 197).

Table 15.10. USART IrDA Pulse Widths

IRPW	Pulse width OVS=0	Pulse width OVS=1	Pulse width OVS=2	Pulse width OVS=3
00	1/16	1/8	1/6	1/4
01	2/16	2/8	2/6	N/A
10	3/16	3/8	N/A	N/A
11	4/16	N/A	N/A	N/A

By default, no filter is enabled in the IrDA demodulator. A filter can be enabled by setting IRFILT in USARTn_IRCTRL. When the filter is enabled, an incoming pulse has to last for 4 consecutive clock cycles to be detected by the IrDA demodulator.

Note that by default, the idle value of the USART data signal is high. This means that the IrDA modulator generates negative pulses, and the IrDA demodulator expects negative pulses. To make the IrDA module use RZI signalling, both TXINV and RXINV in USARTn_CTRL must be set.

The IrDA module can also modulate a signal from the PRS system, and transmit a modulated signal to the PRS system. To use a PRS channel as transmitter source instead of the USART, set IRPRSEN in USARTn_IRCTRL high. The channel is selected by configuring IRPRSSEL in USARTn_IRCTRL.

15.4 Register Map

The offset register address is relative to the registers base address.

Offset	Name	Туре	Description
0x000	USARTn_CTRL	RW	Control Register
0x004	USARTn_FRAME	RW	USART Frame Format Register
0x008	USARTn_TRIGCTRL	RW	USART Trigger Control register
0x00C	USARTn_CMD	W1	Command Register
0x010	USARTn_STATUS	R	USART Status Register
0x014	USARTn_CLKDIV	RW	Clock Control Register
0x018	USARTn_RXDATAX	R	RX Buffer Data Extended Register
0x01C	USARTn_RXDATA	R	RX Buffer Data Register
0x020	USARTn_RXDOUBLEX	R	RX Buffer Double Data Extended Register
0x024	USARTn_RXDOUBLE	R	RX FIFO Double Data Register
0x028	USARTn_RXDATAXP	R	RX Buffer Data Extended Peek Register
0x02C	USARTn_RXDOUBLEXP	R	RX Buffer Double Data Extended Peek Register
0x030	USARTn_TXDATAX	W	TX Buffer Data Extended Register
0x034	USARTn_TXDATA	W	TX Buffer Data Register
0x038	USARTn_TXDOUBLEX	W	TX Buffer Double Data Extended Register
0x03C	USARTn_TXDOUBLE	W	TX Buffer Double Data Register
0x040	USARTn_IF	R	Interrupt Flag Register
0x044	USARTn_IFS	W1	Interrupt Flag Set Register
0x048	USARTn_IFC	W1	Interrupt Flag Clear Register
0x04C	USARTn_IEN	RW	Interrupt Enable Register
0x050	USARTn_IRCTRL	RW	IrDA Control Register
0x054	USARTn_ROUTE	RW	I/O Routing Register
0x058	USARTn_INPUT	RW	USART Input Register
0x05C	USARTn_I2SCTRL	RW	I2S Control Register

15.5 Register Description

15.5.1 USARTn_CTRL - Control Register

Offset															Bi	t Po	siti	on											,			
0x000	33	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	7	10	6	8	7	9	5	4	က	2	-	0
Reset		0	0	0	OXO			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			0×0	0	0	0	0	0
Access		§.	W.	₩ M	8			₩ M	§ §	R W	₩ M	W.	RW	S.	₩ M	₩ M	W.	₩ M	RW	W.	W.	R W	₩ M	W.			S N	₩ M	₩ M	₩ M	S.	W.
Name		MVDIS	AUTOTX	BYTESWAP	TXDFLAY			ERRSTX	ERRSRX	ERRSDMA	BIT8DV	SKIPPERRF	SCRETRANS	SCMODE	AUTOTRI	AUTOCS	CSINV	VNIXL	RXINV	TXBIL	CSMA	MSBF	ССКРНА	CLKPOL			SAO	MPAB	MPM	CCEN	LOOPBK	SYNC

Bit	Name	Reset	Access	Description
31	Reserved	To ensure compa	atibility with futu	ure devices, always write bits to 0. More information in Section 2.1 (p. 3)
30	MVDIS	0	RW	Majority Vote Disable
	Disable majority vote for 16	x, 8x and 6x overs	ampling modes	3.
29	AUTOTX	0	RW	Always Transmit When RX Not Full

Bit	Name	Reset	Access	Description
	Transmits as lo	ng as RX is not full. If TX is	s empty, underf	lows are generated.
28	BYTESWAP	0	RW	Byteswap In Double Accesses
	Set to switch th	e order of the bytes in dou	ble accesses	•
	Value	Description	_	
	1	Normal byte order		
	'	Byte order swapp		
27:26	TXDELAY	0x0	RW	TX Delay Transmission
	Configurable de	elay before new transfers. I	Frames sent ba	ck-to-back are not delayed.
	Value	Mode	D	escription
	0	NONE	F	rames are transmitted immediately
	1	SINGLE	Tı	ransmission of new frames are delayed by a single baud period
	2	DOUBLE	Ti	ransmission of new frames are delayed by two baud periods
	3	TRIPLE	Tı	ransmission of new frames are delayed by three baud periods
25	Reserved	To ensure co	ompatibility with	future devices, always write bits to 0. More information in Section 2.1 (p. s
24	ERRSTX	0	RW	Disable TX On Error
	When set the t	ransmitter is disabled on fr	aming and parit	ty errors (asynchronous mode only) in the receiver.
			arriirig arra parri	y entitie (asynchronous mode emy) in the reserver.
	Value	Description		
	0			have no effect on transmitter
	1	Received framing	and parity errors	disable the transmitter
23	ERRSRX	0	RW	Disable RX On Error
	When set, the r	eceiver is disabled on fram	ning and parity e	errors (asynchronous mode only).
	Value	Description		
	0	Framing and pari	ty errors have no	effect on receiver
	1	Framing and pari	ty errors disable t	he receiver
22	ERRSDMA	0	RW	Halt DMA On Error
				parity errors (asynchronous mode only).
		Tequests will be cleared o	Trianning and p	Dailty errors (asynchronous mode only).
	Value	Description		
	0		-	effect on DMA requests from the USART
	1	DMA requests fro	om the USART are	e blocked while the PERR or FERR interrupt flags are set
21	BIT8DV	0	RW	Bit 8 Default Value
			ames are used,	, and an 8-bit write operation is done, leaving the 9th bit unspecified, the
		the value of BIT8DV.	5111	
20	SKIPPERRF	0	RW	Skip Parity Error Frames
	When set, the r	eceiver discards frames w	th parity errors	(asynchronous mode only). The PERR interrupt flag is still set.
19	SCRETRANS	0	RW	SmartCard Retransmit
	When in Smart	Card mode, a NACK'ed fra	me will be kept	in the shift register and retransmitted if the transmitter is still enabled.
18	SCMODE	0	RW	SmartCard Mode
	l lee this hit to a	enable or disable SmartCar	d mode	
17				Automatic TV Trictate
17	AUTOTRI	0	RW	Automatic TX Tristate
	When enabled,	TXTRI is set by hardware w	henever the tra	nsmitter is idle, and TXTRI is cleared by hardware when transmission start
	Value	Description		
	0	The output on U(S)n_TX when the	transmitter is idle is defined by TXINV
	1	U(S)n_TX is trista	ated whenever the	e transmitter is idle
	AUTOCS	0	RW	Automatic Chip Select
16				- Control of the Cont
16	When enabled transmission er	•	will be activat	ed one baud-period before transmission starts, and deactivated whe

Downloaded from Education 2010-12-21 - d0034_Rev0.90 199 www.energymicro.com

Bit	Name		Reset	Acces	ss Description
	Default value i	s active low	. This affects botl	h the selection	on of external slaves, as well as the selection of the microcontroller as a slave
	Value		Description		
	0		Chip select is acti	ve low	
	1		Chip select is acti	ve high	
14	TXINV		0	RW	Transmitter output Invert
	The output fro	m the USAF	RT transmitter ca	n optionally	be inverted by setting this bit.
	Value		Description		
	0		Output from the tr	ansmitter is pa	assed unchanged to U(S)n_TX
	1		Output from the tr	ansmitter is in	everted before it is passed to U(S)n_TX
13	RXINV		0	RW	Receiver Input Invert
	Setting this bit	will invert t	he input to the U	SART receiv	ver.
	Value		Description		
	0		Input is passed di	rectly to the re	eceiver
	1		Input is inverted b	efore it is pas	sed to the receiver
12	TXBIL		0	RW	TX Buffer Interrupt Level
	Determines th	e interrupt a	and status level o	f the transm	·
					7
	Value	Mode	,		Description
	0	EMPTY			TXBL and the TXBL interrupt flag are set when the transmit buffer becomes empty TXBL is cleared when the buffer becomes nonempty.
	1	HALFFI	JLL		TXBL and TXBLIF are set when the transmit buffer goes from full to half-full or empty TXBL is cleared when the buffer becomes full.
11	CSMA		0	RW	Action On Slave-Select In Master Mode
	This register d	etermines th	he action to be pe	erformed who	en slave-select is configured as an input and driven low while in master mod
	Value	Mode	-		Description
	0	NOACT	ION		No action taken
	1	GOTOS	SLAVEMODE		Go to slave mode
10	MSBF	•	0	RW	Most Significant Bit First
	Decides whetl	ner data is s	ent with the leas	t significant l	bit first, or the most significant bit first.
	Value		Description		
	0		Data is sent with t	he least signif	ficant bit first
	1		Data is sent with t		
9	CLKPHA		0	RW	Clock Edge For Setup/Sample
9					
	Determines w	nere data is	set-up and samp	olea accordii	ng to the bus clock when in synchronous mode.
	Value	Mode			Description
	0	SAMPL	ELEADING		Data is sampled on the leading edge and set-up on the trailing edge of the bus clock in synchronous mode
	1	SAMPL	ETRAILING		Data is set-up on the leading edge and sampled on the trailing edge of the bus clock in synchronous mode
8	CLKPOL		0	RW	Clock Polarity
	Determines th	e clock pola	arity of the bus clo	ock used in s	synchronous mode.
	Value	Mode			Description
	0	IDLELC	DW		The bus clock used in synchronous mode has a low base value
	1	IDLEHI			The bus clock used in synchronous mode has a high base value
7	Reserved	1		mpatibility w	rith future devices, always write bits to 0. More information in Section 2.1 (p. 3
6:5	OVS		0x0	RW	Oversampling
5.5					od. More clock cycles gives better robustness, while less clock cycles give
					Description
	Value	Mode			Description

2010-12-21 - d0034_Rev0.90 www.energymicro.com

0

X16

Regular UART mode with 16X oversampling in asynchronous mode

Bit	Name —	Reset	Access	Description
	Value	Mode	С	Description
	1	X8	С	Oouble speed with 8X oversampling in asynchronous mode
	2	X6	6	X oversampling in asynchronous mode
	3	X4	C	Quadruple speed with 4X oversampling in asynchronous mode
4	MPAB	0	RW	Multi-Processor Address-Bit
		ue of the multi-processor a essor address frame.	ddress bit. An i	ncoming frame with its 9th bit equal to the value of this bit marks the frame
3	MPM	0	RW	Multi-Processor Mode
	Multi-processor	mode uses the 9th bit of t	he USART fran	nes to tell whether the frame is an address frame or a data frame.
	Value	Description		
	0	The 9th bit of inc	oming frames has	s no special function
	1		ne with the 9th bi MPAB interrupt fla	t equal to MPAB will be loaded into the receive buffer regardless of RXBLOCK and ag being set
2	CCEN	0	RW	Collision Check Enable
	Enables collisio	n checking on data when	operating in hal	f duplex modus.
	Value	Description		
	0	Collision check is	disabled	
	1	Collision check is	enabled. The re	ceiver must be enabled for the check to be performed
1	LOOPBK	0	RW	Loopback Enable
	Allows the recei	iver to be connected direct	tly to the USAR	T transmitter for loopback and half duplex communication.
	Value	Description		
	0	The receiver is co	onnected to and r	receives data from U(S)n_RX
	1	The receiver is co	onnected to and r	eceives data from U(S)n_TX
0	SYNC	0	RW	USART Synchronous Mode
	Determines who	ether the USART is operat	ing in asynchro	nous or synchronous mode.
	Value	Description		
	0	The USART oper	rates in asynchro	nous mode
	1	The USART oper	rates in synchron	ous mode

15.5.2 USARTn_FRAME - USART Frame Format Register

ONE

ONEANDAHALF

Offset															Bi	t Po	siti	on														
0x004	31	30	29	28	27	26	22	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	2	4	က	2	-	0
Reset																				0x1			2	OXO						7	3	
Access																				S N			Š	<u>}</u>						\ <u>\</u>	2	
Name																				STOPBITS			> <u>+</u>	T ARII						DATABITS		

Bit	Name	Reset	Acces	s Description
31:14	Reserved	To ensure com	patibility with	h future devices, always write bits to 0. More information in Section 2.1 (p. 3)
13:12	STOPBITS	0x1	RW	Stop-Bit Mode
	Determines the nu	ımber of stop-bits used.		
	Value	Mode		Description
	0	HALF		The transmitter generates a half stop bit. Stop-bits are not verified by receiver

One stop bit is generated and verified

The transmitter generates one and a half stop bit. The receiver verifies the first stop bit

Bit	Name	Reset	Acce	ss Description
	Value	Mode		Description
	3	TWO		The transmitter generates two stop bits. The receiver checks the first stop-bit only
11:10	Reserved	To ensure	compatibility v	vith future devices, always write bits to 0. More information in Section 2.1 (p. 3)
9:8	PARITY	0x0	RW	Parity-Bit Mode
	Determines wh	ether parity bits are enab	led, and whetl	her even or odd parity should be used. Only available in asynchronous mode
	Value	Mode		Description
	0	NONE		Parity bits are not used
	2	EVEN		Even parity are used. Parity bits are automatically generated and checked by hardware.
	3	ODD		Odd parity is used. Parity bits are automatically generated and checked by hardware.
7:4	Reserved	To ensure	compatibility v	vith future devices, always write bits to 0. More information in Section 2.1 (p. 3)
3:0	DATABITS	0x5	RW	Data-Bit Mode
3:0		0x5 ets the number of data bit		
3:0				
3:0	This register se	ets the number of data bit		frame.
3:0	This register se	ets the number of data bit		frame. Description
3:0	This register se	ets the number of data bit Mode FOUR		frame. Description Each frame contains 4 data bits
3:0	This register se	Mode FOUR FIVE		frame. Description Each frame contains 4 data bits Each frame contains 5 data bits
3:0	This register set Value 1 2 3	Mode FOUR FIVE SIX		frame. Description Each frame contains 4 data bits Each frame contains 5 data bits Each frame contains 6 data bits
3:0	This register set Value 1 2 3 4	Mode FOUR FIVE SIX SEVEN		frame. Description Each frame contains 4 data bits Each frame contains 5 data bits Each frame contains 6 data bits Each frame contains 7 data bits
3:0	This register set Value 1 2 3 4 5	Mode FOUR FIVE SIX SEVEN EIGHT		frame. Description Each frame contains 4 data bits Each frame contains 5 data bits Each frame contains 6 data bits Each frame contains 7 data bits Each frame contains 8 data bits
3:0	This register set Value 1 2 3 4 5	Mode FOUR FIVE SIX SEVEN EIGHT NINE		frame. Description Each frame contains 4 data bits Each frame contains 5 data bits Each frame contains 6 data bits Each frame contains 7 data bits Each frame contains 8 data bits Each frame contains 8 data bits Each frame contains 9 data bits
3:0	This register set Value 1 2 3 4 5 6	Mode FOUR FIVE SIX SEVEN EIGHT NINE TEN		frame. Description Each frame contains 4 data bits Each frame contains 5 data bits Each frame contains 6 data bits Each frame contains 7 data bits Each frame contains 8 data bits Each frame contains 8 data bits Each frame contains 9 data bits Each frame contains 10 data bits
3:0	This register set Value 1 2 3 4 5 6 7	Mode FOUR FIVE SIX SEVEN EIGHT NINE TEN ELEVEN		frame. Description Each frame contains 4 data bits Each frame contains 5 data bits Each frame contains 6 data bits Each frame contains 7 data bits Each frame contains 8 data bits Each frame contains 8 data bits Each frame contains 9 data bits Each frame contains 10 data bits Each frame contains 10 data bits
3:0	This register set Value 1 2 3 4 5 6 7 8 9	Mode FOUR FIVE SIX SEVEN EIGHT NINE TEN ELEVEN TWELVE		frame. Description Each frame contains 4 data bits Each frame contains 5 data bits Each frame contains 6 data bits Each frame contains 7 data bits Each frame contains 8 data bits Each frame contains 8 data bits Each frame contains 9 data bits Each frame contains 10 data bits Each frame contains 11 data bits Each frame contains 12 data bits
3:0	This register set Value 1 2 3 4 5 6 7 8 9 10	Mode FOUR FIVE SIX SEVEN EIGHT NINE TEN ELEVEN TWELVE THIRTEEN		frame. Description Each frame contains 4 data bits Each frame contains 5 data bits Each frame contains 6 data bits Each frame contains 7 data bits Each frame contains 8 data bits Each frame contains 9 data bits Each frame contains 10 data bits Each frame contains 11 data bits Each frame contains 12 data bits Each frame contains 12 data bits Each frame contains 13 data bits

15.5.3 USARTn_TRIGCTRL - USART Trigger Control register

Offset															Bi	t Pc	siti	on														
0x008	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	1	10	6	8	7	9	2	4	က	7	-	0
Reset																										0	0	0			0x0	
Access																										RW	RW	RW			RW	
Name																										AUTOTXTEN	TXTEN	RXTEN			TSEL	

Bit	Name	Reset	Access	Description
31:7	Reserved	To ensure co	mpatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
6	AUTOTXTEN	0	RW	AUTOTX Trigger Enable
	When set, AUTOTX is	enabled as long as	the PRS channel	selected by TSEL has a high value
5	TXTEN	0	RW	Transmit Trigger Enable
	When set, the PRS cha	nnel selected by T	SEL sets TXEN, e	enabling the transmitter on positive trigger edges.
4	RXTEN	0	RW	Receive Trigger Enable
	When set, the PRS cha	nnel selected by T	SEL sets RXEN, e	enabling the receiver on positive trigger edges.
3	Reserved	To ensure co	mpatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
2:0	TSEL	0x0	RW	Trigger PRS Channel Select

Downloaded from E coals com

Bit	Name	Reset Acces	s Description
	Select USART PR	S trigger channel. The PRS signal ca	an enable RX and/or TX, depending on the setting of RXTEN and TXTEN.
	Value	Mode	Description
	0	PRSCH0	PRS Channel 0 selected
	1	PRSCH1	PRS Channel 1 selected
	2	PRSCH2	PRS Channel 2 selected
	3	PRSCH3	PRS Channel 3 selected
	4	PRSCH4	PRS Channel 4 selected
	5	PRSCH5	PRS Channel 5 selected
	6	PRSCH6	PRS Channel 6 selected
	7	PRSCH7	PRS Channel 7 selected

15.5.4 USARTn_CMD - Command Register

Offset															Bi	t Po	siti	on														
0x00C	31	30	29	28	27	56	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	თ	∞	7	9	2	4	က	7	-	0
Reset																					0	0	0	0	0	0	0	0	0	0	0	0
Access																					W1	W1	W 1	W1	W W	W1	W1	W1	W1	W V	W1	W 1
Name																					CLEARRX	CLEARTX	TXTRIDIS	TXTRIEN	RXBLOCKDIS	RXBLOCKEN	MASTERDIS	MASTEREN	TXDIS	TXEN	RXDIS	RXEN

D.'	Name	Bereit		Bereitster
Bit	Name	Reset	Access	Description
31:12	Reserved	To ensure co	ompatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
11	CLEARRX	0	W1	Clear RX
	Set to clear receive b	uffer and the RX shif	t register.	
10	CLEARTX	0	W1	Clear TX
	Set to clear transmit b	ouffer and the TX shi	ft register.	
9	TXTRIDIS	0	W1	Transmitter Tristate Disable
	Disables tristating of t	the transmitter outpu	t.	
8	TXTRIEN	0	W1	Transmitter Tristate Enable
	Tristates the transmit	ter output.		
7	RXBLOCKDIS	0	W1	Receiver Block Disable
	Set to clear RXBLOC	K, resulting in all inc	oming frames bei	ng loaded into the receive buffer.
6	RXBLOCKEN	0	W1	Receiver Block Enable
	Set to set RXBLOCK,	, resulting in all incor	ning frames being	discarded.
5	MASTERDIS	0	W1	Master Disable
	Set to disable master	mode, clearing the I	MASTER status b	it and putting the USART in slave mode.
4	MASTEREN	0	W1	Master Enable
				Master mode should not be enabled while TXENS is set to 1. To enable , or enable them both in the same write operation.
3	TXDIS	0	W1	Transmitter Disable
	Set to disable transm	ission.		
2	TXEN	0	W1	Transmitter Enable
	Set to enable data tra	insmission.		
1	RXDIS	0	W1	Receiver Disable
	Set to disable data re	ception. If a frame is	under reception	when the receiver is disabled, the incoming frame is discarded.

Downloaded from Elecules com

Bit	Name	Reset	Access	Description
0	RXEN	0	W1	Receiver Enable
	Set to activate dat	ta reception on U(S)n_RX	•	

15.5.5 USARTn_STATUS - USART Status Register

Offset															Bi	it Po	siti	on														
0x010	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	თ	∞	7	9	2	4	က	7	-	0
Reset																				0	0	0	0	0	0	-	0	0	0	0	0	0
Access																				œ	2	2	œ	22	œ	2	~	œ	œ	œ	~	<u>~</u>
Name																				RXFULLRIGHT	RXDATAVRIGHT	TXBSRIGHT	TXBDRIGHT	RXFULL	RXDATAV	TXBL	TXC	TXTRI	RXBLOCK	MASTER	TXENS	RXENS

Bit	Name	Reset	Access	Description
31:13	Reserved	To ensure co	ompatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
12	RXFULLRIGHT	0	R	RX Full of Right Data
	When set, the entire RX	K buffer contains ri	ght data. Only use	ed in I2S mode
11	RXDATAVRIGHT	0	R	RX Data Right
	When set, reading RXD	ATA or RXDATAX	gives right data.	Else left data is read. Only used in I2S mode
10	TXBSRIGHT	0	R	TX Buffer Expects Single Right Data
	When set, the TX buffe	r expects at least a	a single right data.	Else it expects left data. Only used in I2S mode
9	TXBDRIGHT	0	R	TX Buffer Expects Double Right Data
	When set, the TX buffe	r expects double ri	ght data. Else it m	nay expect a single right data or left data. Only used in I2S mode
8	RXFULL	0	R	RX FIFO Full
	Set when the RXFIFO if frame in the receive shi		en the receive buf	fer is no longer full. When this bit is set, there is still room for one more
7	RXDATAV	0	R	RX Data Valid
	Set when data is availa	ble in the receive b	ouffer. Cleared wh	en the receive buffer is empty.
6	TXBL	1	R	TX Buffer Level
	Indicates the level of the TXBL is set whenever t			, TXBL is set whenever the transmit buffer is empty, and if TXBIL is set, y.
5	TXC	0	R	TX Complete
	Set when a transmission transmit buffer.	on has completed	and no more data	a is available in the transmit buffer. Cleared when data is written to the
4	TXTRI	0	R	Transmitter Tristated
	Set when the transmitted is always read as 0.	er is tristated, and	cleared when trar	nsmitter output is enabled. If AUTOTRI in USARTn_CTRL is set this bit
3	RXBLOCK	0	R	Block Incoming Data
	When set, the receiver instant the frame has be	•		ning frame will not be loaded into the receive buffer if this bit is set at the
2	MASTER	0	R	SPI Master Mode
	Set when the USART o	perates as a maste	er. Set using the N	MASTEREN command and clear using the MASTERDIS command.
1	TXENS	0	R	Transmitter Enable Status
	Set when the transmitte	er is enabled.		

Downloaded from E leads com 2010-12-21 - d0034_Rev0.90 204 www.energymicro.com

Bit	Name	Reset	Access	Description
	Set when the receiver is en	nabled.		

15.5.6 USARTn_CLKDIV - Clock Control Register

Offset															Bi	t Pc	siti	on													,	
0x014	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	7	10	6	8	7	9	2	4	3	2	-	0
Reset																			0x0000													
Access																			R.													
Name																			VIQ													

Bit	Name	Reset	Access	Description
31:21	Reserved	To ensure compa	atibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
20:6	DIV	0x0000	RW	Fractional Clock Divider
	Specifies the fractional cloc	k divider for the US	SART.	
5:0	Reserved	To ensure compa	atibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)

15.5.7 USARTn_RXDATAX - RX Buffer Data Extended Register

Offset															Bi	t Po	siti	on														
0x018	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	9	5	4	က	2	1	0
Reset																	0	0										0x000				
Access																	22	~										22				
Name																	FERR	PERR										RXDATA				

Bit	Name	Reset	Access	Description
31:16	Reserved	To ensure comp	patibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
15	FERR	0	R	Data Framing Error
	Set if data in buffer has a	framing error. Can	be the result of	a break condition.
14	PERR	0	R	Data Parity Error
	Set if data in buffer has a	parity error (asynch	ronous mode	only).
13:9	Reserved	To ensure comp	patibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
8:0	RXDATA	0x000	R	RX Data
	Use this register to acces	s data read from the	e USART. Buff	er is cleared on read access.

2010-12-21 - d0034_Rev0.90 www.energymicro.com

15.5.8 USARTn_RXDATA - RX Buffer Data Register

Offset															Bi	t Po	siti	on														
0x01C	31	30	29	28	27	56	22	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	0	8	7	9	2	4	က	2	-	0
Reset																													0000			
Access																													ď			
Name																													RXDATA			

Bit	Name	Reset	Access	Description
31:8	Reserved	To ensure comp	atibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
7:0	RXDATA	0x00	R	RX Data
	Use this register to access	data read from US	ART. Buffer is	cleared on read access. Only the 8 LSB can be read using this register.

15.5.9 USARTn_RXDOUBLEX - RX Buffer Double Data Extended Register

Offset															Bi	t Pc	siti	on	•													
0x020	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	7	10	6	∞	7	9	2	4	က	2	-	0
Reset	0	0										000×0					0	0										000×0				
Access	2	~										~					~	~										~				
Name	FERR1	PERR1										RXDATA1					FERR0	PERR0										RXDATA0				

Name	Reset	Access	Description
FERR1	0	R	Data Framing Error 1
Set if data in buffer	has a framing error. Ca	an be the result o	f a break condition.
PERR1	0	R	Data Parity Error 1
Set if data in buffer	has a parity error (asy	nchronous mode	only).
Reserved	To ensure co	mpatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
RXDATA1	0x000	R	RX Data 1
Second frame read	from buffer.		
FERR0	0	R	Data Framing Error 0
Set if data in buffer	has a framing error. Ca	an be the result o	f a break condition.
PERR0	0	R	Data Parity Error 0
Set if data in buffer	has a parity error (asy	nchronous mode	only).
Reserved	To ensure co	mpatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
RXDATA0	0x000	R	RX Data 0
First frame read from	m buffer.		
	FERR1 Set if data in buffer PERR1 Set if data in buffer Reserved RXDATA1 Second frame read FERR0 Set if data in buffer PERR0 Set if data in buffer Reserved RXDATA0	FERR1 0 Set if data in buffer has a framing error. Caper 1 0 Set if data in buffer has a parity error (asyn Reserved To ensure caper 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	FERR1 0 R Set if data in buffer has a framing error. Can be the result of the PERR1 0 R Set if data in buffer has a parity error (asynchronous mode reserved To ensure compatibility with full reserved RXDATA1 0x000 R Second frame read from buffer. FERR0 0 R Set if data in buffer has a framing error. Can be the result of the person o

Downloaded from I doubt come 2010-12-21 - d0034_Rev0.90 206 www.energymicro.com

15.5.10 USARTn_RXDOUBLE - RX FIFO Double Data Register

Offset	Bit Po	sition
0x024	31 30 30 30 30 30 30 30 30 30 30 30 30 30	4 4
Reset		00 00 00 00 00 00 00 00 00 00 00 00 00
Access		α α
Name		RXDATA1

Bit	Name	Reset	Access	Description
31:16	Reserved	To ensure co	ompatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
15:8	RXDATA1	0x00	R	RX Data 1
	Second frame read f	from buffer.		
7:0	RXDATA0	0x00	R	RX Data 0
	First frame read from	n buffer.		

15.5.11 USARTn_RXDATAXP - RX Buffer Data Extended Peek Register

Offset															Bi	t Pc	siti	on														
0x028	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	41	13	12	7	10	6	8	7	9	2	4	က	2	-	0
Reset																	0	0										000×0				
Access																	~	~										2				
Name																	FERRP	PERRP										RXDATAP				

Bit	Name	Reset	Access	Description
31:16	Reserved	To ensure co	ompatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
15	FERRP	0	R	Data Framing Error Peek
	Set if data in buffer	has a framing error. C	an be the result of	f a break condition.
14	PERRP	0	R	Data Parity Error Peek
	Set if data in buffer	has a parity error (asy	nchronous mode	only).
13:9	Reserved	To ensure co	ompatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
8:0	RXDATAP	0x000	R	RX Data Peek
	Use this register to	access data read from	the USART.	

Downloaded from Headlescom 2010-12-21 - d0034_Rev0.90 207 www.energymicro.com

15.5.12 USARTn_RXDOUBLEXP - RX Buffer Double Data Extended Peek Register

Offset															Ві	t Po	siti	on														
0x02C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	1	10	6	8	7	9	2	4	က	2	-	0
Reset	0	0										000×0					0	0										0×000				
Access	2	~										ď					œ	~										ď				
Name	FERRP1	PERRP1										RXDATAP1					FERRP0	PERRP0										RXDATAP0				

Bit	Name	Reset	Access	Description
31	FERRP1	0	R	Data Framing Error 1 Peek
	Set if data in buffer	has a framing error. Ca	an be the result o	f a break condition.
30	PERRP1	0	R	Data Parity Error 1 Peek
	Set if data in buffer	has a parity error (asyr	nchronous mode	only).
29:25	Reserved	To ensure co	mpatibility with fu	uture devices, always write bits to 0. More information in Section 2.1 (p. 3)
24:16	RXDATAP1	0x000	R	RX Data 1 Peek
	Second frame read	from FIFO.		
15	FERRP0	0	R	Data Framing Error 0 Peek
	Set if data in buffer	has a framing error. Ca	an be the result o	f a break condition.
14	PERRP0	0	R	Data Parity Error 0 Peek
	Set if data in buffer	has a parity error (asyr	nchronous mode	only).
13:9	Reserved	To ensure co	mpatibility with fu	uture devices, always write bits to 0. More information in Section 2.1 (p. 3)
8:0	RXDATAP0	0x000	R	RX Data 0 Peek
	First frame read fro	m FIFO.		

15.5.13 USARTn_TXDATAX - TX Buffer Data Extended Register

Offset					•					•					Bi	t Po	siti	on													•	
0x030	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	1	10	6	∞	7	9	2	4	က	2	-	0
Reset																	0	0	0	0	0							000x0				
Access																	>	≥	≥	≥	>							≥				
Name																	RXENAT	TXDISAT	TXBREAK	TXTRIAT	UBRXAT							TXDATAX				

Bit	Name	Reset	Access	Description
31:16	Reserved	To ensure compa	atibility with fut	ure devices, always write bits to 0. More information in Section 2.1 (p. 3)
15	RXENAT	0	W	Enable RX After Transmission
	Set to enable reception after	er transmission.		
14	TXDISAT	0	W	Clear TXEN After Transmission

Downloaded from I 2010-12-21 - d0034_Rev0.90 208 www.energymicro.com

Bit	Name	Reset	Access	Description
	Set to disable trans	smitter and release data	a bus directly afte	r transmission.
13	TXBREAK	0	W	Transmit Data As Break
	Set to send data a of WDATA.	as a break. Recipient w	ill see a framing	error or a break condition depending on its configuration and the value
12	TXTRIAT	0	W	Set TXTRI After Transmission
	Set to tristate trans	smitter by setting TXTRI	after transmission	n.
11	UBRXAT	0	W	Unblock RX After Transmission
	Set clear RXBLOC	K after transmission, ur	blocking the rece	eiver.
10:9	Reserved	To ensure co	mpatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
8:0	TXDATAX	0x000	W	TX Data
	Use this register to	write data to the USAF	T. If TXEN is set	, a transfer will be initiated at the first opportunity.

15.5.14 USARTn_TXDATA - TX Buffer Data Register

Offset															Bi	t Pc	siti	on														
0x034	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	0	ω	7	9	2	4	က	2	-	0
Reset																												(0×00			
Access																													>			
Name																												•	TXDATA			

Bit	Name	Reset	Access	Description
31:8	Reserved	To ensure compa	atibility with fut	ure devices, always write bits to 0. More information in Section 2.1 (p. 3)
7:0	TXDATA	0x00	W	TX Data
	This frame will be added to	TX buffer. Only 8 I	LSB can be wr	itten using this register. 9th bit and control bits will be cleared.

15.5.15 USARTn_TXDOUBLEX - TX Buffer Double Data Extended Register

Offset	Bit Position Bit Position 0 </th <th></th> <th></th> <th></th>																															
0x038	31	30	29	28	27	26	22	24	23	22	21	20	19	18	17	16	15	14	13	12	1	10	6	8	7	9	2	4	3	2	-	0
Reset	0	0	0	0	0																0							0×000				
Access	>	>	>	>	>							≥					>	≥	>	≥	>							≥				
Name	RXENAT1	TXDISAT1	TXBREAK1	TXTRIAT1	UBRXAT1							TXDATA1					RXENATO	TXDISAT0	TXBREAK0	TXTRIAT0	UBRXATO							TXDATA0				

Bit	Name	Reset	Access	Description
31	RXENAT1	0	W	Enable RX After Transmission
	Set to enable reception after	er transmission.		
30	TXDISAT1	0	W	Clear TXEN After Transmission

Downloaded from H coals com 2010-12-21 - d0034_Rev0.90 209 www.energymicro.com

Bit	Name	Reset	Access	Description
	Set to disable trans	mitter and release data	a bus directly afte	r transmission.
29	TXBREAK1	0	W	Transmit Data As Break
	Set to send data as of USARTn_WDAT.		vill see a framing	error or a break condition depending on its configuration and the value
28	TXTRIAT1	0	W	Set TXTRI After Transmission
	Set to tristate transr	mitter by setting TXTR	I after transmission	on.
27	UBRXAT1	0	W	Unblock RX After Transmission
	Set clear RXBLOCH	K after transmission, u	nblocking the rece	eiver.
26:25	Reserved	To ensure co	ompatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
24:16	TXDATA1	0x000	W	TX Data
	Second frame to wr	ite to FIFO.		
15	RXENAT0	0	W	Enable RX After Transmission
	Set to enable recep	tion after transmission	ı .	
14	TXDISAT0	0	W	Clear TXEN After Transmission
	Set to disable trans	mitter and release data	a bus directly afte	r transmission.
13	TXBREAK0	0	W	Transmit Data As Break
	Set to send data as of WDATA.	s a break. Recipient w	vill see a framing	error or a break condition depending on its configuration and the value
12	TXTRIAT0	0	W	Set TXTRI After Transmission
	Set to tristate transr	mitter by setting TXTR	I after transmission	on.
11	UBRXAT0	0	W	Unblock RX After Transmission
	Set clear RXBLOCH	Kafter transmission, u	nblocking the rece	eiver.
10:9	Reserved	To ensure co	ompatibility with fu	iture devices, always write bits to 0. More information in Section 2.1 (p. 3)
8:0	TXDATA0	0x000	W	TX Data
	First frame to write	to buffer.		

15.5.16 USARTn_TXDOUBLE - TX Buffer Double Data Register

Offset															Bi	t Po	siti	on														
0x03C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	7	10	6	8	7	9	2	4	3	2	-	0
Reset	00×6																00×0															
Access																					≥								≥			
Name																					TXDATA1								TXDATA0			

Bit	Name	Reset	Access	Description
31:16	Reserved	To ensure c	ompatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
15:8	TXDATA1	0x00	W	TX Data
	Second frame to wi	rite to buffer.		
7:0	TXDATA0	0x00	W	TX Data
	First frame to write	to buffer.		

Downloaded from Hoods, com 2010-12-21 - d0034_Rev0.90 210 www.energymicro.com

15.5.17 USARTn_IF - Interrupt Flag Register

Offset						· · · · ·									Bi	t Pc	siti	on														
0x040	31	30	59	78	27	56	22	24	23	22	21	20	19	18	17	16	15	4	13	12	1	10	თ	∞	7	9	2	4	ю	2	-	0
Reset				•							•				•					0	0	0	0	0	0	0	0	0	0	0	-	0
Access																				œ	œ	œ	œ	œ	~	22	œ	œ	œ	œ	œ	œ
Name																				CCF	SSM	MPAF	FERR	PERR	TXUF	TXOF	RXUF	RXOF	RXFULL	RXDATAV	TXBL	TXC

Bit	Name Name	Reset	Access	Description
31:13	Reserved	To ensure co	ompatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
12	CCF	0	R	Collision Check Fail Interrupt Flag
	Set when a collision	check notices an erro	or in the transmitte	ed data.
11	SSM	0	R	Slave-Select In Master Mode Interrupt Flag
	Set when the device	is selected as a slave	e when in master	mode.
10	MPAF	0	R	Multi-Processor Address Frame Interrupt Flag
	Set when a multi-pro	ocessor address frame	e is detected.	
9	FERR	0	R	Framing Error Interrupt Flag
	Set when a frame w	ith a framing error is r	eceived while RXI	BLOCK is cleared.
8	PERR	0	R	Parity Error Interrupt Flag
	Set when a frame w	ith a parity error (asyn	chronous mode o	only) is received while RXBLOCK is cleared.
7	TXUF	0	R	TX Underflow Interrupt Flag
	Set when operating new frame.	as a synchronous sla	ave, no data is av	vailable in the transmit buffer when the master starts transmission of a
6	TXOF	0	R	TX Overflow Interrupt Flag
	Set when a write is	done to the transmit b	uffer while it is full	. The data already in the transmit buffer is preserved.
5	RXUF	0	R	RX Underflow Interrupt Flag
	Set when trying to re	ead from the receive b	ouffer when it is er	npty.
4	RXOF	0	R	RX Overflow Interrupt Flag
	Set when data is inc	coming while the recei	ve shift register is	full. The data previously in the shift register is lost.
3	RXFULL	0	R	RX Buffer Full Interrupt Flag
	Set when the receive	e buffer becomes full.		
2	RXDATAV	0	R	RX Data Valid Interrupt Flag
	Set when data beco	mes available in the re	eceive buffer.	
1	TXBL	1	R	TX Buffer Level Interrupt Flag
	Set when buffer bec	omes empty if TXBIL	is set, or when bu	ffer goes from full to half-full if TXBIL is cleared
0	TXC	0	R	TX Complete Interrupt Flag
	This interrupt is used	d after a transmission	when both the TX	buffer and shift register are empty.

Downloaded from Elecules com

15.5.18 USARTn_IFS - Interrupt Flag Set Register

Offset															Bi	t Po	siti	on														
0x044	31	30	29	28	27	26	22	24	23	22	21	20	19	18	17	16	15	14	13	12	7	10	6	œ	7	9	5	4	က	2	-	0
Reset			•														•			0	0	0	0	0	0	0	0	0	0			0
Access																				×	N V	W	X	W 1	N N	W	ž	N V	W V			X
Name																				CCF	SSM	MPAF	FERR	PERR	TXUF	TXOF	RXUF	RXOF	RXFULL			TXC

Bit	Name	Reset	Access	Description
31:13	Reserved	To ensure com	patibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
12	CCF	0	W1	Set Collision Check Fail Interrupt Flag
	Write to 1 to set the	e CCF interrupt flag.		
11	SSM	0	W1	Set Slave-Select in Master mode Interrupt Flag
	Write to 1 to set the	e SSM interrupt flag.		
10	MPAF	0	W1	Set Multi-Processor Address Frame Interrupt Flag
	Write to 1 to set the	e MPAF interrupt flag.		
9	FERR	0	W1	Set Framing Error Interrupt Flag
	Write to 1 to set the	e FERR interrupt flag.		
8	PERR	0	W1	Set Parity Error Interrupt Flag
	Write to 1 to set the	e PERR interrupt flag.		
7	TXUF	0	W1	Set TX Underflow Interrupt Flag
	Write to 1 to set the	e TXUF interrupt flag.		
6	TXOF	0	W1	Set TX Overflow Interrupt Flag
	Write to 1 to set the	e TXOF interrupt flag.		
5	RXUF	0	W1	Set RX Underflow Interrupt Flag
	Write to 1 to set the	e RXUF interrupt flag.		
4	RXOF	0	W1	Set RX Overflow Interrupt Flag
	Write to 1 to set the	e RXOF interrupt flag.		
3	RXFULL	0	W1	Set RX Buffer Full Interrupt Flag
	Write to 1 to set the	e RXFULL interrupt flag.		
2:1	Reserved	To ensure com	patibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
0	TXC	0	W1	Set TX Complete Interrupt Flag
	Write to 1 to set the	e TXC interrupt flag.		

15.5.19 USARTn_IFC - Interrupt Flag Clear Register

Offset															Bi	t Pc	siti	on														
0x048	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	41	13	12	1	10	6	8	7	9	5	4	က	2	-	0
Reset			•		•												•			0	0	0	0	0	0	0	0	0	0			0
Access																				Ž.	W	W	٧ ا	W1	W	N V	Ž.	N V	W			X
Name																				CCF	SSM	MPAF	FERR	PERR	TXUF	TXOF	RXUF	RXOF	RXFULL			TXC

Downloaded from Heads.com 2010-12-21 - d0034_Rev0.90 212 www.energymicro.com

Bit	Name	Reset	Access	Description
31:13	Reserved	To ensure co	mpatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
12	CCF	0	W1	Clear Collision Check Fail Interrupt Flag
	Write to 1 to clear the	CCF interrupt flag.		
11	SSM	0	W1	Clear Slave-Select In Master Mode Interrupt Flag
	Write to 1 to clear the	SSM interrupt flag.		
10	MPAF	0	W1	Clear Multi-Processor Address Frame Interrupt Flag
	Write to 1 to clear the	MPAF interrupt flag.		
9	FERR	0	W1	Clear Framing Error Interrupt Flag
	Write to 1 to clear the	FERR interrupt flag.		
8	PERR	0	W1	Clear Parity Error Interrupt Flag
	Write to 1 to clear the	PERR interrupt flag.		
7	TXUF	0	W1	Clear TX Underflow Interrupt Flag
	Write to 1 to clear the	TXUF interrupt flag.		
6	TXOF	0	W1	Clear TX Overflow Interrupt Flag
	Write to 1 to clear the	TXOF interrupt flag.		
5	RXUF	0	W1	Clear RX Underflow Interrupt Flag
	Write to 1 to clear the	RXUF interrupt flag.		
4	RXOF	0	W1	Clear RX Overflow Interrupt Flag
	Write to 1 to clear the	RXOF interrupt flag.		
3	RXFULL	0	W1	Clear RX Buffer Full Interrupt Flag
	Write to 1 to clear the	RXFULL interrupt fla	ag.	
2:1	Reserved	To ensure co	mpatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
0	TXC	0	W1	Clear TX Complete Interrupt Flag
	Write to 1 to clear the	TXC interrupt flag.		

15.5.20 USARTn_IEN - Interrupt Enable Register

Offset															Bi	t Po	siti	on														
0x04C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	41	13	12	7	10	6	8	7	9	5	4	3	2	-	0
Reset																				0	0	0	0	0	0	0	0	0	0	0	0	0
Access																				N N	W.	ΑW	ΑW	ΑW	R W	RW	RW W	ΑW	ΑW	ΑW	ΑW	R W
Name																				CCF	SSM	MPAF	FERR	PERR	TXUF	TXOF	RXUF	RXOF	RXFULL	RXDATAV	TXBL	TXC

Bit	Name	Reset	Access	Description
31:13	Reserved	To ensure co	ompatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
12	CCF	0	RW	Collision Check Fail Interrupt Enable
	Enable interrupt or	n collision check error d	letected.	
11	SSM	0	RW	Slave-Select In Master Mode Interrupt Enable
	Enable interrupt or	slave-select in master	mode.	
10	MPAF	0	RW	Multi-Processor Address Frame Interrupt Enable
	Enable interrupt or	n multi-processor addre	ess frame.	
9	FERR	0	RW	Framing Error Interrupt Enable

Bit	Name	Reset	Access	Description
	Enable interrupt on framing	error.		
8	PERR	0	RW	Parity Error Interrupt Enable
	Enable interrupt on parity e	rror (asynchronous	mode only).	
7	TXUF	0	RW	TX Underflow Interrupt Enable
	Enable interrupt on TX under	erflow.		
6	TXOF	0	RW	TX Overflow Interrupt Enable
	Enable interrupt on TX over	rflow.		
5	RXUF	0	RW	RX Underflow Interrupt Enable
	Enable interrupt on RX und	erflow.		
4	RXOF	0	RW	RX Overflow Interrupt Enable
	Enable interrupt on RX over	rflow.		
3	RXFULL	0	RW	RX Buffer Full Interrupt Enable
	Enable interrupt on RX Buff	fer full.		
2	RXDATAV	0	RW	RX Data Valid Interrupt Enable
	Enable interrupt on RX data	a.		
1	TXBL	0	RW	TX Buffer Level Interrupt Enable
	Enable interrupt on TX buffe	er level.		
0	TXC	0	RW	TX Complete Interrupt Enable
	Enable interrupt on TX com	plete.		

15.5.21 USARTn_IRCTRL - IrDA Control Register

Offset															Bi	t Po	siti	on													
0x050	33	30	59	28	27	56	22	24	23	22	21	20	19	18	17	16	15	41	13	12	1	10	6	8	7	9	2	4	е	2 +	0
Reset				•																					0		0×0		0	0x0	0
Access																									RW		R		RW	RW W	R ≷
Name																									IRPRSEN		IRPRSSEL		IRFILT	IRPW	IREN

Bit	Name	Reset	Access	Description
31:8	Reserved	To ensure co	mpatibility with fu	uture devices, always write bits to 0. More information in Section 2.1 (p. 3)
7	IRPRSEN	0	RW	IrDA PRS Channel Enable
	Enable the PR	S channel selected by IRPF	RSSEL as input to	o IrDA module instead of TX.
6:4	IRPRSSEL	0x0	RW	IrDA PRS Channel Select
	A PRS can be	used as input to the pulse r	modulator instead	d of TX. This value selects the channel to use.
	Value	Mode	Des	scription
	0	PRSCH0	PR	S Channel 0 selected
	1	PRSCH1	PR	S Channel 1 selected
	2	PRSCH2	PR	S Channel 2 selected
	3	PRSCH3	PR	S Channel 3 selected
	4	PRSCH4	PR	S Channel 4 selected
	5	PRSCH5	PR	S Channel 5 selected
	6	PRSCH6	PR	S Channel 6 selected
	7	PRSCH7	PR	S Channel 7 selected

IrDA RX Filter

2010-12-21 - d0034_Rev0.90 www.energymicro.com

RW

IRFILT

Bit	Name	Res	set Acce	ss Description
	Set to enable	e filter on IrDA demo	dulator.	
	Value	Descrip	ption	
	0	No filte	er enabled	
	1	Filter e	nabled. IrDA pulse mus	t be high for at least 4 consecutive clock cycles to be detected
2:1	IRPW	0x0	RW	IrDA TX Pulse Width
	Configure th	e pulse width genera	ated by the IrDA mode	ulator as a fraction of the configured USART bit period.
	Value	Mode		Description
	0	ONE		IrDA pulse width is 1/16 for OVS=0 and 1/8 for OVS=1
	1	TWO		IrDA pulse width is 2/16 for OVS=0 and 2/8 for OVS=1
	2	THREE		IrDA pulse width is 3/16 for OVS=0 and 3/8 for OVS=1
	3	FOUR		IrDA pulse width is 4/16 for OVS=0 and 4/8 for OVS=1
0	IREN	0	RW	Enable IrDA Module
	Enable IrDA	module and rout US	ART signals through	it.

15.5.22 USARTn_ROUTE - I/O Routing Register

Offset			•												Bi	t Po	siti	on													•	
0x054	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	11	10	6	80	7	9	2	4	က	2	-	0
Reset				•				•															0x0						0	0	0	0
Access																													Z.	Z.	W.	W.
Name																							LOCATION						CLKPEN	CSPEN	TXPEN	RXPEN

Bit	Name		Reset	Acces	s Description
31:11	Reserved		To ensure c	ompatibility wi	th future devices, always write bits to 0. More information in Section 2.1 (p. 3)
10:8	LOCATION		0x0	RW	I/O Location
	Decides the loc	cation of the	e USART I/O pi	ns.	
	Value	Mode			Description
	0	LOC0			Location 0
	1	LOC1			Location 1
	2	LOC2			Location 2
	3	LOC3			Location 3
7:4	Reserved		To ensure c	ompatibility wi	th future devices, always write bits to 0. More information in Section 2.1 (p. 3)
3	CLKPEN		0	RW	CLK Pin Enable
	When set, the	CLK pin of	the USART is e	enabled.	
	Value		Description		
	0		The USn_CLK p	in is disabled	
	1		The USn_CLK p	in is enabled	
2	CSPEN		0	RW	CS Pin Enable
	When set, the	CS pin of th	ne USART is en	abled.	
	Value		Description		
	0		The USn_CS pir	n is disabled	
	1		The USn_CS pir	n is enabled	
			<u> </u>		

Downloaded from Heads Company 2010-12-21 - d0034_Rev0.90 215 www.energymicro.com

When set, the TX/MOSI pin of the USART is enabled

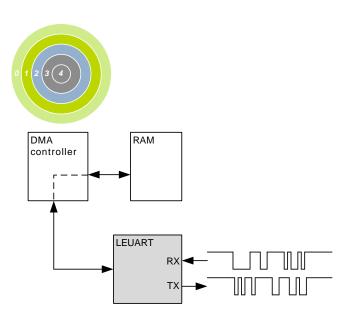
Bit	Name	Reset	Access	Description						
	Value	Description								
	0	The U(S)n_TX (M	OSI) pin is disabled							
	1	The U(S)n_TX (M	he U(S)n_TX (MOSI) pin is enabled							
0	RXPEN	0	RW	RX Pin Enable						
	When set, the R	X/MISO pin of the USART	is enabled.							
	Value	Description								
	0	The U(S)n_RX (M	IISO) pin is disabled	I						
	1	The U(S)n_RX (N	IISO) pin is enabled							

15.5.23 USARTn_INPUT - USART Input Register

Offset	Bit Position																															
0x058	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	ი	80	7	9	2	4	က	2	_	0
Reset					•												•							•				0			0x0	
Access																												₩ M			R M	
Name																												RXPRS			RXPRSSEL	

Bit	Name	Reset	Access	Description										
31:5	Reserved	To ensure o	compatibility with	future devices, always write bits to 0. More information in Section 2.1 (p. 3)										
4	RXPRS	0	RW	PRS RX Enable										
	When set, the F	PRS channel selected as	input to RX.											
3	Reserved	To ensure o	compatibility with	future devices, always write bits to 0. More information in Section 2.1 (p. 3)										
2:0	RXPRSSEL	0x0	RW	RX PRS Channel Select										
	Select PRS channel as input to RX.													
	Value	Mode	С	Description										
	0	PRSCH0	P	RS Channel 0 selected										
	1	PRSCH1	P	RS Channel 1 selected										
	2	PRSCH2	P	PRS Channel 2 selected										
	3	PRSCH3	P	PRS Channel 3 selected										
	4	PRSCH4	P	RS Channel 4 selected										
	5	PRSCH5	P	RS Channel 5 selected										
	6	PRSCH6	P	RS Channel 6 selected										
	7	PRSCH7	P	PRS Channel 7 selected										

15.5.24 USARTn_I2SCTRL - I2S Control Register


Offset		Bit Position																														
0x05C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	ი	8	7	9	2	4	က	2	-	0
Reset			•									•											0×0					0	0	0	0	0
Access																												₩ M	₩ M	% §	₩ M	₩ M
Name																							FORMAT					DELAY	DMASPLIT	JUSTIFY	MONO	Z Z

Bit	Name	Reset	Acces	ss Description								
31:11	Reserved	To ensure co	ompatibility w	ith future devices, always write bits to 0. More information in Section 2.1 (p. 3)								
10:8	FORMAT	0x0	RW	I2S Word Format								
	Configure the o	lata-width used internally for	or I2S data									
	Value	Mode		Description								
	0	W32D32		32-bit word, 32-bit data								
	1	W32D24M		32-bit word, 32-bit data with 8 lsb masked								
	2	W32D24		32-bit word, 24-bit data								
	3	W32D16		32-bit word, 16-bit data								
	4	W32D8		32-bit word, 8-bit data								
	5	W16D16		16-bit word, 16-bit data								
	6	W16D8		16-bit word, 8-bit data								
	7	W8D8		8-bit word, 8-bit data								
7:5	Reserved	To ensure co	ompatibility w	ith future devices, always write bits to 0. More information in Section 2.1 (p. 3)								
4	DELAY	0	RW	Delay on I2S data								
	Set to add a one	e-cycle delay between a tra	nsition on the	word-clock and the start of the I2S word. Should be set for standard I2S format								
3	DMASPLIT	0	RW	Separate DMA Request For Left/Right Data								
	When set DMA	requests for right-channel	data are put	on the TXBLRIGHT and RXDATAVRIGHT DMA requests.								
2	JUSTIFY	0	RW	Justification of I2S Data								
	Determines wh	ether the I2S data is left or	right justified	1								
	Value	Mode		Description								
	0	LEFT		Data is left-justified								
	1	RIGHT		Data is right-justified								
1	MONO	0	RW	Stero or Mono								
	Switch between	n stereo and mono mode. S	Set for mono									
0	EN	0	RW	Enable I2S Mode								
	Set the U(S)AF	RT in I2S mode.										

16 LEUART - Low Energy Universal Asynchronous Receiver/Transmitter

Quick Facts

What?

The LEUART provides full UART communication using a low frequency 32.768 kHz clock, and has special features for communication without CPU intervention.

Why?

It allows UART communication to be performed in low energy modes, using only a few µA during active communication and only 150 nA when waiting for incoming data.

How?

A low frequency clock signal allows communication with less energy. Using DMA, the LEUART can transmit and receive data with minimal CPU intervention. Special UART-frames can be configured to help control the data flow, further automating data transmission.

16.1 Introduction

The unique LEUARTTM, the Low Energy UART, is a UART that allows two-way UART communication on a strict power budget. Only a 32.768 kHz clock is needed to allow UART communication up to 9600 baud/s.

Even when the EFM is in low energy mode EM2 (with most core functionality turned off), the LEUART can wait for an incoming UART frame while having an extremely low energy consumption. When a UART frame is completely received, the CPU can quickly be woken up. Alternatively, multiple frames can be transferred via the Direct Memory Access (DMA) module into RAM memory before waking up the CPU.

Received data can optionally be blocked until a configurable start frame is detected. A signal frame can be configured to generate an interrupt to indicate e.g. the end of a data transmission. The start frame and signal frame can be used in combination for instance to handle higher level communication protocols.

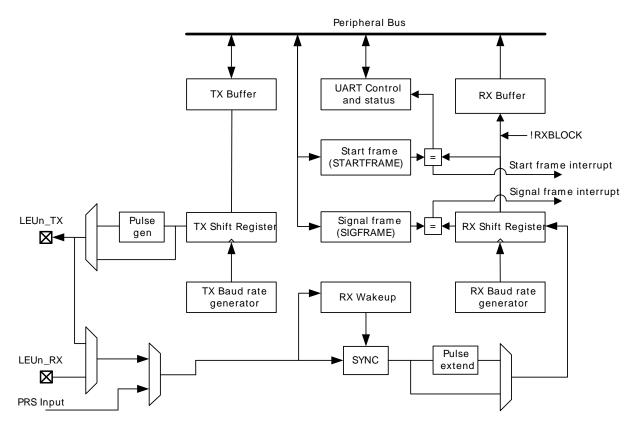
Similarly, data can be transmitted in EM2 either on a frame-by-frame basis with data from the CPU or through use of the DMA.

The LEUART includes all necessary hardware support to make asynchronous serial communication possible with minimum of software intervention and energy consumption.

16.2 Features

- · Low energy asynchronous serial communications
- Full/half duplex communication
- Separate TX / RX enable
- · Separate double buffered transmit buffer and receive buffer
- Programmable baud rate, generated as a fractional division of the LFBCLK

Downloaded from E 2010-12-21 - d0034_Rev0.90 218 www.energymicro.com

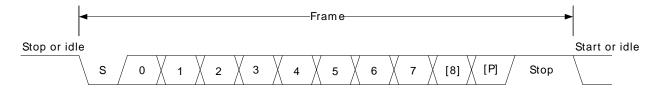


- Supports baud rates from 300 baud/s to 9600 baud/s
- Can use a high frequency clock source for even higher baud rates
- Configurable number of data bits: 8 or 9 (plus parity bit, if enabled)
- Configurable parity: off, even or odd
 - · HW parity bit generation and check
- Configurable number of stop bits, 1 or 2
- Capable of sleep-mode wakeup on received frame
 - · Either wake-up on any received byte or
 - · Wake up only on specified start and signal frames
- · Supports transmission and reception in EM0, EM1 and EM2 with
 - Full DMA support
 - · Specified start-byte can start reception automatically
- IrDA modulator (pulse generator, pulse extender)
- Multi-processor mode
- Loopback mode
 - · Half duplex communication
 - Communication debugging
- PRS RX input

16.3 Functional Description

An overview of the LEUART module is shown in Figure 16.1 (p. 219) .

Figure 16.1. LEUART Overview


16.3.1 Frame Format

The frame format used by the LEUART consists of a set of data bits in addition to bits for synchronization and optionally a parity bit for error checking. A frame starts with one start-bit (S), where the line is driven

low for one bit-period. This signals the start of a frame, and is used for synchronization. Following the start bit are 8 or 9 data bits and an optional parity bit. The data is transmitted with the least significant bit first. Finally, a number of stop-bits, where the line is driven high, end the frame. The frame format is shown in Figure 16.2 (p. 220).

Figure 16.2. LEUART Asynchronous Frame Format

The number of data bits in a frame is set by DATABITS in LEUARTn_CTRL, and the number of stop-bits is set by STOPBITS in LEUARTn_CTRL. Whether or not a parity bit should be included, and whether it should be even or odd is defined by PARITY in LEUARTn_CTRL. For communication to be possible, all parties of an asynchronous transfer must agree on the frame format being used.

The frame format used by the LEUART can be inverted by setting INV in LEUARTn_CTRL. This affects the entire frame, resulting in a low idle state, a high start-bit, inverted data and parity bits, and low stop-bits. INV should only be changed while the receiver is disabled.

16.3.1.1 Parity Bit Calculation and Handling

Hardware automatically inserts parity bits into outgoing frames and checks the parity bits of incoming frames. The possible parity modes are defined in Table 16.1 (p. 220). When even parity is chosen, a parity bit is inserted to make the number of high bits (data + parity) even. If odd parity is chosen, the parity bit makes the total number of high bits odd. When parity bits are disabled, which is the default configuration, the parity bit is omitted.

Table 16.1. LEUART Parity Bit

PARITY [1:0]	Description
00	No parity (default)
01	Reserved
10	Even parity
11	Odd parity

See Section 16.3.5.4 (p. 225) for more information on parity bit handling.

16.3.2 Clock Source

The LEUART clock source is selected by the LFB bit field the CMU_LFCLKSEL register. The clock is prescaled by the LEUARTn bitfield in the CMU_LFBPRESC0 register and enabled by the LEUARTn bit in the CMU_LFBCLKEN0.

To use this module, the LE interface clock must be enabled in CMU_HFCORECLKEN0, in addition to the module clock.

16.3.3 Clock Generation

The LEUART clock defines the transmission and reception data rate. The clock generator employs a fractional clock divider to allow baud rates that are not attainable by integral division of the 32.768 kHz clock that drives the LEUART.

The clock divider used in the LEUART is a 12-bit value, with a 7-bit integral part and a 5-bit fractional part. The baud rate of the LEUART is given by :

LEUART Baud Rate Equation

$$br = fLEUARTn/(1 + LEUARTn_CLKDIV/256)$$
(16.1)

where fLEUARTn is the clock frequency supplied to the LEUART. The value of LEUARTn CLKDIV thus defines the baud rate of the LEUART. The integral part of the divider is right-aligned in the upper 24 bits of LEUARTn_CLKDIV and the fractional part is left-aligned in the lower 8 bits. The divider is thus a 256th of LEUARTn_CLKDIV as seen in the equation.

For a desired baud rate br_{DESIRED}, LEUARTn_CLKDIV can be calculated by using:

LEUART CLKDIV Equation

$$LEUARTn_CLKDIV = 256 \times (fLEUARTn/br_{DESIRED} - 1)$$
 (16.2)

Table 16.2 (p. 221) lists a set of desired baud rates and the closest baud rates reachable by the LEUART with a 32.768 kHz clocksource. It also shows the average baud rate error.

Table 16.2. LEUART Baud Rates

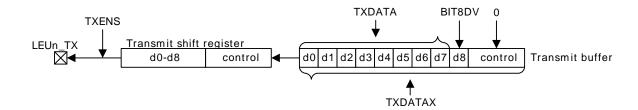
Desired baud rate [baud/s]	LEUARTn_CLKDIV	LEUARTn_CLKDIV/256	Actual baud rate [baud/s]	Error [%]
300	27704	108,21875	300,0217	0,01
600	13728	53,625	599,8719	-0,02
1200	6736	26,3125	1199,744	-0,02
2400	3240	12,65625	2399,487	-0,02
4800	1488	5,8125	4809,982	0,21
9600	616	2,40625	9619,963	0,21

16.3.4 Data Transmission

Data transmission is initiated by writing data to the transmit buffer using one of the methods described in Section 16.3.4.1 (p. 221). When the transmission shift register is empty and ready for new data, a frame from the transmit buffer is loaded into the shift register, and if the transmitter is enabled, transmission begins. When the frame has been transmitted, a new frame is loaded into the shift register if available, and transmission continues. If the transmit buffer is empty, the transmitter goes to an idle state, waiting for a new frame to become available. Transmission is enabled through the command register LEUARTn_CMD by setting TXEN, and disabled by setting TXDIS. When the transmitter is disabled using TXDIS, any ongoing transmission is aborted, and any frame currently being transmitted is discarded. When disabled, the TX output goes to an idle state, which by default is a high value. Whether or not the transmitter is enabled at a given time can be read from TXENS in LEUARTn_STATUS. After a transmission, when there is no more data in the shift register or transmit buffer, the TXC flag in LEUARTn_STATUS and the TXC interrupt flag in LEUARTn_IF are set, signaling that the transmitter is idle. The TXC status flag is cleared when a new byte becomes available for transmission, but the TXC interrupt flag must be cleared by software.

16.3.4.1 Transmit Buffer Operation

A frame can be loaded into the transmit buffer by writing to LEUARTn_TXDATA or LEUARTn_TXDATAX. Using LEUARTn TXDATA allows 8 bits to be written to the buffer. If 9 bit frames are used, the 9th bit will in that case be set to the value of BIT8DV in LEUARTn_CTRL. To set the 9th bit directly and/or use transmission control, LEUARTn_TXDATAX must be used. When writing data to the transmit buffer


using LEUARTn_TXDATAX, the 9th bit written to LEUARTn_TXDATAX overrides the value in BIT8DV, and alone defines the 9th bit that is transmitted if 9-bit frames are used.

If a write is attempted to the transmit buffer when it is not empty, the TXOF interrupt flag in LEUARTn_IF is set, indicating the overflow. The data already in the buffer is in that case preserved, and no data is written.

In addition to the interrupt flag TXC in LEUARTn_IF and the status flag TXC in LEUARTn_STATUS which are set when the transmitter becomes idle, TXBL in LEUARTn_STATUS and the TXBL interrupt flag in LEUARTn_IF are used to indicate the level of the transmit buffer. Whenever the transmit buffer becomes empty, these flags are set high. Both the TXBL status flag and the TXBL interrupt flag are cleared automatically when data is written to the transmit buffer.

The transmit buffer, including the TX shift register can be cleared by setting command bit CLEARTX in LEUARTn_CMD. This will prevent the LEUART from transmitting the data in the buffer and shift register, and will make them available for new data. Any frame currently being transmitted will not be aborted. Transmission of this frame will be completed. An overview of the operation of the transmitter is shown in Figure 16.3 (p. 222).

Figure 16.3. LEUART Transmitter Overview

16.3.4.2 Frame Transmission Control

The transmission control bits, which can be written using LEUARTn_TXDATAX, affect the transmission of the written frame. The following options are available:

- Generate break: By setting WBREAK, the output will be held low during the first stop-bit period to generate a framing error. A receiver that supports break detection detects this state, allowing it to be used e.g. for framing of larger data packets. The line is driven high for one baud period before the next frame is transmitted so the next start condition can be identified correctly by the recipient. Continuous breaks lasting longer than an UART frame are thus not supported by the LEUART. GPIO can be used for this. Note that when AUTOTRI in LEUARTn_CTRL is used, the transmitter is not tristated before the high-bit after the break has been transmitted.
- Disable transmitter after transmission: If TXDISAT is set, the transmitter is disabled after the frame has been fully transmitted.
- Enable receiver after transmission: If RXENAT is set, the receiver is enabled after the frame has been fully transmitted. It is enabled in time to detect a start-bit directly after the last stop-bit has been transmitted.

The transmission control bits in the LEUART cannot tristate the transmitter. This is performed automatically by hardware however, if AUTOTRI in LEUARTn_CTRL is set. See Section 16.3.7 (p. 227) for more information on half duplex operation.

16.3.4.3 Jitter in Transmitted Data

Internally the LEUART module uses only the positive edges of the 32.768 kHz clock (LFBCLK) for transmission and reception. Transmitted data will thus have jitter equal to the difference between the optimal data set-up location and the closest positive edge on the 32.768 kHz clock. The jitter in on the location data is set up by the transmitter will thus be no more than half a clock period according to the optimal set-up location. The jitter in the period of a single baud output by the transmitter will never be more than one clock period.

16.3.5 Data Reception

Data reception is enabled by setting RXEN in LEUARTn_CMD. When the receiver is enabled, it actively samples the input looking for a transition from high to low indicating the start baud of a new frame. When a start baud is found, reception of the new frame begins if the receive shift register is empty and ready for new data. When the frame has been received, it is pushed into the receive buffer, making the shift register ready for another frame of data, and the receiver starts looking for another start baud. If the receive buffer is full, the received frame remains in the shift register until more space in the receive buffer is available.

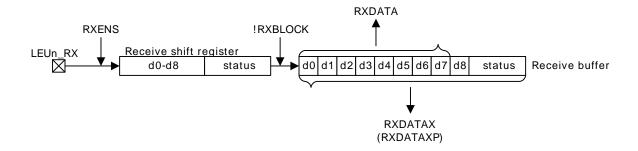
If an incoming frame is detected while both the receive buffer and the receive shift register are full, the data in the receive shift register is overwritten, and the RXOF interrupt flag in LEUARTn_IF is set to indicate the buffer overflow.

The receiver can be disabled by setting the command bit RXDIS in LEUARTn_CMD. Any frame currently being received when the receiver is disabled is discarded. Whether or not the receiver is enabled at a given time can be read out from RXENS in LEUARTn STATUS.

16.3.5.1 Receive Buffer Operation

When data becomes available in the receive buffer, the RXDATAV flag in LEUARTn STATUS and the RXDATAV interrupt flag in LEUARTn_IF are set. Both the RXDATAV status flag and the RXDATAV interrupt flag are cleared by hardware when data is no longer available, i.e. when data has been read out of the buffer.

Data can be read from receive buffer using either LEUARTn_RXDATA or LEUARTn_RXDATAX. LEUARTn_RXDATA gives access to the 8 least significant bits of the received frame, while LEUARTn RXDATAX must be used to get access to the 9th, most significant bit. The latter register also contains status information regarding the frame.


When a frame is read from the receive buffer using LEUARTn_RXDATA or LEUARTn_RXDATAX, the frame is removed from the buffer, making room for a new one. If an attempt is done to read more frames from the buffer than what is available, the RXUF interrupt flag in LEUARTn_IF is set to signal the underflow, and the data read from the buffer is undefined.

Frames can also be read from the receive buffer without removing the data by using LEUARTn RXDATAXP, which gives access to the frame in the buffer including control bits. Data read from this register when the receive buffer is empty is undefined. No underflow interrupt is generated by a read using LEUARTn RXDATAXP, i.e. the RXUF interrupt flag is never set as a result of reading from LEUARTn_RXDATAXP.

An overview of the operation of the receiver is shown in Figure 16.4 (p. 224).

Figure 16.4. LEUART Receiver Overview

16.3.5.2 Blocking Incoming Data

When using hardware frame recognition, as detailed in Section 16.3.5.6 (p. 225), Section 16.3.5.7 (p. 226), and Section 16.3.5.8 (p. 226), it is necessary to be able to let the receiver sample incoming frames without passing the frames to software by loading them into the receive buffer. This is accomplished by blocking incoming data.

Incoming data is blocked as long as RXBLOCK in LEUARTn_STATUS is set. When blocked, frames received by the receiver will not be loaded into the receive buffer, and software is not notified by the RXDATAV bit in LEUARTn_STATUS or the RXDATAV interrupt flag in LEUARTn_IF at their arrival. For data to be loaded into the receive buffer, RXBLOCK must be cleared in the instant a frame is fully received by the receiver. RXBLOCK is set by setting RXBLOCKEN in LEUARTn_CMD and disabled by setting RXBLOCKDIS also in LEUARTn CMD. There are two exceptions where data is loaded into the receive buffer even when RXBLOCK is set. The first is when an address frame is received when in operating in multi-processor mode as shown in Section 16.3.5.8 (p. 226). The other case is when receiving a start-frame when SFUBRX in LEUARTn_CTRL is set; see Section 16.3.5.6 (p. 225)

Frames received containing framing or parity errors will not result in the FERR and PERR interrupt flags in LEUARTn IF being set while RXBLOCK is set. Hardware recognition is not applied to these erroneous frames, and they are silently discarded.

Note

If a frame is received while RXBLOCK in LEUARTn STATUS is cleared, but stays in the receive shift register because the receive buffer is full, the received frame will be loaded into the receive buffer when space becomes available even if RXBLOCK is set at that time.

The overflow interrupt flag RXOF in LEUARTn_IF will be set if a frame in the receive shift register, waiting to be loaded into the receive buffer is overwritten by an incoming frame even though RXBLOCK is set.

16.3.5.3 Data Sampling

The receiver samples each incoming baud as close as possible to the middle of the baud-period. Except for the start-bit, only a single sample is taken of each of the incoming bauds.

The length of a baud-period is given by 1 + LEUARTn CLKDIV/256, as a number of 32.768 kHz clock periods. Let the clock cycle where a start-bit is first detected be given the index 0. The optimal sampling point for each baud in the UART frame is then given by the following equation:

LEUART Optimal Sampling Point

$$S_{opt}(n) = n (1 + LEUARTn_CLKDIV/256) + CLKDIV/512$$
(16.3)

where n is the bit-index.

Since samples are only done on the positive edges of the 32.768 kHz clock, the actual samples are performed on the closest positive edge, i.e. the edge given by the following equation:

LEUART Actual Sampling Point

$$S(n) = floor(n \times (1 + LEUARTn_CLKDIV/256) + LEUARTn_CLKDIV/512)$$
(16.4)

The sampling location will thus have jitter according to difference between Sopt and S. The start-bit is found at n=0, then follows the data bits, any parity bit, and the stop bits.

If the value of the start-bit is found to be high, then the start-bit is discarded, and the receiver waits for a new start-bit.

16.3.5.4 Parity Error

When the parity bit is enabled, a parity check is automatically performed on incoming frames. When a parity error is detected in a frame, the data parity error bit PERR in the frame is set, as well as the interrupt flag PERR. Frames with parity errors are loaded into the receive buffer like regular frames.

PERR can be accessed by reading the frame from the receive buffer using the LEUARTn_RXDATAX register.

16.3.5.5 Framing Error and Break Detection

A framing error is the result of a received frame where the stop bit was sampled to a value of 0. This can be the result of noise and baud rate errors, but can also be the result of a break generated by the transmitter on purpose.

When a framing error is detected, the framing error bit FERR in the received frame is set. The interrupt flag FERR in LEUARTn_IF is also set. Frames with framing errors are loaded into the receive buffer like regular frames.

FERR can be accessed by reading the frame from the receive buffer using the LEUARTn_RXDATAX or LEUARTn RXDATAXP registers.

16.3.5.6 Programmable Start Frame

The LEUART can be configured to start receiving data when a special start frame is detected on the input. This can be useful when operating in low energy modes, allowing other devices to gain the attention of the LEUART by transmitting a given frame.

When SFUBRX in LEUARTn_CTRL is set, an incoming frame matching the frame defined in LEUARTn_STARTFRAME will result in RXBLOCK in LEUARTn_STATUS being cleared. This can be used to enable reception when a specified start frame is detected. If the receiver is enabled and blocked, i.e. RXENS and RXBLOCK in LEUARTn_STATUS are set, the receiver will receive all incoming frames, but unless an incoming frame is a start frame it will be discarded and not loaded into the receive buffer. When a start frame is detected, the block is cleared, and frames received from that point, including the start frame, are loaded into the receive buffer.

An incoming start frame results in the STARTF interrupt flag in LEUARTn IF being set, regardless of the value of SFUBRX in LEUARTn_CTRL. This allows an interrupt to be made when the start frame is detected.

When 8 data-bit frame formats are used, only the 8 least significant bits of LEUARTn_STARTFRAME are compared to incoming frames. The full length of LEUARTn_STARTFRAME is used when operating with frames consisting of 9 data bits.

Note

The receiver must be enabled for start frames to be detected. In addition, a start frame with a parity error or framing error is not detected as a start frame.

16.3.5.7 Programmable Signal Frame

As well as the configurable start frame, a special signal frame can be specified. When a frame matching the frame defined in LEUARTn_SIGFRAME is detected by the receiver, the SIGF interrupt flag in LEUARTn IF is set. As for start frame detection, the receiver must be enabled for signal frames to be detected.

One use of the programmable signal frame is to signal the end of a multi-frame message transmitted to the LEUART. An interrupt will then be triggered when the packet has been completely received, allowing software to process it. Used in conjunction with the programmable start frame and DMA, this makes it possible for the LEUART to automatically begin the reception of a packet on a specified start frame, load the entire packet into memory, and give an interrupt when reception of a packet has completed. The device can thus wait for data packets in EM2, and only be woken up when a packet has been completely received.

A signal frame with a parity error or framing error is not detected as a signal frame.

16.3.5.8 Multi-Processor Mode

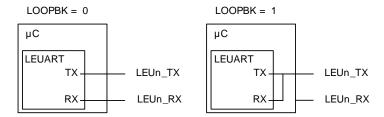
To simplify communication between multiple processors and maintain compatibility with the USART, the LEUART supports a multi-processor mode. In this mode the 9th data bit in each frame is used to indicate whether the content of the remaining 8 bits is data or an address.

When multi-processor mode is enabled, an incoming 9-bit frame with the 9th bit equal to the value of MPAB in LEUARTn CTRL is identified as an address frame. When an address frame is detected, the MPAF interrupt flag in LEUARTn_IF is set, and the address frame is loaded into the receive register. This happens regardless of the value of RXBLOCK in LEUARTn STATUS.

Multi-processor mode is enabled by setting MPM in LEUARTn CTRL. The mode can be used in buses with multiple slaves, allowing the slaves to be addressed using the special address frames. An addressed slave, which was previously blocking reception using RXBLOCK, would then unblock reception, receive a message from the bus master, and then block reception again, waiting for the next message. See the USART for a more detailed example.

Note

The programmable start frame functionality can be used for automatic address matching, enabling reception on a correctly configured incoming frame.


An address frame with a parity error or a framing error is not detected as an address frame.

16.3.6 Loopback

The LEUART receiver samples LEUn_RX by default, and the transmitter drives LEUn_TX by default. This is not the only configuration however. When LOOPBK in LEUARTn_CTRL is set, the receiver is connected to the LEUn_TX pin as shown in Figure 16.5 (p. 227). This is useful for debugging, as the LEUART can receive the data it transmits, but it is also used to allow the LEUART to read and write to the same pin, which is required for some half duplex communication modes. In this mode, the LEUn TX pin must be enabled as an output in the GPIO.

Figure 16.5. LEUART Local Loopback

16.3.7 Half Duplex Communication

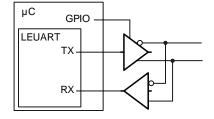
When doing full duplex communication, two data links are provided, making it possible for data to be sent and received at the same time. In half duplex mode, data is only sent in one direction at a time. There are several possible half duplex setups, as described in the following sections.

16.3.7.1 Single Data-link

In this setup, the LEUART both receives and transmits data on the same pin. This is enabled by setting LOOPBK in LEUARTn_CTRL, which connects the receiver to the transmitter output. Because they are both connected to the same line, it is important that the LEUART transmitter does not drive the line when receiving data, as this would corrupt the data on the line.

When communicating over a single data-link, the transmitter must thus be tristated whenever not transmitting data. If AUTOTRI in LEUARTn_CTRL is set, the LEUART automatically tristates LEUn_TX whenever the transmitter is inactive. It is then the responsibility of the software protocol to make sure the transmitter is not transmitting data whenever incoming data is expected.

The transmitter can also be tristated from software by configuring the GPIO pin as an input and disabling the LEUART output on LEUn_TX.


Note

Another way to tristate the transmitter is to enable wired-and or wired-or mode in GPIO. For wired-and mode, outputting a 1 will be the same as tristating the output, and for wired-or mode, outputting a 0 will be the same as tristating the output. This can only be done on buses with a pull-up or pull-down resistor respectively.

16.3.7.2 Single Data-link with External Driver

Some communication schemes, such as RS-485 rely on an external driver. Here, the driver has an extra input which enables it, and instead of Tristating the transmitter when receiving data, the external driver must be disabled. The USART has hardware support for automatically turning the driver on and off. When using the LEUART in such a setup, the driver must be controlled by a GPIO. Figure 16.6 (p. 227) shows an example configuration using an external driver.

Figure 16.6. LEUART Half Duplex Communication with External Driver

16.3.7.3 Two Data-links

Some limited devices only support half duplex communication even though two data links are available. In this case software is responsible for making sure data is not transmitted when incoming data is expected.

16.3.8 Transmission Delay

By configuring TXDELAY in LEUARTn_CTRL, the transmitter can be forced to wait a number of bitperiods from it is ready to transmit data, to it actually transmits the data. This delay is only applied to the first frame transmitted after the transmitter has been idle. When transmitting frames back-to-back the delay is not introduced between the transmitted frames.

This is useful on half duplex buses, because the receiver always returns received frames to software during the first stop-bit. The bus may still be driven for up to 3 baud periods, depending on the current frame format. Using the transmission delay, a transmission can be started when a frame is received, and it is possible to make sure that the transmitter does not begin driving the output before the frame on the bus is completely transmitted.

16.3.9 PRS RX Input

The LEUART can be configured to receive data directly from the PRS channel by setting RX_PRS in LEUARTn_INPUT. The PRS channel used can be selected using RX_PRS_SEL in LEUARTn_INPUT.

16.3.10 DMA Support

The LEUART has full DMA support in energy modes EM0 – EM2. The DMA controller can write to the transmit buffer using the registers LEUARTn_TXDATA and LEUARTn_TXDATAX, and it can read from receive buffer using the registers LEUARTn_RXDATA and LEUARTn_RXDATAX. This enables single byte transfers and 9 bit data + control/status bits transfers both to and from the LEUART. The DMA will start up the HFRCO and run from this when it is waken by the LEUART in EM2. The HFRCO is disabled once the transaction is done.

A request for the DMA controller to read from the receive buffer can come from one of the following sources:

Receive buffer full

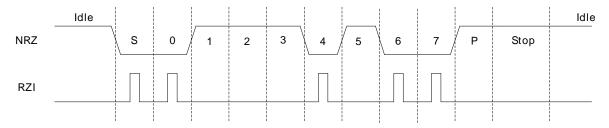
A write request can come from one of the following sources:

- Transmit buffer and shift register empty. No data to send.
- Transmit buffer empty

In some cases, it may be sensible to temporarily stop DMA access to the LEUART when a parity or framing error has occurred. This is enabled by setting ERRSDMA in LEUARTn_CTRL. When this bit is set, the DMA controller will not get requests from the receive buffer if a framing error or parity error is detected in the received byte. The ERRSDMA bit applies only to the RX DMA.

When operating in EM2, the DMA controller must be powered up in order to perform the transfer. This is automatically performed for read operations if RXDMAWU in LEUARTn_CTRL is set and for write operations if TXDMAWU in LEUARTn_CTRL is set. To make sure the DMA controller still transfers bits to and from the LEUART in low energy modes, these bits must thus be configured accordingly.

Note


When RXDMAWU or TXDMAWU is set, the system will not be able to go to EM2/EM3 before all related LEUART DMA requests have been processed. This means that if RXDMAWU is set and the LEUART receives a frame, the system will not be able to go to EM2/EM3 before the frame has been read from the LEUART. In order for the system to go to EM2 during the last byte transmission, LEUART_CTRL_TXDMAWU must be cleared in the DMA interrupt service routine. This is because TXBL will be high during that last byte transfer.

16.3.11 Pulse Generator/ Pulse Extender

The LEUART has an optional pulse generator for the transmitter output, and a pulse extender on the receiver input. These are enabled by setting PULSEEN in LEUARTn_PULSECTRL, and with INV in LEUARTn_CTRL set, they will change the output/intput format of the LEUART from NRZ to RZI as shown in Figure 16.7 (p. 229).

Figure 16.7. LEUART - NRZ vs. RZI

If PULSEEN in LEUARTn_PULSECTRL is set while INV in LEUARTn_CTRL is cleared, the output waveform will like RZI shown in Figure 16.7 (p. 229), only inverted.

The width of the pulses from the pulse generator can be configured using PULSEW in LEUARTn_PULSECTRL. The generated pulse width is PULSEW + 1 cycles of the 32.768 kHz clock, which makes pulse width from 31.25µs to 500µs possible.

Since the incoming signal is only sampled on positive clock edges, the width of the incoming pulses must be at least two 32.768 kHz clock periods wide for reliable detection by the LEUART receiver. They must also be shorter than half a UART baud period.

At 2400 baud/s or lower, the pulse generator is able to generate RZI pulses compatible with the IrDA physical layer specification. The external IrDA device must generate pulses of sufficient length for successful two-way communication.

16.3.11.1 Interrupts

The interrupts generated by the LEUART are combined into one interrupt vector. If LEUART interrupts are enabled, an interrupt will be made if one or more of the interrupt flags in LEUART_IF and their corresponding bits in LEUART_IEN are set.

16.3.12 Register access

Since this module is a Low Energy Peripheral, and runs off a clock which is asynchronous to the HFCORECLK, special considerations must be taken when accessing registers. Please refer to Section 5.3 (p. 18) for a description on how to perform register accesses to Low Energy Peripherals.

Downloaded from E 2010-12-21 - d0034_Rev0.90 229 www.energymicro.com

16.4 Register Map

The offset register address is relative to the registers base address.

Offset	Name	Туре	Description
0x000	LEUARTn_CTRL	RW	Control Register
0x004	LEUARTn_CMD	W1	Command Register
0x008	LEUARTn_STATUS	R	Status Register
0x00C	LEUARTn_CLKDIV	RW	Clock Control Register
0x010	LEUARTn_STARTFRAME	RW	Start Frame Register
0x014	LEUARTn_SIGFRAME	RW	Signal Frame Register
0x018	LEUARTn_RXDATAX	R	Receive Buffer Data Extended Register
0x01C	LEUARTn_RXDATA	R	Receive Buffer Data Register
0x020	LEUARTn_RXDATAXP	R	Receive Buffer Data Extended Peek Register
0x024	LEUARTn_TXDATAX	w	Transmit Buffer Data Extended Register
0x028	LEUARTn_TXDATA	W	Transmit Buffer Data Register
0x02C	LEUARTn_IF	R	Interrupt Flag Register
0x030	LEUARTn_IFS	W1	Interrupt Flag Set Register
0x034	LEUARTn_IFC	W1	Interrupt Flag Clear Register
0x038	LEUARTn_IEN	RW	Interrupt Enable Register
0x03C	LEUARTn_PULSECTRL	RW	Pulse Control Register
0x040	LEUARTn_FREEZE	RW	Freeze Register
0x044	LEUARTn_SYNCBUSY	R	Synchronization Busy Register
0x054	LEUARTn_ROUTE	RW	I/O Routing Register
0x0AC	LEUARTn_INPUT	RW	LEUART Input Register

16.5 Register Description

16.5.1 LEUARTn_CTRL - Control Register (Async Reg)

For more information about Asynchronous Registers please see Section 5.3 (p. 18).

Offset															Bi	t Po	siti	on														
0x000	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	ი	œ	7	9	2	4	က	2	-	0
Reset			•							•							d	S S S	0	0	0	0	0	0	0	0	0	0	Ş	Š	0	0
Access																	ž	≩ ⊻	ΑW	% ⊗	₩	₩ W	₩	₩	R W	ΑW	₩ W	R W	Š	<u>}</u>	₩ W	R W
Name																	<	IAUELA	TXDMAWU	RXDMAWU	BIT8DV	MPAB	MPM	SFUBRX	LOOPBK	ERRSDMA	<u>N</u>	STOPBITS) Fi	T TAKL	DATABITS	AUTOTRI

Bit	Name	Reset	Access	Description
31:16	Reserved	To ensure con	npatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
15:14	TXDELAY	0x0	RW	TX Delay Transmission

Configurable delay before new transfers. Frames sent back-to-back are not delayed.

Value	Mode	Description
0	NONE	Frames are transmitted immediately
1	SINGLE	Transmission of new frames are delayed by a single baud period
2	DOUBLE	Transmission of new frames are delayed by two baud periods

Bit	Name	Reset	Access	Description									
	Value	Mode	De	scription									
	3	TRIPLE	Tra	ansmission of new frames are delayed by three baud periods									
13	TXDMAWU	0	RW	TX DMA Wakeup									
	Set to wake th	ne DMA controller up when	in EM2 and space	e is available in the transmit buffer.									
	Value	Description											
	0	· ·	he DMA controller w	ill not get requests about space being available in the transmit buffer									
	1	DMA is available	le in EM2 for the requ	uest about space available in the transmit buffer									
12	RXDMAWU	0	RW	RX DMA Wakeup									
	Set to wake th	e DMA controller up when	ntroller up when in EM2 and data is available in the receive buffer.										
	Value	Description											
	0		While in EM2, the DMA controller will not get requests about data being available in the receive buffer										
	1	DMA is available	le in EM2 for the requ	uest about data in the receive buffer									
11	BIT8DV	0	RW	Bit 8 Default Value									
	value of BIT8D			e 9th bit is given by BIT8DV. If TXDATA is used to write a frame, then the frame. If a frame is written with TXDATAX however, the default value is									
10	MPAB	0	RW	Multi-Processor Address-Bit									
		alue of the multi-processor cessor address frame.	address bit. An inc	coming frame with its 9th bit equal to the value of this bit marks the frame									
9	MPM	0	RW	Multi-Processor Mode									
	Set to enable multi-processor mode.												
	Value	Description											
	0	The 9th bit of in	coming frames have	no special function									
	1		ame with the 9th bit of MPAB interrupt flag										
8	SFUBRX												
8		will result in the	MPAB interrupt flag										
8		will result in the	MPAB interrupt flag	Start-Frame UnBlock RX									
8	Clears RXBLC	will result in the 0 OCK when the start-frame in Description	MPAB interrupt flag	Start-Frame UnBlock RX oming data. The start-frame is loaded into the receive buffer.									
8	Clears RXBLC	will result in the 0 0 0 0 0 0 0 0 0 0 0 0 0	RW is found in the inco	Start-Frame UnBlock RX oming data. The start-frame is loaded into the receive buffer.									
7	Clears RXBLC Value 0	will result in the 0 0 0 0 0 0 0 0 0 0 0 0 0	RW is found in the inco	Start-Frame UnBlock RX Deming data. The start-frame is loaded into the receive buffer.									
7	Clears RXBLC Value 0 1 LOOPBK	will result in the 0 0 0 0 0 0 0 0 0 0 0 0 0	RW is found in the incommendation in the inc	Start-Frame UnBlock RX Deming data. The start-frame is loaded into the receive buffer. Set on RXBLOCK BLOCK is cleared and the start-frame is loaded into the receive buffer Loopback Enable									
7	Clears RXBLC Value 0 1 LOOPBK Set to connect	will result in the 0 0 0 0 0 0 0 0 0 0 0 0 0	RW is found in the incommendation in the inc	Start-Frame UnBlock RX Deming data. The start-frame is loaded into the receive buffer. Set on RXBLOCK BLOCK is cleared and the start-frame is loaded into the receive buffer Loopback Enable									
7	Clears RXBLC Value 0 1 LOOPBK	will result in the 0 DCK when the start-frame i Description Detected start-fr When a start-fra 0 t receiver to LEUn_TX inst	RW is found in the incomme have no effectame is detected, RXI RW ead of LEUn_RX.	Start-Frame UnBlock RX Deming data. The start-frame is loaded into the receive buffer. Set on RXBLOCK BLOCK is cleared and the start-frame is loaded into the receive buffer Loopback Enable									
7	Clears RXBLC Value 0 1 LOOPBK Set to connect Value	will result in the 0 DCK when the start-frame i Description Detected start-frame When a start-fra 0 t receiver to LEUn_TX inst Description The receiver is	RW is found in the incomme have no effect ame is detected, RXI RW ead of LEUn_RX.	Start-Frame UnBlock RX Deming data. The start-frame is loaded into the receive buffer. Set on RXBLOCK BLOCK is cleared and the start-frame is loaded into the receive buffer Loopback Enable									
7	Clears RXBLC Value 0 1 LOOPBK Set to connect Value 0 1	will result in the 0 DCK when the start-frame i Description Detected start-frame When a start-fra 0 t receiver to LEUn_TX inst Description The receiver is	RW is found in the incomme have no effect ame is detected, RXI RW ead of LEUn_RX.	Start-Frame UnBlock RX Deming data. The start-frame is loaded into the receive buffer. Set on RXBLOCK BLOCK is cleared and the start-frame is loaded into the receive buffer Loopback Enable Ceives data from LEUn_RX Ceives data from LEUn_TX									
7	Clears RXBLC Value 0 1 LOOPBK Set to connect Value 0 1 ERRSDMA	will result in the 0 DCK when the start-frame i Description Detected start-frame When a start-fra 0 t receiver to LEUn_TX inst Description The receiver is The receiver is	RW is found in the incomment in the inco	Start-Frame UnBlock RX Deming data. The start-frame is loaded into the receive buffer. It on RXBLOCK BLOCK is cleared and the start-frame is loaded into the receive buffer Loopback Enable Deceives data from LEUn_RX Deceives data from LEUn_TX Clear RX DMA On Error									
7	Clears RXBLC Value 0 1 LOOPBK Set to connect Value 0 1 ERRSDMA	will result in the 0 DCK when the start-frame is Description Detected start-frame When a start-fra 0 t receiver to LEUn_TX inst Description The receiver is The receiver is	RW is found in the incomment in the inco	Start-Frame UnBlock RX Deming data. The start-frame is loaded into the receive buffer. It on RXBLOCK BLOCK is cleared and the start-frame is loaded into the receive buffer Loopback Enable Deceives data from LEUn_RX Deceives data from LEUn_TX Clear RX DMA On Error									
7	Clears RXBLC Value 0 1 LOOPBK Set to connect Value 0 1 ERRSDMA When set,RX	will result in the 0 DCK when the start-frame in Description Detected start-frame When a start-frame treceiver to LEUn_TX inst Description The receiver is The receiver is 0 DMA requests will be clear Description Framing and pa	RW is found in the incomme have no effect ame is detected, RXI RW ead of LEUn_RX. connected to and reconnected to and reconnect	Start-Frame UnBlock RX Doming data. The start-frame is loaded into the receive buffer. It on RXBLOCK BLOCK is cleared and the start-frame is loaded into the receive buffer Loopback Enable Ceives data from LEUn_RX Ceives data from LEUn_TX Clear RX DMA On Error It parity errors.									
7	Clears RXBLC Value 0 1 LOOPBK Set to connect Value 0 1 ERRSDMA When set,RX	will result in the 0 DCK when the start-frame in Description Detected start-frame When a start-frame treceiver to LEUn_TX inst Description The receiver is The receiver is 0 DMA requests will be clear Description Framing and pa	RW is found in the incomme have no effect ame is detected, RXI RW ead of LEUn_RX. connected to and reconnected to and reconnect	Start-Frame UnBlock RX Deming data. The start-frame is loaded into the receive buffer. In the start-frame is loaded into the receive buffer. In the start-frame is loaded into the receive buffer. Loopback Enable Deceives data from LEUn_RX Deceives data from LEUn_TX Clear RX DMA On Error In parity errors.									
7	Clears RXBLC Value 0 1 LOOPBK Set to connect Value 0 1 ERRSDMA When set,RX I Value 0	will result in the 0 DCK when the start-frame in Description Detected start-frame When a start-frame treceiver to LEUn_TX inst Description The receiver is The receiver is 0 DMA requests will be clear Description Framing and pa	RW is found in the incomme have no effect ame is detected, RXI RW ead of LEUn_RX. connected to and reconnected to and reconnect	Start-Frame UnBlock RX Doming data. The start-frame is loaded into the receive buffer. It on RXBLOCK BLOCK is cleared and the start-frame is loaded into the receive buffer Loopback Enable Ceives data from LEUn_RX Ceives data from LEUn_TX Clear RX DMA On Error It parity errors.									
6	Clears RXBLC Value 0 1 LOOPBK Set to connect Value 0 1 ERRSDMA When set,RX I Value 0 1 INV	will result in the 0 DCK when the start-frame i Description Detected start-frame When a start-fra 0 t receiver to LEUn_TX inst Description The receiver is The receiver is 0 DMA requests will be clear Description Framing and pa RX DMA reque	RW is found in the incomme shave no effect ame is detected, RXI RW ead of LEUn_RX. connected to and reconnected to and reconnec	Start-Frame UnBlock RX Doming data. The start-frame is loaded into the receive buffer. It on RXBLOCK BLOCK is cleared and the start-frame is loaded into the receive buffer Loopback Enable Ceives data from LEUn_RX Ceives data from LEUn_TX Clear RX DMA On Error If parity errors. Invert Input And Output									
6	Clears RXBLC Value 0 1 LOOPBK Set to connect Value 0 1 ERRSDMA When set,RX I Value 0 1 INV	will result in the 0 DCK when the start-frame is Description Detected start-frame When a start-frame t receiver to LEUn_TX inst Description The receiver is The receiver is 0 DMA requests will be clear Description Framing and pate RX DMA request 0	RW is found in the incomme shave no effect ame is detected, RXI RW ead of LEUn_RX. connected to and reconnected to and reconnec	Start-Frame UnBlock RX Doming data. The start-frame is loaded into the receive buffer. It on RXBLOCK BLOCK is cleared and the start-frame is loaded into the receive buffer Loopback Enable Ceives data from LEUn_RX Ceives data from LEUn_TX Clear RX DMA On Error If parity errors. Invert Input And Output									
6	Clears RXBLC Value 0 1 LOOPBK Set to connect Value 0 1 ERRSDMA When set,RX I Value 0 1 INV Set to invert the	will result in the 0 DCK when the start-frame in Description Detected start-frame When a start-frame t receiver to LEUn_TX inst Description The receiver is The receiver is The receiver is DMA requests will be clear Description Framing and part RX DMA request 0 ne output on LEUn_TX and Description	RW Is found in the incomment of the inco	Start-Frame UnBlock RX Doming data. The start-frame is loaded into the receive buffer. It on RXBLOCK BLOCK is cleared and the start-frame is loaded into the receive buffer Loopback Enable Ceives data from LEUn_RX Ceives data from LEUn_TX Clear RX DMA On Error If parity errors. Invert Input And Output									
6	Clears RXBLC Value 0 1 LOOPBK Set to connect Value 0 1 ERRSDMA When set,RX I Value 0 1 INV Set to invert the	will result in the 0 DCK when the start-frame in Description Detected start-frame When a start-frame 1 Description The receiver is The receiver is The receiver is Description Framing and part is RX DMA request 0 Description Description Framing and part is RX DMA request 0 Description Description Framing and part is RX DMA request 0 Description Description A high value on	RW is found in the incomme shave no effect ame is detected, RXI RW ead of LEUn_RX. connected to and reconnected to and reconnec	Start-Frame UnBlock RX Doming data. The start-frame is loaded into the receive buffer. St on RXBLOCK BLOCK is cleared and the start-frame is loaded into the receive buffer Loopback Enable Ceives data from LEUn_RX Ceives data from LEUn_TX Clear RX DMA On Error If parity errors. Invert Input And Output RX.									

Downloaded from Elecules com

Bit	Name	Reset	Acce	ss Description
	Value	Mode		Description
	0	ONE		One stop-bit is transmitted with every frame
	1	TWO		Two stop-bits are transmitted with every frame
3:2	PARITY	0x0	RW	Parity-Bit Mode
	Determines wh	ether parity bits are enab	led, and wheth	ner even or odd parity should be used.
	Value	Mode		Description
	0	NONE		Parity bits are not used
	2	EVEN		Even parity are used. Parity bits are automatically generated and checked by hardware.
	3	ODD		Odd parity is used. Parity bits are automatically generated and checked by hardware.
1	DATABITS	0	RW	Data-Bit Mode
	T			
	i nis register se	ets the number of data bits	S.	
	Value	ets the number of data bits	S.	Description
			S.	Description Each frame contains 8 data bits
	Value	Mode	S.	·
0	Value 0	Mode EIGHT	RW	Each frame contains 8 data bits
0	Value 0 1 AUTOTRI	Mode EIGHT NINE	RW	Each frame contains 8 data bits Each frame contains 9 data bits Automatic Transmitter Tristate
0	Value 0 1 AUTOTRI	Mode EIGHT NINE	RW	Each frame contains 8 data bits Each frame contains 9 data bits Automatic Transmitter Tristate
0	Value 0 1 AUTOTRI When set, LEU	Mode EIGHT NINE 0 In_TX is tristated whenev Description	RW er the transmir	Each frame contains 8 data bits Each frame contains 9 data bits Automatic Transmitter Tristate

16.5.2 LEUARTn_CMD - Command Register (Async Reg)

For more information about Asynchronous Registers please see Section 5.3 (p. 18).

Offset															Bi	t Po	siti	on														
0x004	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	1	10	6	œ	7	9	2	4	က	7	_	0
Reset															•										0	0	0	0	0	0	0	0
Access																									×	W1	W	W	W	×	W1	×
Name																									CLEARRX	CLEARTX	RXBLOCKDIS	RXBLOCKEN	TXDIS	TXEN	RXDIS	RXEN

Bit	Name	Reset	Access	Description						
31:8	Reserved	To ensure co	ompatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)						
7	CLEARRX	0	W1	Clear RX						
	Set to clear receive buff	er and the RX shi	ft register.							
6	CLEARTX	0	W1	Clear TX						
	Set to clear transmit but	ffer and the TX shi	ift register.							
5	RXBLOCKDIS	0	W1	Receiver Block Disable						
	Set to clear RXBLOCK,	resulting in all inc	oming frames bei	ng loaded into the receive buffer.						
4	RXBLOCKEN	0	W1	Receiver Block Enable						
	Set to set RXBLOCK, re	esulting in all incor	ming frames being	discarded.						
3	TXDIS	0	W1	Transmitter Disable						
	Set to disable transmiss	sion.								
2	TXEN	0	W1	Transmitter Enable						
	Set to enable data transmission.									
		,								

Downloaded from Heads.com 2010-12-21 - d0034_Rev0.90 232 www.energymicro.com

Bit	Name	Reset	Access	Description							
1	RXDIS	0	W1	Receiver Disable							
	Set to disable data reception	on. If a frame is und	ler reception w	then the receiver is disabled, the incoming frame is discarded.							
0	RXEN	0	W1	Receiver Enable							
	Set to activate data reception on LEUn_RX.										

16.5.3 LEUARTn_STATUS - Status Register

Offset															Bi	t Pc	siti	on														
0x008	33	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	41	13	12	1	10	6	80	7	9	2	4	က	7	-	0
Reset																											0	-	0	0	0	0
Access																											~	~	~	~	œ	~
Name																											RXDATAV	TXBL	TXC	RXBLOCK	TXENS	RXENS

Bit	Name	Reset	Access	Description
31:6	Reserved	To ensure co	ompatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
5	RXDATAV	0	R	RX Data Valid
	Set when data is av	vailable in the receive b	ouffer. Cleared wh	nen the receive buffer is empty.
4	TXBL	1	R	TX Buffer Level
	Indicates the level of	of the transmit buffer. S	Set when the trans	smit buffer is empty, and cleared when it is full.
3	TXC	0	R	TX Complete
	Set when a transmi	ssion has completed a	nd no more data is	s available in the transmit buffer. Cleared when a new transmission starts.
2	RXBLOCK	0	R	Block Incoming Data
		iver discards incoming as been completely red		ning frame will not be loaded into the receive buffer if this bit is set at the
1	TXENS	0	R	Transmitter Enable Status
	Set when the transi	mitter is enabled.		
0	RXENS	0	R	Receiver Enable Status
	Set when the recei detection.	ver is enabled. The re	eceiver must be e	nabled for start frames, signal frames, and multi-processor address bit

16.5.4 LEUARTn_CLKDIV - Clock Control Register (Async Reg)

For more information about Asynchronous Registers please see Section 5.3 (p. 18).

Offset															Bi	t Pc	siti	on														
0x00C	33	30	29	28	27	26	22	24	23	22	21	20	19	18	17	16	15	41	13	12	7	10	6	8	7	9	2	4	3	2	-	0
Reset																							6	00000								
Access																							:	≷ Y								
Name																							i	λIO								

Downloaded from Heads, com 2010-12-21 - d0034_Rev0.90 233 www.energymicro.com

Bit	Name	Reset	Access	Description
31:15	Reserved	To ensure compa	atibility with fut	ure devices, always write bits to 0. More information in Section 2.1 (p. 3)
14:3	DIV	0x000	RW	Fractional Clock Divider
	Specifies the fractional cloc	k divider for the LE	UART.	
2:0	Reserved	To ensure compa	atibility with fut	ure devices, always write bits to 0. More information in Section 2.1 (p. 3)

16.5.5 LEUARTn_STARTFRAME - Start Frame Register (Async Reg)

For more information about Asynchronous Registers please see Section 5.3 (p. 18).

Offset															Bi	t Pc	siti	on														
0x010	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	7	10	0	8	7	9	2	4	က	2	-	0
Reset																												0x000				
Access																												RW				
Name																												STARTFRAME				

Bit	Name	Reset	Access	Description
31:9	Reserved	To ensure comp	atibility with fut	ure devices, always write bits to 0. More information in Section 2.1 (p. 3)
8:0	STARTFRAME	0x000	RW	Start Frame
	When a frame matching ST is cleared. The start-frame		,	eceiver, STARTF interrupt flag is set, and if SFUBRX is set, RXBLOCK

16.5.6 LEUARTn_SIGFRAME - Signal Frame Register (Async Reg)

For more information about Asynchronous Registers please see Section 5.3 (p. 18).

Offset															Bi	it Po	siti	on														
0x014	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	41	13	12	7	10	თ	80	7	9	2	4	က	2	_	0
Reset																												000x0				
Access																												RW				
Name																												SIGFRAME				

Bit	Name	Reset	Access	Description
31:9	Reserved	To ensure co	mpatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
8:0	SIGFRAME	0x000	RW	Signal Frame
	When a frame matching	g SIGFRAME is de	tected by the rece	eiver, SIGF interrupt flag is set.

Downloaded from E 2010-12-21 - d0034_Rev0.90 234 www.energymicro.com

16.5.7 LEUARTn_RXDATAX - Receive Buffer Data Extended Register

Offset															Bi	t Po	siti	on														
0x018	31	30	29	28	27	26	22	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	80	7	9	2	4	3	2	-	0
Reset																	0	0										OVOO				
Access																	œ	22										2	1			
Name																	FERR	PERR										RXDATA				

Bit	Name	Reset	Access	Description
31:16	Reserved	To ensure comp	atibility with fut	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
15	FERR	0	R	Receive Data Framing Error
	Set if data in buffer has a f	raming error. Can b	oe the result of	a break condition.
14	PERR	0	R	Receive Data Parity Error
	Set if data in buffer has a	parity error.		
13:9	Reserved	To ensure comp	atibility with fut	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
8:0	RXDATA	0x000	R	RX Data
	Use this register to access	data read from the	LEUART. Buf	fer is cleared on read access.

16.5.8 LEUARTn_RXDATA - Receive Buffer Data Register

Offset															Bi	t Po	siti	on														
0x01C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	თ	∞	7	9	5	4	က	2	1	0
Reset																													0x00			
Access																												(œ			
Name																													RXDATA			

Bit	Name	Reset	Access	Description
31:8	Reserved	To ensure co	ompatibility with	future devices, always write bits to 0. More information in Section 2.1 (p. 3)
7:0	RXDATA	0x00	R	RX Data
	Use this register to	access data read from	LEUART. Buffe	r is cleared on read access. Only the 8 LSB can be read using this register.

Downloaded from Hoods, com 2010-12-21 - d0034_Rev0.90 235 www.energymicro.com

13:9

8:0

Reserved

RXDATAP

16.5.9 LEUARTn_RXDATAXP - Receive Buffer Data Extended Peek Register

U																																
Offset															В	it Po	siti	on														
0x020	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	=======================================	10	6	∞	7	9	2	4	ო	7	-	0
Reset																	0	0										000×0				
Access																	~	œ										~				
Name																	FERRP	PERRP										RXDATAP				
Bit	Na	ame						Re	set			Α	CC	ess	;	De	scr	ipti	on													
31:16	Re	serv	ed					То	ensi	ure c	comp	atibi	lity	with	futu	ıre d	evice	es, a	a/wa	ays v	vrite	bits	to 0.	Mor	e in	form	natio	n in	Sect	ion 2	.1 (r	o. 3)
15	FE	RRF	•					0				R				Re	ceiv	e Da	ata	Frai	ming	Er	or F	eek								
	Se	t if d	ata ii	n bu	ffer h	nas	a fra	amin	g err	or. (Can	be th	e re	esul	t of	a bre	ak c	ond	itio	n.												
14	PE	RRF	-					0				R				Re	ceiv	e Da	ata	Pari	ity E	rror	Pee	k								
	Se	t if d	ata iı	n bu	ffer h	nas	a pa	arity	error																							

To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)

RX Data Peek

16.5.10 LEUARTn_TXDATAX - Transmit Buffer Data Extended Register (Async Reg)

For more information about Asynchronous Registers please see Section 5.3 (p. 18).

0x000

Use this register to access data read from the LEUART.

Offset															Bi	t Po	siti	on														
0x024	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	=	10	6	80	7	9	2	4	က	2	-	0
Reset																	0	0	0									00000				
Access																	>	>	≥									≥	:			
Name																	RXENAT	TXDISAT	TXBREAK									TXDATA				
Bit	Na	ame						Re	set			Α	CC	ess		De	scri	iptic	on													
31:16	Re	serv	ed					То	ensi	ure c	omp	atibi	ility	with	futu	re de	evice	es, a	lwa	ys v	vrite	bits	to 0.	Mor	e ini	form	atio	n in	Sec	tion 2	2.1 ((p. 3)
15	RX	ENA	ΛT					0				W	/			Ena	able	RX	Aft	er T	rans	smis	sior	1								
	Se	t to e	enabl	e re	cept	ion	afte	r trai	nsmi	ssio	n.																					
	Va	lue					С	Descr	iption	1																						
	0						-																									
	1						T	he re	eceive	er is e	enabl	ed, s	ettin	g R	KENS	S afte	r the	fram	ne h	as be	een ti	ransr	nitted	ł								
14	TX	DISA	٩T					0				W	/			Dis	able	TX	Aft	ter 1	[ran	smis	sio	n								
	Se	t to c	disab	le tra	ansn	nitte	er di	rectly	y afte	er tra	nsm	issio	on h	as o	com	oeted	d.															
	Va	llue						Descr	iptior	1																						

Downloaded from Ecousicon 2010-12-21 - d0034_Rev0.90 236 www.energymicro.com

Bit	Name	Reset	Access	Description
	Value	Description		
	1	The transmitter i	s disabled, clearing	TXENS after the frame has been transmitted
13	TXBREAK	0	W	Transmit Data As Break
	Value	Description		
	of TXDATA.	ao a broak. Rooipione i	viii ooo a mariiing	error or a break condition depending on its configuration and the value
	0	The specified nu	ımber of stop-bits are	e transmitted
	1		rdinary stop-bits, 0 is er to detect the start	s transmitted to generate a break. A single stop-bit is generated after the break to of the next frame
12:9	Reserved	To ensure c	ompatibility with fu	uture devices, always write bits to 0. More information in Section 2.1 (p. 3,
72.0				
8:0	TXDATA	0x000	W	TX Data

16.5.11 LEUARTn_TXDATA - Transmit Buffer Data Register (Async Reg)

For more information about Asynchronous Registers please see Section 5.3 (p. 18).

Offset												•			Bi	it Pc	siti	on														
0x028	33	30	62	78	27	56	22	24	23	22	21	20	19	18	17	16	15	41	13	12	=	10	0	∞	7	9	2	4	ю	2	-	0
Reset																													0000			
Access																													≷			
Name																													TXDATA			
Bit	Nai	me						Re	set			Д	\cc	ess		De	scri	ipti	on													
31:8	Res	erve	ed					То	ensi	ıre c	omp	atib	ility	with	futu	ire d	evice	es, a	alwa	ays v	vrite	bits	to 0.	Mor	e inf	orm	atio	n in	Sect	ion 2	.1 (p.	. 3)
7:0	TXD	ATA	4					0x0	00			W	V			TX	Data	а														
	This	frar	ne v	vill b	e ad	lded	l to t	the t	rans	mit b	ouffe	r. Oı	nly	8 LS	В са	an be	wri	tten	usi	ng t	his re	egis	ter. 9	th b	it an	d co	ontro	ol bit	s wil	l be d	leare	ed.

16.5.12 LEUARTn_IF - Interrupt Flag Register

Offset					•							•			Bi	t Pc	siti	on										•				
0x02C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	1	10	ი	∞	7	9	2	4	က	7	-	0
Reset								•														0	0	0	0	0	0	0	0	0	-	0
Access																						œ	œ	œ	œ	22	œ	œ	œ	œ	œ	~
Name																						SIGF	STARTF	MPAF	FERR	PERR	TXOF	RXUF	RXOF	RXDATAV	TXBL	TXC

Bit	Name	Reset	Access	Description
31:11	Reserved	To ensure co	ompatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
10	SIGF	0	R	Signal Frame Interrupt Flag
	Set when a signal frame	is detected.		
9	STARTF	0	R	Start Frame Interrupt Flag
	Set when a start frame is	s detected.		
8	MPAF	0	R	Multi-Processor Address Frame Interrupt Flag

Downloaded from H couls com 2010-12-21 - d0034_Rev0.90 237 www.energymicro.com

Bit	Name	Reset	Access	Description
	Set when a multi-pr	ocessor address frame	e is detected.	
7	FERR	0	R	Framing Error Interrupt Flag
	Set when a frame w	vith a framing error is re	eceived while RX	BLOCK is cleared.
6	PERR	0	R	Parity Error Interrupt Flag
	Set when a frame w	vith a parity error is rec	eived while RXBL	LOCK is cleared.
5	TXOF	0	R	TX Overflow Interrupt Flag
	Set when a write is	done to the transmit be	uffer while it is full	I. The data already in the transmit buffer is preserved.
4	RXUF	0	R	RX Underflow Interrupt Flag
	Set when trying to r	ead from the receive b	uffer when it is er	mpty.
3	RXOF	0	R	RX Overflow Interrupt Flag
	Set when data is inc	coming while the recei	ve shift register is	full. The data previously in shift register is overwritten by the new data.
2	RXDATAV	0	R	RX Data Valid Interrupt Flag
	Set when data beco	omes available in the re	eceive buffer.	
1	TXBL	1	R	TX Buffer Level Interrupt Flag
	Set when space be	comes available in the	transmit buffer fo	or a new frame.
0	TXC	0	R	TX Complete Interrupt Flag
	Set after a transmis	sion when both the TX	buffer and shift r	register are empty.

16.5.13 LEUARTn_IFS - Interrupt Flag Set Register

Offset	Bit Position								
0x030	33 34 35 36 37 38 39 30 30 30 31 31 32 33 34 35 36 37 38 39 30 30 30 40 <th>2 6</th> <th>80</th> <th>7</th> <th>ω ι<u>ς</u></th> <th>4</th> <th>က</th> <th>7 -</th> <th>0</th>	2 6	80	7	ω ι <u>ς</u>	4	က	7 -	0
Reset	c	0	0	0	0 0	0	0		0
Access	3	× ×	W1	W1	× ×	. M	W1		M
Name	u d	STARTE	MPAF	FERR	PERR	RXUF	RXOF		TXC

				5 1 1
Bit	Name	Reset	Access	Description
31:11	Reserved	To ensure co	mpatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
10	SIGF	0	W1	Set Signal Frame Interrupt Flag
	Write to 1 to set the	e SIGF interrupt flag.		
9	STARTF	0	W1	Set Start Frame Interrupt Flag
	Write to 1 to set the	e STARTF interrupt flag		
8	MPAF	0	W1	Set Multi-Processor Address Frame Interrupt Flag
	Write to 1 to set the	e MPAF interrupt flag.		
7	FERR	0	W1	Set Framing Error Interrupt Flag
	Write to 1 to set the	e FERR interrupt flag.		
6	PERR	0	W1	Set Parity Error Interrupt Flag
	Write to 1 to set the	e PERR interrupt flag.		
5	TXOF	0	W1	Set TX Overflow Interrupt Flag
	Write to 1 to set the	e TXOF interrupt flag.		
4	RXUF	0	W1	Set RX Underflow Interrupt Flag
	Write to 1 to set the	e RXUF interrupt flag.		
3	RXOF	0	W1	Set RX Overflow Interrupt Flag

Downloaded from Heads.com 2010-12-21 - d0034_Rev0.90 238 www.energymicro.com

Bit	Name	Reset	Access	Description
	Write to 1 to set the	RXOF interrupt flag.		
2:1	Reserved	To ensure c	ompatibility with fu	uture devices, always write bits to 0. More information in Section 2.1 (p. 3)
0	TXC	0	W1	Set TX Complete Interrupt Flag
	Write to 1 to set the	e TXC interrupt flag.		

16.5.14 LEUARTn_IFC - Interrupt Flag Clear Register

Offset															Bi	t Pc	siti	on														
0x034	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	1	10	6	8	7	9	2	4	က	2	-	0
Reset																						0	0	0	0	0	0	0	0			0
Access																						×	W	W	×	W1	N M	W	W			N N
Name																						SIGF	STARTF	MPAF	FERR	PERR	TXOF	RXUF	RXOF			TXC

Bit	Name	Reset	Access	Description
31:11	Reserved	To ensure co	ompatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
10	SIGF	0	W1	Clear Signal-Frame Interrupt Flag
	Write to 1 to clear t	he SIGF interrupt flag.		
9	STARTF	0	W1	Clear Start-Frame Interrupt Flag
	Write to 1 to clear t	he STARTF interrupt fl	ag.	
8	MPAF	0	W1	Clear Multi-Processor Address Frame Interrupt Flag
	Write to 1 to clear t	he MPAF interrupt flag		
7	FERR	0	W1	Clear Framing Error Interrupt Flag
	Write to 1 to clear t	he FERR interrupt flag	•	
6	PERR	0	W1	Clear Parity Error Interrupt Flag
	Write to 1 to clear t	he PERR interrupt flag	•	
5	TXOF	0	W1	Clear TX Overflow Interrupt Flag
	Write to 1 to clear t	he TXOF interrupt flag	•	
4	RXUF	0	W1	Clear RX Underflow Interrupt Flag
	Write to 1 to clear t	he RXUF interrupt flag	•	
3	RXOF	0	W1	Clear RX Overflow Interrupt Flag
	Write to 1 to clear t	he RXOF interrupt flag		
2:1	Reserved	To ensure co	ompatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
0	TXC	0	W1	Clear TX Complete Interrupt Flag
	Write to 1 to clear t	he TXC interrupt flag.		

Downloaded from Headles com 2010-12-21 - d0034_Rev0.90 239 www.energymicro.com

16.5.15 LEUARTn_IEN - Interrupt Enable Register

Offset			,											,	Bi	t Pc	siti	on				,		,					,		,	
0x038	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	ი	80	7	9	5	4	က	2	-	0
Reset			•											•			•					0	0	0	0	0	0	0	0	0	0	0
Access																					-	₩ W	% W	₩ W	R W	8 ≷	% W	₩	W.	₩	₩	R ≷
Name																						SIGF	STARTF	MPAF	FERR	PERR	TXOF	RXUF	RXOF	RXDATAV	TXBL	TXC

Bit	Name	Reset	Access	Description
31:11	Reserved	To ensure co	ompatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
10	SIGF	0	RW	Signal Frame Interrupt Enable
	Enable interrupt on	signal frame.		
9	STARTF	0	RW	Start Frame Interrupt Enable
	Enable interrupt on	start frame.		
8	MPAF	0	RW	Multi-Processor Address Frame Interrupt Enable
	Enable interrupt on	multi-processor addre	ss frame.	
7	FERR	0	RW	Framing Error Interrupt Enable
	Enable interrupt on	framing error.		
6	PERR	0	RW	Parity Error Interrupt Enable
	Enable interrupt on	parity error.		
5	TXOF	0	RW	TX Overflow Interrupt Enable
	Enable interrupt on	TX overflow.		
4	RXUF	0	RW	RX Underflow Interrupt Enable
	Enable interrupt on	RX underflow.		
3	RXOF	0	RW	RX Overflow Interrupt Enable
	Enable interrupt on	RX overflow.		
2	RXDATAV	0	RW	RX Data Valid Interrupt Enable
	Enable interrupt on	RX data.		
1	TXBL	0	RW	TX Buffer Level Interrupt Enable
	Enable interrupt on	TX buffer level.		
0	TXC	0	RW	TX Complete Interrupt Enable
	Enable interrupt on	TX complete.		

16.5.16 LEUARTn_PULSECTRL - Pulse Control Register (Async Reg)

For more information about Asynchronous Registers please see Section 5.3 (p. 18).

Offset															Bi	t Pc	siti	on														
0x03C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	41	13	12	7	10	6	8	7	9	2	4	က	7	-	0
Reset										•		•					•		·								0	0			S X	
Access																											RW	RW		-	≩ Y	
Name																											PULSEFILT	PULSEEN		ĺ	POLSEW	

Downloaded from Heads.com 2010-12-21 - d0034_Rev0.90 240 www.energymicro.com

Bit	Name	Reset	Access	Description							
31:6	Reserved	To ensure comp	atibility with fut	ure devices, always write bits to 0. More information in Section 2.1 (p. 3)							
5	PULSEFILT	0	RW	Pulse Filter							
	Enable a one-cycle pulse	ycle pulse filter for pulse extender									
	Value	Description	'								
	0	Filter is disabled. Pul	ses must be at le	ast 2 cycles long for reliable detection.							
	1	Filter is enabled. Puls	ses must be at le	ast 3 cycles long for reliable detection.							
4	PULSEEN	0	RW	Pulse Generator/Extender Enable							
	Filter LEUART output thro	ough pulse generato	r and the LEU	ART input through the pulse extender.							
3:0	PULSEW	0x0	RW	Pulse Width							
	Configure the pulse width	of the pulse genera	itor as a numbe	er of 32.768 kHz clock cycles.							

16.5.17 LEUARTn_FREEZE - Freeze Register

Offset															Bi	t Po	siti	on														
0x040	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	41	13	12	11	10	ი	8	7	9	2	4	က	7	-	0
Reset																					•											0
Access																																R W
Name																																REGFREEZE

Bit	Name	Reset	Access	Description
31:1	Reserved	To ensure co	ompatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
0	REGFREEZE	0	RW	Register Update Freeze
	When set, the up	odate of the LEUART is p	ostponed until this	s bit is cleared. Use this bit to update several registers simultaneously.
				s bit is oleared. Ose this bit to apacte several registers simultaneously.
	Value	Mode	•	scription
	Value 0	Mode UPDATE	Des	

16.5.18 LEUARTn_SYNCBUSY - Synchronization Busy Register

Offset															Bi	t Po	siti	on														
0x044	31	30	53	78	27	56	22	24	23	22	21	20	19	9	17	16	15	4	13	12	7	10	6	œ	7	9	2	4	က	2	-	0
Reset			•		•					•		•					•								0	0	0	0	0	0	0	0
Access																									~	ď	~	~	œ	2	œ	œ
Name																									PULSECTRL	TXDATA	TXDATAX	SIGFRAME	STARTFRAME	CLKDIV	CMD	CTRL

Bit	Name	Reset	Access	Description
31:8	Reserved	To ensure comp	atibility with fut	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
7	PULSECTRL	0	R	LEUARTn_PULSECTRL Register Busy
	Set when the value writter	n to LEUARTn_PUL	SECTRL is be	ing synchronized.

2010-12-21 - d0034_Rev0.90 www.energymicro.com

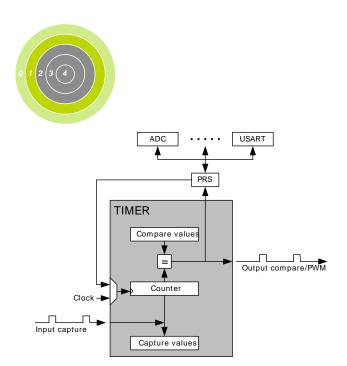
Bit	Name	Reset	Access	Description
6	TXDATA	0	R	LEUARTn_TXDATA Register Busy
	Set when the value w	ritten to LEUARTn_1	TXDATA is being	synchronized.
5	TXDATAX	0	R	LEUARTn_TXDATAX Register Busy
	Set when the value w	ritten to LEUARTn_1	ΓΧDATAX is being	g synchronized.
4	SIGFRAME	0	R	LEUARTn_SIGFRAME Register Busy
	Set when the value w	ritten to LEUARTn_S	SIGFRAME is bei	ng synchronized.
3	STARTFRAME	0	R	LEUARTn_STARTFRAME Register Busy
	Set when the value w	ritten to LEUARTn_S	STARTFRAME is	being synchronized.
2	CLKDIV	0	R	LEUARTn_CLKDIV Register Busy
	Set when the value w	ritten to LEUARTn_0	CLKDIV is being s	ynchronized.
1	CMD	0	R	LEUARTn_CMD Register Busy
	Set when the value w	ritten to LEUARTn_0	CMD is being synd	chronized.
0	CTRL	0	R	LEUARTn_CTRL Register Busy
	Set when the value w	ritten to LEUARTn_0	CTRL is being syr	chronized.

16.5.19 LEUARTn_ROUTE - I/O Routing Register

Offset															Bi	t Po	siti	on														
0x054	31	30	29	28	27	56	22	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	œ	7	9	2	4	8	2	-	0
Reset			•							•													0x0			·					0	0
Access																							W.								RW	₹
Name																							LOCATION								TXPEN	RXPEN

Bit	Name		Reset	Acce	ss Description			
31:11	Reserved		To ensure o	compatibility w	ith future devices, always write	bits to 0. More	e information in Sectio	n 2.1 (p. 3)
10:8	LOCATION		0x0	RW	I/O Location			
	Decides the lo	cation of the	e LEUART I/O	pins.				
	Value	Mode			Description			
	0	LOC0			Location 0			
	1	LOC1			Location 1			
	2	LOC2			Location 2			
	3	LOC3			Location 3			
7:2	Reserved		To ensure o	compatibility w	ith future devices, always write	bits to 0. More	e information in Sectio	n 2.1 (p. 3)
1	TXPEN		0	RW	TX Pin Enable			
	When set, the	TX pin of th	e LEUART is e	enabled.				
	Value		Description					
	0		The LEUn_TX p	oin is disabled				
	1		The LEUn_TX p	oin is enabled				
0	RXPEN		0	RW	RX Pin Enable			
	When set, the	RX pin of th	ne LEUART is e	enabled.				
	Value		Description					
	0		The LEUn_RX p	oin is disabled				
	1		The LEUn RX r	oin is enabled				

16.5.20 LEUARTn_INPUT - LEUART Input Register


Offset															Bi	t Po	siti	on														
0x0AC	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	11	10	6	8	7	9	2	4	က	2	-	0
Reset										•		•					•				•					•		0			0x0	
Access																												ΑW			N N	
Name																												RXPRS			RXPRSSEL	
Bit	Na	me						Re	set			A	\cc	ess		De	scr	iptio	on													

Bit	Name	Reset	Access	Description			
31:5	Reserved	Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p.					
4	RXPRS	0	RW	PRS RX Enable			
	When set, the PRS channel selected as input to RX.						
3	Reserved To ensure compatibility with future devices, always write bits to			future devices, always write bits to 0. More information in Section 2.1 (p. 3)			
2:0	RXPRSSEL	0x0	RW	RX PRS Channel Select			
	Select PRS channel as input to RX.						
	Value	Mode		Description			
	0	PRSCH0	PR	PRS Channel 0 selected			
	1	PRSCH1		PRS Channel 1 selected			
	2	PRSCH2		PRS Channel 2 selected			
	3	PRSCH3		PRS Channel 3 selected			
	4	PRSCH4		PRS Channel 4 selected			
	5	PRSCH5		PRS Channel 5 selected			
	6	PRSCH6		PRS Channel 6 selected			
	7 PRSCH7		DE	PRS Channel 7 selected			

Downloaded from House Collection 2010-12-21 - d0034_Rev0.90 243 www.energymicro.com

17 TIMER - Timer/Counter

Quick Facts

What?

The TIMER (Timer/Counter) keeps track of timing and count events, generates output waveforms and triggers timed actions in other peripherals.

Why?

Most applications have activities that need to be timed accurately with as little CPU intervention and energy consumption as possible.

How?

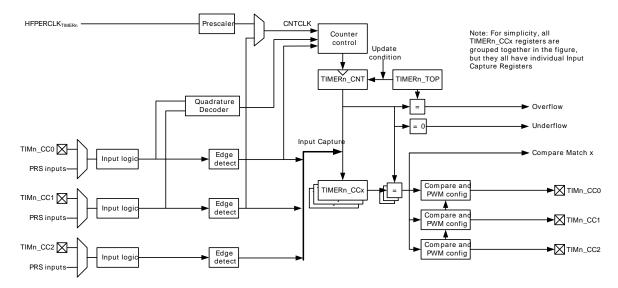
The flexible 16-bit TIMER can be configured to provide PWM waveforms with optional dead-time insertion for e.g. motor control, or work as a frequency generator. The Timer can also count events and control other peripherals through the PRS, which offloads the CPU and reduce energy consumption.

17.1 Introduction

The 16-bit general purpose Timer has 3 compare/capture channels for input capture and compare/Pulse-Width Modulation (PWM) output. TIMER0 also includes a Dead-Time Insertion module suitable for motor control applications.

17.2 Features

- 16-bit auto reload up/down counter
 - Dedicated 16-bit reload register which serves as counter maximum
- 3 Compare/Capture channels
 - Individual configurable as either input capture or output compare/PWM
- Multiple Counter modes
 - Count up
 - Count down
 - Count up/down
 - Quadrature Decoder
 - Direction and count from external pins
- 2x Count Mode
- Counter control from PRS or external pin
 - Start
 - Stop
 - · Reload and start
- Inter-Timer connection
 - Allows 32-bit counter mode
 - Start/stop synchronization between several Timers
- Input Capture


- Period measurement
- · Pulse width measurement
- Two capture registers for each capture channel
 - · Capture on either positive or negative edge
 - · Capture on both edges
- · Optional digital noise filtering on capture inputs
- Output Compare
 - · Compare output toggle/pulse on compare match
 - Immediate update of compare registers
- PWM
 - Up-count PWM
 - Up/down-count PWM
 - Predictable initial PWM output state (configured by SW)
 - · Buffered compare register to ensure glitch-free update of compare values
- Clock sources
 - HFPERCLK_{TIMERn}
 - 10-bit Prescaler
 - External pin
 - Peripheral Reflex System
- Debug mode
 - Configurable to either run or stop when processor is stopped (break)
- Interrupts, PRS output and/or DMA request
 - Underflow
 - Overflow
 - · Compare/Capture event
- Dead-Time Insertion Unit (TIMER0 only)
 - · Complementary PWM outputs with programmable dead-time
 - · Dead-time is specified independently for rising and falling edge
 - 10-bit prescaler
 - · 6-bit time value
 - · Outputs have configurable polarity
 - Outputs can be set inactive individually by software.
 - · Configurable action on fault
 - · Set outputs inactive
 - Clear output
 - Tristate output
 - Individual fault sources
 - One or two PRS signals
 - Debugger
 - Support for automatic restart
 - Core lockup
 - Configuration lock

17.3 Functional Description

An overview of the TIMER module is shown in Figure 17.1 (p. 246). The Timer module consists of a 16 bit up/down counter with 3 Compare/Capture channels connected to pins TIMn_CC0, TIMn_CC1, and TIMn_CC2.

Figure 17.1. TIMER Block Overview

17.3.1 Counter Modes

The Timer consists of a counter that can be configured to the following modes:

- 1. Up-count: Counter counts up until it reaches the value in TIMERn TOP, where it is reset to 0 before counting up again.
- 2. Down-count: The counter starts at the value in TIMERn_TOP and counts down. When it reaches 0, it is reloaded with the value in TIMERn TOP.
- Up/Down-count: The counter starts at 0 and counts up. When it reaches the value in TIMERn_TOP, it counts down until it reaches 0 and starts counting up again.
- 4. Quadrature Decoder: Two input channels where one determines the count direction, while the other pin triggers a clock event.

In addition, to the TIMER modes listed above, the TIMER also supports a 2x Count Mode. In this mode the counter increments/decrements by 2. The 2x Count Mode intended use is to generate 2x PWM frequency when the Compare/Capture channel is put in PWM mode. The 2x Count Mode can be enabled by setting the X2CNT bitfield in the TIMERn_CTRL register.

The counter value can be read or written by software at any time by accessing the CNT field in TIMERn CNT.

17.3.1.1 Events

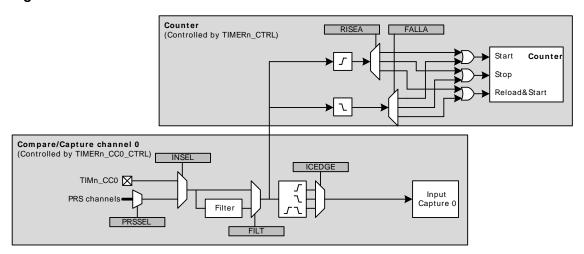
Overflow is set when the counter value shifts from TIMERn_TOP to the next value when counting up. In up-count mode the next value is 0. In up/down-count mode, the next value is TIMERn_TOP-1.

Underflow is set when the counter value shifts from 0 to the next value when counting down. In downcount mode, the next value is TIMERn_TOP. In up/down-count mode the next value is 1.

Update event is set on overflow in up-count mode and on underflow in down-count or up/down count mode. This event is used to time updates of buffered values.

17.3.1.2 Operation

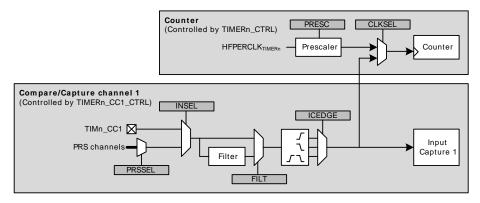
Figure 17.2 (p. 247) shows the hardware Timer/Counter control. Software can start or stop the counter by writing a 1 to the START or STOP bits in TIMERn_CMD. The counter value (CNT in TIMERn_CNT) can always be written by software to any 16-bit value.



It is also possible to control the counter through either an external pin or PRS input. This is done through the input logic for the Compare/Capture Channel 0. The Timer/Counter allows individual actions (start, stop, reload) to be taken for rising and falling input edges. This is configured in the RISEA and FALLA fields in TIMERn_CTRL. The reload value is 0 in up-count and up/down-count mode and TOP in down-count mode.

The RUNNING bit in TIMERn_STATUS indicates if the Timer is running or not. If the SYNC bit in TIMERn_CTRL is set, the Timer is started/stopped/reloaded (external pin or PRS) when any of the other timers are started/stopped/reloaded.

The DIR bit in TIMERn_STATUS indicates the counting direction of the Timer at any given time. The counter value can be read or written by software through the CNT field in TIMERn_CNT. In Up/Down-Count mode the count direction will be set to up if the CNT value is written by software.


Figure 17.2. TIMER Hardware Timer/Counter Control

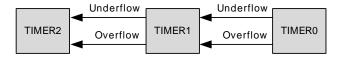
17.3.1.3 Clock Source

The counter can be clocked from several sources, which are all synchronized with the peripheral clock (HFPERCLK). See Figure 17.3 (p. 247).

Figure 17.3. TIMER Clock Selection

17.3.1.3.1 Peripheral Clock (HFPERCLK)

The peripheral clock (HFPERCLK) can be used as a source with a configurable prescale factor of 2^PRESC, where PRESC is an integer between 0 and 10, which is set in PRESC in TIMERn_CTRL. However, if 2x Count Mode is enabled and the Compare/Capture channels are put in PWM mode, the CC output is updated on both clock edges so prescaling the peripheral clock will result in incorrect result. The prescaler is stopped and reset when the timer is stopped.

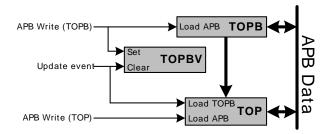

17.3.1.3.2 Compare/ Capture Channel 1 Input

The Timer can also be clocked by positive and/or negative edges on the Compare/Capture channel 1 input. This input can either come from the TIMn_CC1 pin or one of the PRS channels. This input must have a maximum frequency of f_{HFPERCLK}/2. Note that when clocking the Timer from the same pulse that triggers a start (through RISEA/FALLA in TIMERn_CTRL), the starting pulse will not update the Counter Value.

17.3.1.3.3 Underflow/Overflow from Neighboring Timer

All Timers are linked together (see Figure 17.4 (p. 248)), allowing timers to count on overflow/underflow from the lower numbered neighbouring timers to form a 32-bit or 48-bit timer. Note that all timers must be set to same count direction and less significant timer(s) can only be set to count up or down.

Figure 17.4. TIMER Connections

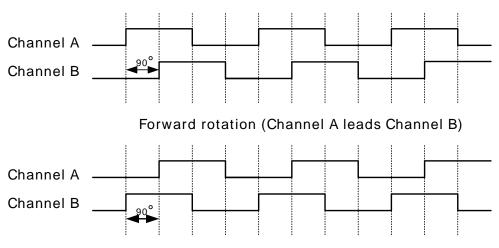

17.3.1.4 One-Shot Mode

By default, the counter counts continuously until it is stopped. If the OSMEN bit is set in the TIMERn_CTRL register, however, the counter is disabled by hardware on the first *update event*. Note that when the counter is running with CC1 as clock source (0b01 in CLKSEL in TIMERn_CTRL) and OSMEN is set, a CC1 capture event will not take place on the *update event* (CC1 rising edge) that stops the Timer.

17.3.1.5 Top Value Buffer

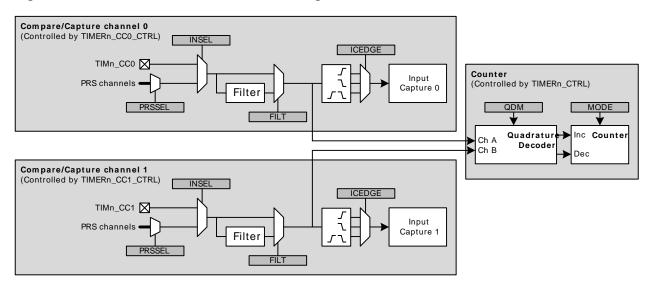
The TIMERn_TOP register can be altered either by writing it directly or by writing to the TIMER_TOPB (buffer) register. When writing to the buffer register the TIMERn_TOPB register will be written to TIMERn_TOP on the next update event. Buffering ensures that the TOP value is not set below the actual count value. The TOPBV flag in TIMERn_STATUS indicates whether the TIMERn_TOPB register contains data that have not yet been written to the TIMERn_TOP register (see Figure 17.5 (p. 248)).

Figure 17.5. TIMER TOP Value Update Functionality



17.3.1.6 Quadrature Decoder

Quadrature Decoding mode is used to track motion and determine both rotation direction and position. The Quadrature Decoder uses two input channels that are 90 degrees out of phase (see Figure 17.6 (p. 249)).


Figure 17.6. TIMER Quadrature Encoded Inputs

Backward rotation (Channel B leads Channel A)

In the Timer these inputs are tapped from the Compare/Capture channel 0 (Channel A) and 1 (Channel B) inputs before edge detection. The Timer/Counter then increments or decrements the counter, based on the phase relation between the two inputs. The Quadrature Decoder Mode supports two channels, but if a third channel (Z-terminal) is available, this can be connected to an external interrupt and trigger a counter reset from the interrupt service routine. By connecting a periodic signal from another timer as input capture on Compare/Capture Channel 2, it is also possible to calculate speed and acceleration.

Figure 17.7. TIMER Quadrature Decoder Configuration

The Quadrature Decoder can be set in either X2 or X4 mode, which is configured in the QDM bit in TIMERn_CTRL. See Figure 17.7 (p. 249)

17.3.1.6.1 X2 Decoding Mode

In X2 Decoding mode, the counter increments or decrements on every edge of Channel A, see Table 17.1 (p. 250) and Figure 17.8 (p. 250).

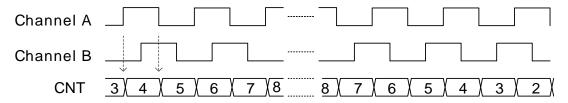

Downloaded from H couls com 2010-12-21 - d0034_Rev0.90 249 www.energymicro.com

Table 17.1. TIMER Counter Response in X2 Decoding Mode

Channel B		Channel A				
Chaine	Rising	Falling				
0	Increment	Decrement				
1	Decrement	Increment				

Figure 17.8. TIMER X2 Decoding Mode

17.3.1.6.2 X4 Decoding Mode

In X4 Decoding mode, the counter increments or decrements on every edge of Channel A and Channel B, see Figure 17.9 (p. 250) and Table 17.2 (p. 250) .

Table 17.2. TIMER Counter Response in X4 Decoding Mode

Opposite Channel	Channel A		Channel B	
	Rising	Falling	Rising	Falling
Channel A = 0			Decrement	Increment
Channel A = 1			Increment	Decrement
Channel B = 0	Increment	Decrement		
Channel B = 1	Decrement	Increment		

Figure 17.9. TIMER X4 Decoding Mode

17.3.1.6.3 TIMER Rotational Position

To calculate a position Equation 17.1 (p. 250) can be used.

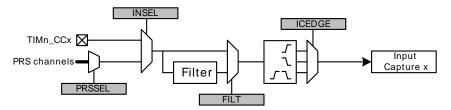
TIMER Rotational Position Equation
$$pos^{\circ} = (CNT/X \times N) \times 360^{\circ}$$
 (17.1)

where X =Encoding type and N =Number of pulses per revolution.

17.3.2 Compare/Capture Channels

The Timer contains 3 Compare/Capture channels, which can be configured in the following modes:

1. Input Capture



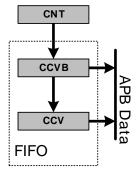
- 2. Output Compare
- 3. PWM

17.3.2.1 Input Pin Logic

Each Compare/Capture channel can be configured as an input source for the Capture Unit or as external clock source for the Timer (see Figure 17.10 (p. 251)). Compare/Capture channels 0 and 1 are the inputs for the Quadrature Decoder Mode. The input channel can be filtered before it is used, which requires the input to remain stable for 5 cycles in a row before the input is propagated to the output.

Figure 17.10. TIMER Input Pin Logic

17.3.2.2 Compare/Capture Registers

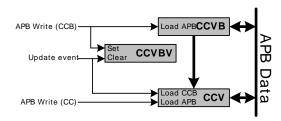

The Compare/Capture channel registers are prefixed with TIMERn_CCx_, where the x stands for the channel number. Since the Compare/Capture channels serve three functions (input capture, compare, PWM), the behavior of the Compare/Capture registers (TIMERn_CCx_CCV) and buffer registers (TIMERn_CCx_CCVB) change depending on the mode the channel is set in.

17.3.2.2.1 Input Capture mode

When running in Input Capture mode, TIMERn_CCx_CCV and TIMERn_CCx_CCVB form a FIFO buffer, and new capture values are added on a capture event, see Figure 17.11 (p. 251). The first capture can always be read from TIMERn_CCx_CCV, and reading this address will load the next capture value into TIMERn_CCx_CCV from TIMERn_CCx_CCVB if it contains valid data. The CC value can be read without altering the FIFO contents by reading TIMERn_CCx_CCVP. TIMERn_CCx_CCVB can also be read without altering the FIFO contents. The ICV flag in TIMERn_STATUS indicates if there is a valid unread capture in TIMERn_CCx_CCV.

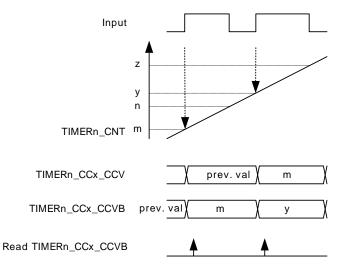
In case a capture is triggered while both CCV and CCVB contain unread capture values, the buffer overflow interrupt flag (ICBOF in TIMERn_IF) will be set. New capture values will on overflow overwrite the value in TIMERn_CCx_CCVB.

Figure 17.11. TIMER Input Capture Buffer Functionality


17.3.2.2.2 Compare and PWM Mode

When running in Output Compare or PWM mode, the value in TIMERn_CCx_CCV will be compared against the count value. In Compare mode the output can be configured to toggle, clear or set

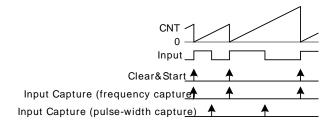
on compare match, overflow and underflow through the CMOA, COFOA and CUFOA fields in TIMERn_CCx_CTRL. TIMERn_CCx_CCV can be accessed directly or through the buffer register TIMERn CCx CCVB, see Figure 17.12 (p. 252). When writing to the buffer register, the value in TIMERn_CCx_CCVB will be written to TIMERn_CCx_CCV on the next update event. This functionality ensures glitch free PWM outputs. The CCVBV flag in TIMERn_STATUS indicates whether the TIMERn_CCx_CCVB register contains data that have not yet been written to the TIMERn_CCx_CCV register. Note that when writing 0 to TIMERn_CCx_CCVB the CCV value is updated when the timer counts from 0 to 1. Thus, the compare match for the next period will not happen until the timer reaches 0 again on the way down.


Figure 17.12. TIMER Output Compare/PWM Buffer Functionality

17.3.2.3 Input Capture

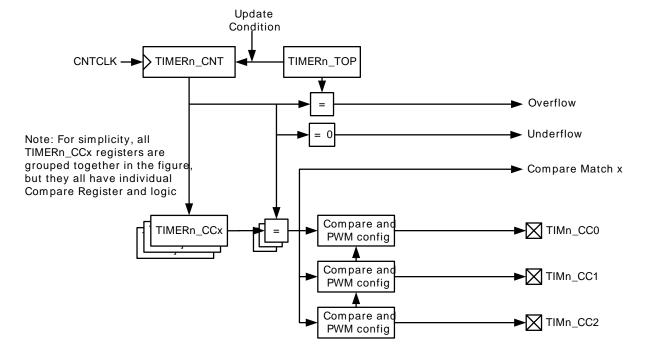
In Input Capture Mode, the counter value (TIMERn CNT) can be captured in the Compare/Capture Register (TIMERn_CCx_CCV), see Figure 17.13 (p. 252). In this mode, TIMERn_CCx_CCV is read-only. Together with the Compare/Capture Buffer Register (TIMERn_CCx_CCVB) the TIMERn_CCx_CCV form a double-buffered capture registers allowing two subsequent capture events to take place before a read-out is required. The CCPOL bits in TIMERn_STATUS indicate the polarity the edge that triggered the capture in TIMERn_CCx_CCV.

Figure 17.13. TIMER Input Capture



17.3.2.3.1 Period/Pulse-Width Capture

Period and/or pulse-width capture can be achieved by setting the RISEA field in TIMERn_CTRL to Clear&Start, and select the wanted input from either external pin or PRS, see Figure 17.14 (p. 253). For period capture, the Compare/Capture Channel should then be set to input capture on a rising edge of the same input signal. To capture a the width of a high pulse, the Compare/Capture Channel should be set to capture on a falling edge of the input signal. To start the measuring period on either a falling edge or measure the low pulse-width of a signal, opposite polarities should be chosen.

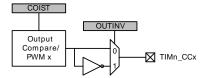

Figure 17.14. TIMER Period and/or Pulse width Capture

17.3.2.4 Compare

Each Compare/Capture channel contains a comparator which outputs a compare match if the contents of TIMERn_CCx_CCV matches the counter value, see Figure 17.15 (p. 253). In compare mode, each compare channel can be configured to either set, clear or toggle the output on an event (compare match, overflow or underflow). The output from each channel is represented as an alternative function on the port it is connected to, which needs to be enabled for the CC outputs to propagate to the pins.

Figure 17.15. TIMER Block Diagram Showing Comparison Functionality

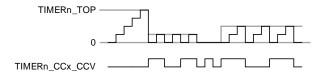
If occurring in the same cycle, match action will have priority over overflow or underflow action.


The input selected (through PRSSEL, INSEL and FILTSEL in TIMERn_CCx_CTRL) for the CC channel will also be sampled on compare match and the result is found in the CCPOL bits in TIMERn_STATUS. It is also possible to configure the CCPOL to always track the inputs by setting ATI in TIMERn_CTRL.

The COIST bit in TIMERn_CCx_CTRL is the initial state of the compare/PWM output. The COIST bit can also be used as an initial value to the comapre outputs on a relaod-start when RSSCOIST is set in TIMERn_CTRL. Also the resulting output can be inverted by setting OUTINV in TIMERn_CCx_CTRL. It is recommended to turn off the CC channel before configuring the output state to avoid any pulses on the output. The CC channel can be turned off by setting MODE to OFF in TIMER_CCx_CTRL.

Downloaded from E 2010-12-21 - d0034_Rev0.90 253 www.energymicro.com

Figure 17.16. TIMER Output Logic



17.3.2.4.1 Frequency Generation (FRG)

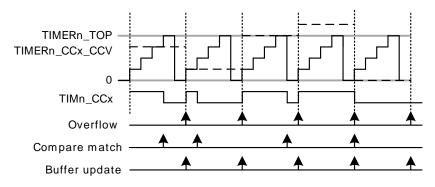
Frequency generation (see Figure 17.17 (p. 254)) can be achieved in compare mode by:

- Setting the counter in up-count mode
- Enabling buffering of the TOP value.
- · Setting the CC channels overflow action to toggle

Figure 17.17. TIMER Up-count Frequency Generation

The output frequency is given by Equation 17.2 (p. 254)

TIMER Up-count Frequency Generation Equation
$$f_{FRG} = f_{HFPERCLK} / \left(\, 2^{\land}(PRESC + 1) \times (TOP + 1) \, \right) \tag{17.2}$$


17.3.2.5 Pulse-Width Modulation (PWM)

In PWM mode, TIMERn_CCx_CCV is buffered to avoid glitches in the output. The settings in the Compare Output Action configuration bits are ignored in PWM mode and PWM generation is only supported for up-count and up/down-count mode.

17.3.2.6 Up-count (Single-slope) PWM

If the counter is set to up-count and the Compare/Capture channel is put in PWM mode, single slope PWM output will be generated (see Figure 17.18 (p. 254)). In up-count mode the PWM period is TOP +1 cycles and the PWM output will be high for a number of cycles equal to TIMERn_CCx_CCV. This means that a constant high output is achieved by setting TIMER_CCx to TOP+1 or higher. The PWM resolution (in bits) is then given by Equation 17.3 (p. 254).

Figure 17.18. TIMER Up-count PWM Generation

TIMER Up-count PWM Resolution Equation

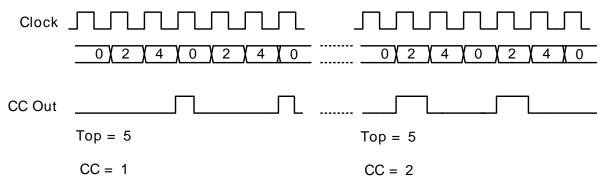
$$R_{PWM_{UD}} = \log(TOP+1)/\log(2) \tag{17.3}$$

The PWM frequency is given by Equation 17.4 (p. 255):

TIMER Up-count PWM Frequency Equation

$$f_{PWM_{UD/down}} = f_{HFPERCLK} / (2^{PRESC} \times (TOP + 1))$$
 (17.4)

The high duty cycle is given by Equation 17.5 (p. 255)


TIMER Up-count Duty Cycle Equation

$$DS_{up} = CCVx/TOP (17.5)$$

17.3.2.6.1 2x Count Mode

When the Timer is set in 2x mode, the TIMER will count up by two. This will in effect make any odd Top value be rounded down to the closest even number. Similarly, any odd CC value will generate a match on the closest lower even value as shown in Figure 17.19 (p. 255)

Figure 17.19. TIMER CC out in 2x mode

The mode is enabled by setting the X2CNT field in TIMERn_CTRL register. The intended use of the 2x mode is to generate 2x PWM frequency when the Compare/Capture channel is put in PWM mode. Since the PWM output is updated on both edges of the clock, frequency prescaling will result in incorrect result in this mode. The PWM resolution (in bits) is then given by Equation 17.6 (p. 255).

TIMER 2x PWM Resolution Equation

$$R_{PWM_{2xmode}} = log(TOP/2+1)/log(2)$$
(17.6)

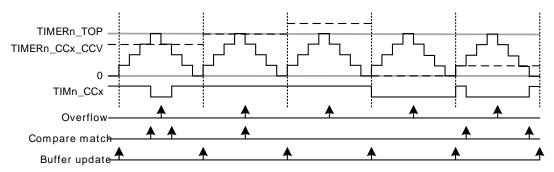
The PWM frequency is given by Equation 17.7 (p. 255):

TIMER 2x Mode PWM Frequency Equation(Up-count)

$$f_{PWM_{2xmode}} = 2 x f_{HFPERCLK} / floor(TOP/2) + 1$$
 (17.7)

The high duty cycle is given by Equation 17.8 (p. 255)

TIMER 2x Mode Duty Cycle Equation


$$DS_{2xmode} = CCVx/TOP (17.8)$$

17.3.2.7 Up/Down-count (Dual-slope) PWM

If the counter is set to up-down count and the Compare/Capture channel is put in PWM mode, dual slope PWM output will be generated by Figure 17.20 (p. 256) .The resolution (in bits) is given by Equation 17.9 (p. 256) .

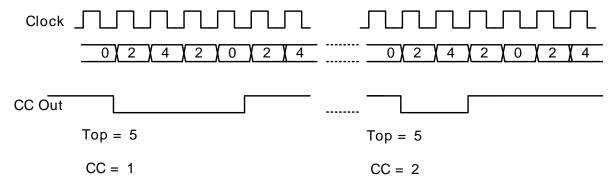
Figure 17.20. TIMER Up/Down-count PWM Generation

TIMER Up/Down-count PWM Resolution Equation

$$R_{PWM_{up/down}} = log(TOP+1)/log(2)$$
 (17.9)

The PWM frequency is given by Equation 17.10 (p. 256):

$$f_{PWM_{up/down}} = f_{HFPERCLK} / (2^{(PRESC+1)} \times TOP)$$
 (17.10)


The high duty cycle is given by Equation 17.11 (p. 256)

$$DS_{up/down} = CCVx/TOP (17.11)$$

17.3.2.7.1 2x Count Mode

When the Timer is set in 2x mode, the TIMER will count up/down by two. This will in effect make any odd Top value be rounded down to the closest even number. Similarly, any odd CC value will generate a match on the closest lower even value as shown in Figure 17.21 (p. 256)

Figure 17.21. TIMER CC out in 2x mode

The mode is enabled by setting the X2CNT field in TIMERn_CTRL register. The intended use of the 2x mode is to generate 2x PWM frequency when the Compare/Capture channel is put in PWM mode. Since the PWM output is updated on both edges of the clock, frequency prescaling will result in incorrect result in this mode. The PWM resolution (in bits) is then given by Equation 17.12 (p. 256) .

TIMER 2x PWM Resolution Equation

$$R_{PWM_{2xmode}} = \log(TOP/2+1)/\log(2)$$
 (17.12)

The PWM frequency is given by Equation 17.7 (p. 255):

TIMER 2x Mode PWM Frequency Equation(Up/Down-count)

$$f_{PWM_{2xmode}} = f_{HFPERCLK}/TOP$$
 (17.13)

The high duty cycle is given by Equation 17.14 (p. 257)

TIMER 2x Mode Duty Cycle Equation

$$DS_{2xmode} = CCVx/TOP (17.14)$$

17.3.3 Debug Mode

When the CPU is halted in debug mode, the Timer can be configured to either continue to run or to be frozen. This is configured in DBGHALT in TIMERn_CTRL.

17.3.4 Interrupts, DMA and PRS Output

The Timer has 5 output events:

- Counter Underflow
- · Counter Overflow
- Compare match or input capture (one per Compare/Capture channel)

Each of the events has its own interrupt flag. Also, there is one interrupt flag for each Compare/Capture channel which is set on buffer overflow in capture mode. Buffer overflow happens when a new capture pushes an old unread capture out of the TIMERn_CCx_CCV/TIMERn_CCx_CCVB register pair.

If the interrupt flags are set and the corresponding interrupt enable bits in TIMERn_IEN) are set high, the Timer will send out an interrupt request. Each of the events will also lead to a one HFPERCLK_{TIMERn} cycle high pulse on individual PRS outputs.

Each of the events will also set a DMA request when they occur. The different DMA requests are cleared when certain acknowledge conditions are met, see Table 17.3 (p. 257). If DMACLRACT is set in TIMERn_CTRL, the DMA request is cleared when the triggered DMA channel is active, without having to access any timer registers.

Table 17.3. TIMER Events

Event	Acknowledge
Underflow/Overflow	Read or write to TIMERn_CNT or TIMERn_TOPB
CC 0	Read or write to TIMERn_CC0_CCV or TIMERn_CC0_CCVB
CC 1	Read or write to TIMERn_CC1_CCV or TIMERn_CC1_CCVB
CC 2	Read or write to TIMERn_CC2_CCV or TIMERn_CC2_CCVB

17.3.5 GPIO Input/Output

The TIMn_CCx inputs/outputs are accessible as alternate functions through GPIO. Each pin connection can be enabled/disabled separately by setting the corresponding CCxPEN bits in TIMERn_ROUTE. The LOCATION bits in the same register can be used to move all enabled pins to alternate pins.

17.4 Register Map

The offset register address is relative to the registers base address.

Offset	Name	Туре	Description
0x000	TIMERn_CTRL	RW	Control Register
0x004	TIMERn_CMD	W1	Command Register
0x008	TIMERn_STATUS	R	Status Register
0x00C	TIMERn_IEN	RW	Interrupt Enable Register
0x010	TIMERn_IF	R	Interrupt Flag Register
0x014	TIMERn_IFS	W1	Interrupt Flag Set Register
0x018	TIMERn_IFC	W1	Interrupt Flag Clear Register
0x01C	TIMERn_TOP	RWH	Counter Top Value Register
0x020	TIMERn_TOPB	RW	Counter Top Value Buffer Register
0x024	TIMERn_CNT	RWH	Counter Value Register
0x028	TIMERn_ROUTE	RW	I/O Routing Register
0x030	TIMERn_CC0_CTRL	RW	CC Channel Control Register
0x034	TIMERn_CC0_CCV	RWH	CC Channel Value Register
0x038	TIMERn_CC0_CCVP	R	CC Channel Value Peek Register
0x03C	TIMERn_CC0_CCVB	RWH	CC Channel Buffer Register
0x040	TIMERn_CC1_CTRL	RW	CC Channel Control Register
0x044	TIMERn_CC1_CCV	RWH	CC Channel Value Register
0x048	TIMERn_CC1_CCVP	R	CC Channel Value Peek Register
0x04C	TIMERn_CC1_CCVB	RWH	CC Channel Buffer Register
0x050	TIMERn_CC2_CTRL	RW	CC Channel Control Register
0x054	TIMERn_CC2_CCV	RWH	CC Channel Value Register
0x058	TIMERn_CC2_CCVP	R	CC Channel Value Peek Register
0x05C	TIMERn_CC2_CCVB	RWH	CC Channel Buffer Register

17.5 Register Description

29

28

RSSCOIST

17.5.1 TIMERn_CTRL - Control Register

	• •		,	`			`-			•	. •		•	9.,	-	•																
Offset															Bi	t Pc	siti	on														
0x000	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	7	10	6	8	7	9	2	4	က	2	-	0
Reset			0	0			e X								2	SX S			0		3	3	3	OXO	0	0	0	0	0		3	OXO
Access			RW	RW		-	≥ Y								Ν	<u>}</u>			RW		7	2	2	<u>}</u>	RW W	RW	RW	RW	RW		Š	
Name			RSSCOIST	ATI		i i	PKESC.								I KAE	CLNSEL			X2CNT		-	7	L	AIOIN A	DMACLRACT	DEBUGRUN	QDM	OSMEN	SYNC		L	
Bit	Na	me						Re	set			Δ	\cc	ess	;	De	scri	ptio	on													
31:30	Res	serve	ed					То	ens	ure c	comp	atib	ility	with	futu	ire de	evice	s, a	lwa	ys v	vrite	bits	to 0.	Mor	e inf	orm	atio	n in S	Sect	ion 2	2.1 (p	o. 3)

Reload-Start Sets Compare Ouptut initial State

Always Track Inputs

RW

When enabled, compare output is set to COIST value at Reload-Start event

Enable ATI makes CCPOL always track the polarity of the inputs

Bit	Name	Reset	Acce	ss Description
27:24	PRESC	0x0	RW	Prescaler Setting
	These bits selec	t the prescaling factor.		
	Value	Mode		Description
	0	DIV1		The HFPERCLK is undivided
	1	DIV2		The HFPERCLK is divided by 2
	2	DIV4		The HFPERCLK is divided by 4
	3	DIV8		The HFPERCLK is divided by 8
	4	DIV16		The HFPERCLK is divided by 16
	5	DIV32		The HFPERCLK is divided by 32
	6	DIV64		The HFPERCLK is divided by 64
	8	DIV128 DIV256		The HEPERCLK is divided by 128
	9	DIV256		The HFPERCLK is divided by 256 The HFPERCLK is divided by 512
	10	DIV1024		The HFPERCLK is divided by 1024
23:18	Reserved	To ensure co	amnatihility u	vith future devices, always write bits to 0. More information in Section 2.1 (p. 3
			RW	
17:16	CLKSEL	0x0		Clock Source Select
	These bits selec	t the clock source for the t	timer.	
	Value	Mode		Description
	0	PRESCHFPERCLK		Prescaled HFPERCLK
	1	CC1		Compare/Capture Channel 1 Input
	2	TIMEROUF		Timer is clocked by underflow(down-count) or overflow(up-count) in the lowe numbered neighbor Timer
15:14	Reserved	To ensure co	ompatibility w	vith future devices, always write bits to 0. More information in Section 2.1 (p. 3
13	X2CNT	0	RW	2x Count Mode
	Enable 2x count	mode		
12	Reserved	To ensure co	ompatibility w	vith future devices, always write bits to 0. More information in Section 2.1 (p. 3
11:10	FALLA	0x0	RW	Timer Falling Input Edge Action
				a falling edge occurs on the input.
	Value	Mode		Description
	0	NONE		No action
	1	START		Start counter without reload
	2	STOP		Stop counter without reload
	3	RELOADSTART		Reload and start counter
9:8	RISEA	0x0	RW	Timer Rising Input Edge Action
	These bits selec			a rising edge occurs on the input.
	Value	Mode		Description
	0	NONE		No action
	1	START		Start counter without reload
	2	STOP		Stop counter without reload
	3	RELOADSTART		Reload and start counter
7	DMACLRACT	0	RW	DMA Request Clear on Active
		set, the DMA requests a leared without accessing t		when the corresponding DMA channel is active. This enables the timer DM
6	DEBUGRUN	0	RW	Debug Mode Run Enable
		able timer to run in debug	mode.	-
	Value	Description		
	Value 0	Description Timer is frozen in	debug mode	
		Description Timer is frozen in Timer is running i	-	9

Downloaded from Education 2010-12-21 - d0034_Rev0.90 259 www.energymicro.com

Bit	Name	Reset	Acce	ss Description
	This bit sets t	he mode for the quadrature	e decoder.	
	Value	Mode		Description
	0	X2		X2 mode selected
	1	X4		X4 mode selected
4	OSMEN	0	RW	One-shot Mode Enable
	Enable/disab	e one shot mode.		
3	SYNC	0	RW	Timer Start/Stop/Reload Synchronization
	When this bit	is set, the Timer is started/	/stopped/reloa	ded by start/stop/reload commands in the other timers
	Value	Description		
	0	Timer is not sta	arted/stopped/re	loaded by other timers
	1	Timer is started	d/stopped/reload	led by other timers
2	Reserved	To ensure	compatibility v	vith future devices, always write bits to 0. More information in Section 2.1 (p. 3)
1:0	MODE	0x0	RW	Timer Mode
		the counting mode for the le Timer is clocked by the I		when Quadrature Decoder Mode is selected (MODE = 'b11), the CLKSEL is a clock output.
	Value	Mode		Description
	0	UP		Up-count mode
	1	DOWN		Down-count mode
	2	UPDOWN		Up/down-count mode
	3	QDEC		Quadrature decoder mode

17.5.2 TIMERn_CMD - Command Register

Offset															Bi	t Po	siti	on														
0x004	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	11	10	6	80	7	9	2	4	က	7	-	0
Reset			•					•			•				•			•	•				•			•				,	0	0
Access																															×	W
Name																															STOP	START

Bit	Name	Reset	Access	Description
31:2	Reserved	To ensure co	ompatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
1	STOP	0	W1	Stop Timer
	Write a 1 to this bit	t to stop timer		
0	START	0	W1	Start Timer
	Write a 1 to this bit	t to start timer		

2010-12-21 - d0034_Rev0.90 www.energymicro.com

17.5.3 TIMERn_STATUS - Status Register

Offset															Bi	t Po	siti	on														
0x008	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	œ	7	9	2	4	က	2	-	0
Reset					•	0	0	0						0	0	0						0	0	0						0	0	0
Access						2	~	œ						~	~	~					_	~	~	œ						~	œ	~
Name						CCPOL2	CCPOL1	CCPOLO						ICV2	ICV1	ICV0						CCVBV2	CCVBV1	CCVBV0						TOPBV	DIR	RUNNING

Name		CCPOL2	CCPOL1			ICV2	ICV1	ICV0		CCVBV2	CCVBV1	CCVBV0		TOPBV	DIR	RUNNING
Bit	Name		Re	eset	Acc	cess	5	De	scription							
31:27	Reserved		To	ensure	compatibility	/ with	h futu	re de	evices, always write b	bits t	to 0.	More	e information in Sect	ion 2	.1 (p	o. 3)
26	CCPOL2		0		R			СС	2 Polarity							
													n_CC2_CCV. In Co hen CCMODE is wr			
	Value	Mode				[Descr	iption								
	0	LOW	RISE			_			y low level/rising edge							
	1	HIGH	FALL			(CC2 p	olarit	y high level/falling edge)						
25	CCPOL1		0		R			СС	1 Polarity							
													n_CC1_CCV. In Co hen CCMODE is wr			
	Value	Mode				[Descr	iption								
	0	LOW	RISE			(CC1 p	olarit	y low level/rising edge							\neg
	1	HIGH	FALL			(CC1 p	olarit	y high level/falling edge	;						
			the pola			nput		C ch	annel 0. These bits a				n_CC0_CCV. In Co hen CCMODE is wr			
	0	LOW						•	y low level/rising edge							_
	1	HIGH				_			y high level/falling edge							\dashv
23:19	Reserved		To	ensure	compatibility						to 0.	More	e information in Sect	ion 2	.1 (p	o. 3)
 18	ICV2		0		R			CC	2 Input Capture Val	id					.,	
10	-		MERn_		CV contains	a va	alid c		•		only	use	d in input capture m	ode	and	are
	Value		Desc	ription												
	0		TIME	Rn_CC2_	CCV does no	t con	tain a	valio	capture value(FIFO en	npty)						\neg
	1		TIME	Rn_CC2_	CCV contains	s a va	alid ca	pture	value(FIFO not empty))						
17	ICV1		0		R			СС	1 Input Capture Val	id						_
	This bit indicat cleared when 0					a va	alid c	aptu	re value. These bits	are	only	use	d in input capture m	ode	and	are
	Value		Desc	ription												
	0		TIME	Rn_CC1_	CCV does no	t con	tain a	valio	capture value(FIFO en	npty)						\dashv
	1		TIME	Rn_CC1_	CCV contains	s a va	alid ca	pture	value(FIFO not empty))						
16	ICV0		0		R			СС) Input Capture Val	id						
	This bit indicat	es that T	MERn_	CC0_C	CV contains	a va	alid c	aptu	e value. These bits	are	only	use	d in input capture m	ode	and	are

This bit indicates that TIMERn_CC0_CCV contains a valid capture value. These bits are only used in input capture mode and are cleared when CCMODE is written to 0b00 (Off).

Value	Description
0	TIMERn_CC0_CCV does not contain a valid capture value(FIFO empty)

Downloaded from E 2010-12-21 - d0034_Rev0.90 261 www.energymicro.com

Bit	Name	Reset	Access	Description
	Value	Description		
	1	TIMERn_CC0_0	CCV contains a val	id capture value(FIFO not empty)
15:11	Reserved	To ensure c	ompatibility with	future devices, always write bits to 0. More information in Section 2.1 (p. 3)
10	CCVBV2	0	R	CC2 CCVB Valid
				rs contain data which have not been written to TIMERn_CC2_CCV. These cleared when CCMODE is written to 0b00 (Off).
	Value	Description		
	0	TIMERn_CC2_C	CCVB does not cor	ntain valid data
	1	TIMERn_CC2_C	CCVB contains vali	d data which will be written to TIMERn_CC2_CCV on the next update event
9	CCVBV1	0	R	CC1 CCVB Valid
				rs contain data which have not been written to TIMERn_CC1_CCV. These cleared when CCMODE is written to 0b00 (Off).
	Value	Description		
	0	TIMERn_CC1_C	CCVB does not cor	ntain valid data
	1	TIMERn_CC1_0	CCVB contains vali	d data which will be written to TIMERn_CC1_CCV on the next update event
8	CCVBV0	0	R	CC0 CCVB Valid
				rs contain data which have not been written to TIMERn_CC0_CCV. These cleared when CCMODE is written to 0b00 (Off).
	Value	Description		
	0	TIMERn_CC0_0	CCVB does not cor	ntain valid data
	1	TIMERn_CC0_0	CCVB contains vali	d data which will be written to TIMERn_CC0_CCV on the next update event
7:3	Reserved	To ensure c	ompatibility with	future devices, always write bits to 0. More information in Section 2.1 (p. 3)
2	TOPBV	0	R	TOPB Valid
	This indicates to TIMERn_TOP in the transfer of the transfer o		ains valid data t	hat has not been written to TIMERn_TOP. This bit is also cleared when
	Value	Description		
	0	TIMERn_TOPB	does not contain v	alid data
	1	TIMERn_TOPB	contains valid data	which will be written to TIMERn_TOP on the next update event
1	DIR	0	R	Direction
	Indicates count	direction.		
	Value	Mode	D	escription
	0	UP	С	ounting up
	1	DOWN	С	ounting down
0	1 RUNNING	DOWN 0	R	ounting down Running

17.5.4 TIMERn_IEN - Interrupt Enable Register

Offset															Bi	t Pc	siti	on														
0x00C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	1	10	ი	œ	7	9	2	4	е	2	_	0
Reset																	•					0	0	0		0	0	0			0	0
Access																						R ≪	₩	8 W		ΝW	RW	₩			RW	W.
Name																						ICBOF2	ICBOF1	ICBOF0		CC2	CC1	000			Ą	OF

Bit	Name	Reset	Access	Description
31:11	Reserved	To ensure comp	atibility with fut	ure devices, always write bits to 0. More information in Section 2.1 (p. 3)

Downloaded from Houlescom 2010-12-21 - d0034_Rev0.90 262 www.energymicro.com

Bit	Name	Reset	Access	Description
10	ICBOF2	0	RW	CC Channel 2 Input Capture Buffer Overflow Interrupt Enable
	Enable/disable Co	mpare/Capture ch 2 inp	ut capture buffer	overflow interrupt.
9	ICBOF1	0	RW	CC Channel 1 Input Capture Buffer Overflow Interrupt Enable
	Enable/disable Co	mpare/Capture ch 1 inp	ut capture buffer	overflow interrupt.
8	ICBOF0	0	RW	CC Channel 0 Input Capture Buffer Overflow Interrupt Enable
	Enable/disable Co	mpare/Capture ch 0 inp	ut capture buffer	overflow interrupt.
7	Reserved	To ensure co	mpatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
6	CC2	0	RW	CC Channel 2 Interrupt Enable
	Enable/disable Co	mpare/Capture ch 2 inte	errupt.	
5	CC1	0	RW	CC Channel 1 Interrupt Enable
	Enable/disable Co	mpare/Capture ch 1 inte	errupt.	
4	CC0	0	RW	CC Channel 0 Interrupt Enable
	Enable/disable Co	mpare/Capture ch 0 inte	errupt.	
3:2	Reserved	To ensure co	mpatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
1	UF	0	RW	Underflow Interrupt Enable
	Enable/disable un	derflow interrupt.		
0	OF	0	RW	Overflow Interrupt Enable
	Enable/disable ov	erflow interrupt.		

17.5.5 TIMERn_IF - Interrupt Flag Register

Offset															Bi	t Pc	siti	on														
0x010	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	1	10	თ	∞	7	9	2	4	က	7	-	0
Reset																						0	0	0		0	0	0			0	0
Access																						œ	~	œ		œ	~	~			~	œ
Name																						ICBOF2	ICBOF1	ICBOF0		CC2	CC1	000			UF	OF

Bit	Name	Reset	Access	Description
31:11	Reserved	To ensure comp	atibility with fut	ure devices, always write bits to 0. More information in Section 2.1 (p. 3)
10	ICBOF2	0	R	CC Channel 2 Input Capture Buffer Overflow Interrupt Flag
	This bit indicates that a new pair.	w capture value has	pushed an un	read value out of the TIMERn_CC2_CCV/TIMERn_CC2_CCVB register
9	ICBOF1	0	R	CC Channel 1 Input Capture Buffer Overflow Interrupt Flag
	This bit indicates that a new pair.	w capture value has	pushed an un	read value out of the TIMERn_CC1_CCV/TIMERn_CC1_CCVB register
8	ICBOF0	0	R	CC Channel 0 Input Capture Buffer Overflow Interrupt Flag
	This bit indicates that a new pair.	w capture value has	pushed an un	read value out of the TIMERn_CC0_CCV/TIMERn_CC0_CCVB register
7	Reserved	To ensure comp	atibility with fut	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
6	CC2	0	R	CC Channel 2 Interrupt Flag
	This bit indicates that there	e has been an inter	rupt event on C	Compare/Capture channel 2.
5	CC1	0	R	CC Channel 1 Interrupt Flag
	This bit indicates that there	e has been an inter	rupt event on C	Compare/Capture channel 1.

Downloaded from Elecules com

Bit	Name	Reset	Access	Description
4	CC0	0	R	CC Channel 0 Interrupt Flag
	This bit indicates the	nat there has been an i	nterrupt event on	Compare/Capture channel 0.
3:2	Reserved	To ensure co	ompatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
1	UF	0	R	Underflow Interrupt Flag
	This bit indicates th	nat there has been an u	underflow.	
0	OF	0	R	Overflow Interrupt Flag
	This bit indicates th	nat there has been an o	overflow.	

17.5.6 TIMERn_IFS - Interrupt Flag Set Register

Offset															Bi	t Pc	siti	on														
0x014	31	30	29	28	27	56	22	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	တ	∞	7	9	2	4	က	2	-	0
Reset					•																	0	0	0		0	0	0			0	0
Access																						M1	W	W1		W1	W1	W W			M1	W W
Name																						ICBOF2	ICBOF1	ICBOF0		CC2	CC1	000			UF	OF

Bit	Name	Reset	Access	Description
31:11	Reserved	To ensure co	ompatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
10	ICBOF2	0	W1	CC Channel 2 Input Capture Buffer Overflow Interrupt Flag Set
	Writing a 1 to this b	oit will set Compare/Ca	pture channel 2 ir	put capture buffer overflow interrupt flag.
9	ICBOF1	0	W1	CC Channel 1 Input Capture Buffer Overflow Interrupt Flag Set
	Writing a 1 to this b	oit will set Compare/Ca	pture channel 1 ir	put capture buffer overflow interrupt flag.
8	ICBOF0	0	W1	CC Channel 0 Input Capture Buffer Overflow Interrupt Flag Set
	Writing a 1 to this b	oit will set Compare/Ca	pture channel 0 ir	put capture buffer overflow interrupt flag.
7	Reserved	To ensure co	ompatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
6	CC2	0	W1	CC Channel 2 Interrupt Flag Set
	Writing a 1 to this b	oit will set Compare/Ca	pture channel 2 ir	sterrupt flag.
5	CC1	0	W1	CC Channel 1 Interrupt Flag Set
	Writing a 1 to this b	oit will set Compare/Ca	pture channel 1 ir	nterrupt flag.
4	CC0	0	W1	CC Channel 0 Interrupt Flag Set
	Writing a 1 to this b	oit will set Compare/Ca	pture channel 0 ir	nterrupt flag.
3:2	Reserved	To ensure co	ompatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
1	UF	0	W1	Underflow Interrupt Flag Set
	Writing a 1 to this b	oit will set the underflow	v interrupt flag.	
0	OF	0	W1	Overflow Interrupt Flag Set
	Writing a 1 to this b	oit will set the overflow	interrupt flag.	

2010-12-21 - d0034_Rev0.90 www.energymicro.comDownloaded from I

17.5.7 TIMERn_IFC - Interrupt Flag Clear Register

Offset															Bi	t Pc	siti	on														
0x018	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	11	10	6	8	7	9	2	4	က	2	_	0
Reset			•														•					0	0	0		0	0	0			0	0
Access																						M	W	M1		W1	M	M1			×	N N
Name																						ICBOF2	ICBOF1	ICBOF0		CC2	CC1	000			占	OF

Bit	Name	Reset	Access	Description
31:11	Reserved	To ensure co	ompatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
10	ICBOF2	0	W1	CC Channel 2 Input Capture Buffer Overflow Interrupt Flag Clear
	Writing a 1 to this I	oit will clear Compare/C	apture channel 2	input capture buffer overflow interrupt flag.
9	ICBOF1	0	W1	CC Channel 1 Input Capture Buffer Overflow Interrupt Flag Clear
	Writing a 1 to this I	oit will clear Compare/C	apture channel 1	input capture buffer overflow interrupt flag.
8	ICBOF0	0	W1	CC Channel 0 Input Capture Buffer Overflow Interrupt Flag Clear
	Writing a 1 to this I	oit will clear Compare/C	apture channel 0	input capture buffer overflow interrupt flag.
7	Reserved	To ensure co	ompatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
6	CC2	0	W1	CC Channel 2 Interrupt Flag Clear
	Writing a 1 to this I	oit will clear Compare/C	apture interrupt fl	ag 2.
5	CC1	0	W1	CC Channel 1 Interrupt Flag Clear
	Writing a 1 to this I	oit will clear Compare/C	apture interrupt fl	ag 1.
4	CC0	0	W1	CC Channel 0 Interrupt Flag Clear
	Writing a 1 to this I	oit will clear Compare/C	apture interrupt fl	ag 0.
3:2	Reserved	To ensure co	ompatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
1	UF	0	W1	Underflow Interrupt Flag Clear
	Writing a 1 to this I	oit will clear the underflo	ow interrupt flag.	
0	OF	0	W1	Overflow Interrupt Flag Clear
	Writing a 1 to this I	oit will clear th overflow	interrupt flag.	

17.5.8 TIMERn_TOP - Counter Top Value Register

Offset	Bit Position
0x01C	30 31 32 32 33 33 34 34 35 35 35 35 35 35 35 35 35 35 35 35 35
Reset	OXFFFF
Access	RWH
Name	TOP .

Bit	Name	Reset	Access	Description
31:16	Reserved	To ensure comp	atibility with fut	ure devices, always write bits to 0. More information in Section 2.1 (p. 3)
15:0	TOP	0xFFFF	RWH	Counter Top Value

Downloaded from Heads.com 2010-12-21 - d0034_Rev0.90 265 www.energymicro.com

Bit	Name	Reset	Access	Description					
	These bits hold the TOP va	nold the TOP value for the counter.							

17.5.9 TIMERn_TOPB - Counter Top Value Buffer Register

Offset															Bi	t Pc	siti	on														
0x020	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	1	10	6	8	7	. 9	2	4	က	2	-	0
Reset																									0000x0							
Access																								i	ž Š							
Name																								i C H	TOPB							
Bit	Na	ıme						Re	set			A	\cc	ess	;	De	scri	iptic	on													
31:16	Re	serv	ed					То	ensi	ure c	omp	atib	ility	with	futu	re de	evice	es, a	lwa	iys v	vrite	bits	to 0.	Mor	e in	nforn	natio	n in	Sect	ion 2	.1 (p	o. 3)
15:0	то	РВ						0x0	0000			R	W			Co	unte	r To	p۷	/alu	е Ви	ıffer										
	The	ese b	oits h	old t	he 1	ГОР	but	ffer v	/alue	٠.																						

17.5.10 TIMERn_CNT - Counter Value Register

Offset															Bi	t Pc	siti	on														
0x024	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	7	10	6	80	7	. (2	4	က	2	-	0
Reset																									0000x0							
Access																								i	RWH							
Name																								!	CNT							
Bit	Na	ıme						Re	set			А	CC	ess		De	scri	iptic	on													
31:16	Re	serve	ed					То	ensı	ıre c	comp	atibi	ility	with	futu	re de	evice	es, a	lwa	iys v	vrite	bits i	to 0.	Mor	e ir	nforn	natio	n in	Sect	ion 2	.1 (r	o. 3)
15:0	CN	Т						0x0	0000			R	WH	ł		Co	ınte	r Va	lue	•												
	The	ese t	oits h	old	the c	coui	nter	valu	e.																							

17.5.11 TIMERn_ROUTE - I/O Routing Register

Offset															Bi	t Pc	siti	on														
0x028	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	1	10	6	80	7	9	2	4	က	2	-	0
Reset										•					2	3														0	0	0
Access															<u> </u>	2														₩ M	R M	R W
Name															MOITAGO															CC2PEN	CC1PEN	CCOPEN

Downloaded from H couls com 2010-12-21 - d0034_Rev0.90 266 www.energymicro.com

		_		
Bit	Name	R	eset Acces	ss Description
31:18	Reserved	To	o ensure compatibility w	ith future devices, always write bits to 0. More information in Section 2.1 (p. 3)
17:16	LOCATION	0x	0 RW	I/O Location
	Decides the loca	ation of the CC	pins.	
	Value	Mode		Description
	0	LOC0		Location 0
	1	LOC1		Location 1
	2	LOC2		Location 2
	3	LOC3		Location 3
15:3	Reserved	To	o ensure compatibility w	ith future devices, always write bits to 0. More information in Section 2.1 (p. 3)
2	CC2PEN	0	RW	CC Channel 2 Pin Enable
	Enable/disable 0	CC channel 2 o	output/input connection to	pin.
1	CC1PEN	0	RW	CC Channel 1 Pin Enable
	Enable/disable 0	CC channel 1 o	output/input connection to	pin.
0	CC0PEN	0	RW	CC Channel 0 Pin Enable
	Enable/disable 0	CC Channel 0 c	output/input connection t	o pin.

17.5.12 TIMERn_CCx_CTRL - CC Channel Control Register

Offset															Bi	t Po	siti	on														
0x030	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	ი	œ	7	9	2	4	က	2	-	0
Reset					OXO		ç) X			0	0			0x0				6) X	2	S S	2	S S				0		0	2	
Access					S S		3	<u>}</u>			₹	RW			M				i	≩ Y	3	<u> </u>	3	<u> </u>				₩		R ≪	3	 ≩
Name					ICEVCTRI		L	ICEUGE			FILT	INSEL			PRSSEL				Č	CUFUA	S C	¥000	Š.					COIST		OUTINV	HOOM.	M C C

27:26	ICEVCTRI	ΩχΩ	RW	Input Capture Event Control
31:28	Reserved	To ensure comp	atibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
Bit	Name	Reset	Access	Description

These bits control when a Compare/Capture PRS output pulse, interrupt flag and DMA request is set.

Value	Mode	Description
0	EVERYEDGE	PRS output pulse, interrupt flag and DMA request set on every capture
1	EVERYSECONDEDGE	PRS output pulse, interrupt flag and DMA request set on every second capture
2	RISING	PRS output pulse, interrupt flag and DMA request set on rising edge only (if ICEDGE = BOTH)
3	FALLING	PRS output pulse, interrupt flag and DMA request set on falling edge only (if ICEDGE = BOTH)

25:24 ICEDGE 0x0 RW Input Capture Edge Select

These bits control which edges the edge detector triggers on. The output is used for input capture and external clock input.

Value	Mode	Description
0	RISING	Rising edges detected
1	FALLING	Falling edges detected
2	вотн	Both edges detected
3	NONE	No edge detection, signal is left as it is

23:22 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)

FILT 0 RW **Digital Filter**

Enable digital filter.

Bit	Name	Reset	Acce	ess Description
	Value	Mode		Description
	0	DISABLE		Digital filter disabled
	1	ENABLE		Digital filter enabled
20	INSEL	0	RW	Input Selection
	Select Compa	re/Capture channel input.		•
	Value	Mode		Description
	0	PIN		TIMERnCCx pin is selected
	1	PRS		PRS input (selected by PRSSEL) is selected
19	Reserved	To ensure c	ompatibility w	vith future devices, always write bits to 0. More information in Section 2.1 (p. 3
18:16	PRSSEL	0x0	RW	Compare/Capture Channel PRS Input Channel Selection
	Select PRS in	put channel for Compare/C	apture chann	nel.
	Value	Mode		Description
	0	PRSCH0		PRS Channel 0 selected as input
	1	PRSCH1		PRS Channel 1 selected as input
	2	PRSCH2		PRS Channel 2 selected as input
	3	PRSCH3		PRS Channel 3 selected as input
	4	PRSCH4		PRS Channel 4 selected as input
	5	PRSCH5		PRS Channel 5 selected as input
	6	PRSCH6		PRS Channel 6 selected as input
	7	PRSCH7		PRS Channel 7 selected as input
15:14	Reserved	To ensure c	ompatibility w	vith future devices, always write bits to 0. More information in Section 2.1 (p.
3:12	CUFOA	0x0	RW	Counter Underflow Output Action
	Select output a	action on counter underflow	٧.	·
	Value	Mode		Description
	0	NONE		No action on counter underflow
	1	TOGGLE		Toggle output on counter underflow
	2	CLEAR		Clear output on counter underflow
	3	SET		Set output on counter underflow
11:10	COFOA	0x0	RW	Counter Overflow Output Action
	Select output a	action on counter overflow.		
	Value	Mode		Description
	0	NONE		No action on counter overflow
	1	TOGGLE		Toggle output on counter overflow
	2	CLEAR		Clear output on counter overflow
	3	SET		Set output on counter overflow
9:8	CMOA	0x0	RW	Compare Match Output Action
		action on compare match.		Thursday.
	Value	Mode		Description No action on a company match
	0	NONE TOGGLE		No action on compare match
	1			Toggle output on compare match
	3	CLEAR SET		Clear output on compare match Set output on compare match
7:5	Reserved		ompatibility w	vith future devices, always write bits to 0. More information in Section 2.1 (p.
4	COIST	0	RW	Compare Output Initial State
	This bit is only is disabled. W	used in Output Compare ar hen counting resumes, this	nd PWM mod s value will re PWM mode,	le. When this bit is set in compare mode, the output is set high when the count epresent the initial value for the output. If the bit is cleared, the output will the output will always be low when disabled, regardless of this bit. However
3	Reserved	To ensure c	ompatibility w	vith future devices, always write bits to 0. More information in Section 2.1 (p.

Bit	Name	Reset	Access	Description
2	OUTINV	0	RW	Output Invert
	Setting this bi	t inverts the output from the	CC channel (O	utput compare,PWM).
1:0	MODE	0x0	RW	CC Channel Mode
	These bits se	lect the mode for Compare/C	Capture channe	ol.
	Value	Mode	С	Description
	0	OFF	C	Compare/Capture channel turned off
	1	INPUTCAPTURE	Ir	nput capture
	2	OUTPUTCOMPARE	C	Output compare
	3	PWM	P	Pulse-Width Modulation

17.5.13 TIMERn_CCx_CCV - CC Channel Value Register

Offset															Bit	t Po	siti	on														
0x034	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	7	10	6	8	7	9	2	4	က	2	-	0
Reset																								0000	000000							
Access																									I M Y							
Name																								ò	<u>}</u>							

Bit	Name	Reset	Access	Description
31:16	Reserved	To ensure com	patibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
15:0	CCV	0x0000	RWH	CC Channel Value

In input capture mode, this field holds the first unread capture value. When reading this register in input capture mode, then contents of the TIMERn_CCx_CCVB register will be written to TIMERn_CCx_CCV in the next cycle. In compare mode, this fields holds the compare value.

17.5.14 TIMERn_CCx_CCVP - CC Channel Value Peek Register

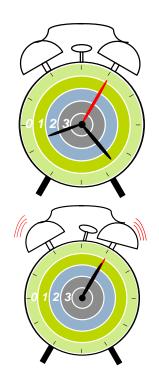
Offset															Bit	t Po	sitio	on														
0x038	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	æ	7	9	2	4	က	2	-	0
Reset																								0000	000000							
Access																									צ							
Name																								(2							

Bit	Name	Reset	Access	Description
31:16	Reserved	To ensure co	mpatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
15:0	CCVP	0x0000	R	CC Channel Value Peek
	This field is used to rea	d the CC value with	hout pulling data	through the FIFO in capture mode.

Downloaded from H course on 2010-12-21 - d0034_Rev0.90 269 www.energymicro.com

17.5.15 TIMERn_CCx_CCVB - CC Channel Buffer Register

Offset		,	,							,					Bi	t Pc	siti	on				,				·						
0x03C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	9	2	4	3	2	~	0
Reset																								000	nannan							
Access																									E 2 2							
Name																								Ç	٥							


Bit	Name	Reset	Access	Description
31:16	Reserved	To ensure comp	patibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
15:0	CCVB	0x0000	RWH	CC Channel Value Buffer
				K.I. TIMED 00 00V 1: 1 1 1 1: 1

In Input Capture mode, this field holds the last capture value if the TIMERn_CCx_CCV register already contains an earlier unread capture value. In Output Compare or PWM mode, this field holds the CC buffer value which will be written to TIMERn_CCx_CCV on an update event if TIMERn_CCx_CCVB contains valid data.

Downloaded from Houles com

18 RTC - Real Time Counter

Quick Facts

What?

The Real Time Counter (RTC) ensures timekeeping in low energy modes. Combined with the low power 32.768 kHz oscillator (XTAL or RC), the RTC can run in EM2 with total current consumption less than 0.9 µA.

Why?

Timekeeping over long time periods is required in many applications, while using as little power as possible.

How?

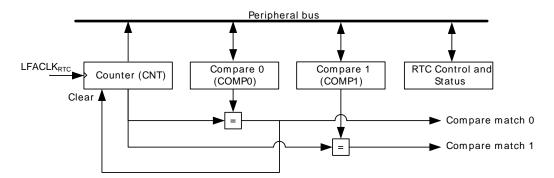
The 32.768 kHz oscillator is used as clock signal and the RTC has two different compare registers that can trigger a wake-up. 24-bit resolution and selectable prescaling allow the system to stay in EM2 for long a time and still maintain reliable timekeeping.

18.1 Introduction

The Real Time Counter (RTC) contains a 24-bit counter and is clocked either by a 32.768 kHz crystal oscillator, or a 32.768 kHz RC oscillator. In addition to energy modes EM0 and EM1, the RTC is also available in EM2. This makes it ideal for keeping track of time since the RTC is enabled in EM2 where most of the device is powered down.

Two compare channels are available in the RTC. These can be used to trigger interrupts and to wake the device up from a low energy mode. They can also be used with the LETIMER to generate various output waveforms.

18.2 Features


- 24-bit Real Time Counter
- Prescaler
 - $32.768 \text{ kHz/2}^{\text{N}}$, N = 0 15
 - Overflow @ 0.14 hours for prescaler setting = 0
 - Overflow @ 4660 hours (194 days) for prescaler setting = 15 (1 s tick)
- Two compare registers
 - A compare match can potentially wake-up the device from low energy modes EM1 and EM2
 - Second compare register can be top value for RTC
 - Both compare channels can trigger LETIMER
 - Compare match events are available to other peripherals through the Peripheral Reflex System (PRS)

18.3 Functional Description

The RTC is a 24-bit counter with two compare channels. The RTC is closely coupled with the LETIMER, and can be configured to trigger it on a compare match on one or both compare channels. An overview of the RTC module is shown in Figure 18.1 (p. 272).

Figure 18.1. RTC Overview

18.3.1 Counter

The RTC is enabled by setting the EN bit in the RTC_CTRL register. It counts up as long as it is enabled, and will on an overflow simply wrap around and continue counting. The RTC is cleared when it is disabled. The timer value is read-only and the RTC always starts counting from 0 when enabled. The value of the counter can be read using the RTC_CNT register.

18.3.1.1 Clock Source

The RTC clock source and its prescaler value are defined in the Register Description section of the Clock Management Unit (CMU). The clock used by the RTC has a frequency given by Equation 18.1 (p. 272).

RTC Frequency Equation
$$f_{RTC} = f_{LFACLK}/2^{RTC_PRESC} \tag{18.1}$$

where f_{LFACLK} is the LFACLK frequency (32.768 kHz) and RTC_PRESC is a 4 bit value. Table 18.1 (p. 273) shows the time of overflow and resolution of the RTC at the available prescaler values.

To use this module, the LE interface clock must be enabled in CMU_HFCORECLKEN0 in addition to the module clock

Downloaded from Headis.com 2010-12-21 - d0034_Rev0.90 272 www.energymicro.com

Table 18.1. RTC Resolution Vs Overflow

RTC_PRESC	Resolution	Overflow
0	30,5 µs	512 s
1	61,0 µs	1024 s
2	122 μs	2048 s
3	244 μs	1,14 hours
4	488 μs	2,28 hours
5	977 μs	4,55 hours
6	1,95 ms	9,10 hours
7	3,91 ms	18,2 hours
8	7,81 ms	1,52 days
9	15,6 ms	3,03 days
10	31,25 ms	6,07 days
11	62,5 ms	12,1 days
12	0,125 s	24,3 days
13	0,25 s	48,5 days
14	0,5 s	97,1 days
15	1 s	194 days

18.3.2 Compare Channels

Two compare channels are available in the RTC. The compare values can be set by writing to the RTC compare channel registers RTC_COMPn, and when RTC_CNT is equal to one of these, the respective compare interrupt flag COMPn is set.

If COMP0TOP is set, the compare value set for compare channel 0 is used as a top value for the RTC, and the timer is cleared on a compare match with compare channel 0. If using the COMP0TOP setting, make sure to set this bit prior to or at the same time the EN bit is set. Setting COMP0TOP after the EN bit is set may cause unintended operation (i.e. if CNT > COMP0).

18.3.2.1 LETIMER Triggers

A compare event on either of the compare channels can start the LETIMER. See the LETIMER documentation for more information on this feature.

18.3.2.2 PRS Sources

Both the compare channels of the RTC can be used as PRS sources. They will generate a pulse lasting one RTC clock cycle on a compare match.

18.3.3 Interrupts

The interrupts generated by the RTC are combined into one interrupt vector. If interrupts for the RTC is enabled, an interrupt will be made if one or more of the interrupt flags in RTC_IF and their corresponding bits in RTC_IEN are set. Interrupt events are overflow and compare match on either compare channels. Clearing of an interrupt flag is performed by writing to the corresponding bit in the RTC_IFC register.

18.3.4 Debugrun

By default, the RTC is halted when code execution is halted from the debugger. By setting the DEBUGRUN bit in the RTC_CTRL register, the RTC will continue to run even when the debugger is halted.

18.3.5 Register access

Since this module is a Low Energy Peripheral, and runs off a clock which is asynchronous to the HFCORECLK, special considerations must be taken when accessing registers. Please refer to Section 5.3 (p. 18) for a description on how to perform register accesses to Low Energy Peripherals.

Downloaded from H couls com 2010-12-21 - d0034_Rev0.90 274 www.energymicro.com

18.4 Register Map

The offset register address is relative to the registers base address.

Offset	Name	Туре	Description
0x000	RTC_CTRL	RW	Control Register
0x004	RTC_CNT	RWH	Counter Value Register
0x008	RTC_COMP0	RW	Compare Value Register 0
0x00C	RTC_COMP1	RW	Compare Value Register 1
0x010	RTC_IF	R	Interrupt Flag Register
0x014	RTC_IFS	W1	Interrupt Flag Set Register
0x018	RTC_IFC	W1	Interrupt Flag Clear Register
0x01C	RTC_IEN	RW	Interrupt Enable Register
0x020	RTC_FREEZE	RW	Freeze Register
0x024	RTC_SYNCBUSY	R	Synchronization Busy Register

18.5 Register Description

18.5.1 RTC_CTRL - Control Register (Async Reg)

For more information about Asynchronous Registers please see Section 5.3 (p. 18).

Offset															Bi	t Po	siti	on														
0x000	31	30	29	28	27	56	22	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	œ	7	9	2	4	က	2	-	0
Reset																												•		0	0	0
Access																														RW	₩.	Z.
Name																														СОМРОТОР	DEBUGRUN	EN

Bit	Name	Reset	Access	Description
31:3	Reserved	To ensure c	ompatibility with	future devices, always write bits to 0. More information in Section 2.1 (p. 3)
2	COMP0TOP	0	RW	Compare Channel 0 is Top Value
	When set, the co	unter is cleared in the cl	ock cycle after a	compare match with compare channel 0.
	Value	Mode	D	escription
	0	DISABLE	Т	he top value of the RTC is 16777215 (0xFFFFFF)
	1	ENABLE	Т	he top value of the RTC is given by COMP0
1	DEBUGRUN	0	RW	Debug Mode Run Enable
	Set this bit to ena	able the RTC to keep rur	ning in debug	
	Value	Description		
	0	RTC is frozen in	debug mode	
	1	RTC is running i	n debug mode	
0	EN	0	RW	RTC Enable
	When this bit is s	et, the RTC is enabled a	and counts up. V	When cleared, the counter register CNT is reset.

2010-12-21 - d0034_Rev0.90 275 www.energymicro.com

18.5.2 RTC_CNT - Counter Value Register

Offset															Bi	t Po	siti	on														
0x004	33	30	53	78	27	26	25	24	23	22	21	70	19	18	17	16	15	41	13	12	11	10	6	8	7	9	2	4	3	2	-	0
Reset																					000000x0											
Access																					X W I											
Name																				!	CN											

Bit	Name	Reset	Access	Description
31:24	Reserved	To ensure compa	atibility with fut	ure devices, always write bits to 0. More information in Section 2.1 (p. 3)
23:0	CNT	0x000000	RWH	Counter Value
	Gives access to the counter	r value of the RTC	•	

18.5.3 RTC_COMP0 - Compare Value Register 0 (Async Reg)

For more information about Asynchronous Registers please see Section 5.3 (p. 18).

Offset		Bit Position
0x008	31 30 30 29 28 27 25 25 24	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Reset		000000×0
Access		RW
Name		COMPO

Bit	Name	Reset	Access	Description
31:24	Reserved	To ensure comp	atibility with fut	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
23:0	COMP0	0x000000	RW	Compare Value 0
	A compare match event oc the LETIMER. It is also ava		•	alue. This event sets the COMP0 interrupt flag, and can be used to start

18.5.4 RTC_COMP1 - Compare Value Register 1 (Async Reg)

For more information about Asynchronous Registers please see Section 5.3 (p. 18).

Downloaded from Heads.com 2010-12-21 - d0034_Rev0.90 276 www.energymicro.com

Offset															Bi	t Po	siti	on														
0x00C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	9	5	4	ဗ	2	~	0
Reset																				,	000000x0											
Access																					χ ≷											
Name																					COMP1											

Bit	Name	Reset	Access	Description
31:24	Reserved	To ensure con	npatibility with	future devices, always write bits to 0. More information in Section 2.1 (p. 3)
23:0	COMP1	0x000000	RW	Compare Value 1
	A compare match	event occurs when CNT	is equal to th	nie value. This event sets COMP1 interrunt flag, and can be used to start

the LETIMER. It is also available as a PRS signal.

18.5.5 RTC_IF - Interrupt Flag Register

Offset															Bi	t Pc	ositi	on														
0x010	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	41	13	12	11	10	6	œ	7	9	2	4	က	7	-	0
Reset					•					•																			•	0	0	0
Access																														~	~	œ
Name																														COMP1	COMPO	OF

Bit	Name	Reset	Access	Description
31:3	Reserved	To ensure c	ompatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
2	COMP1	0	R	Compare Match 1 Interrupt Flag
	Set on a compare	match between CNT a	nd COMP1.	
1	COMP0	0	R	Compare Match 0 Interrupt Flag
	Set on a compare	match between CNT a	nd COMP0.	
0	OF	0	R	Overflow Interrupt Flag
	Set on a CNT value	e overflow.		

18.5.6 RTC_IFS - Interrupt Flag Set Register

Offset															Bi	t Pc	siti	on														
0x014	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	1	10	6	80	7	9	2	4	က	7	-	0
Reset										•							•												•	0	0	0
Access																														N V	W V	W1
Name																														COMP1	COMPO	OF

Bit	Name	Reset	Access	Description
31:3	Reserved	To ensure co	mpatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
2	COMP1	0	W1	Set Compare match 1 Interrupt Flag
	Write to 1 to set the	COMP1 interrupt flag		
1	COMP0	0	W1	Set Compare match 0 Interrupt Flag
	Write to 1 to set the	COMP0 interrupt flag		
0	OF	0	W1	Set Overflow Interrupt Flag
	Write to 1 to set the	OF interrupt flag		

18.5.7 RTC_IFC - Interrupt Flag Clear Register

Offset															Bi	t Po	ositi	on														
0x018	31	30	29	28	27	56	25	24	23	22	21	20	19	18	17	16	15	4	13	12	=	10	6	∞	7	9	2	4	က	7	-	0
Reset														•																0	0	0
Access																													_	N V	W 1	W
Name																														COMP1	COMPO	OF

Bit	Name	Reset	Access	Description
31:3	Reserved	To ensure co	mpatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
2	COMP1	0	W1	Clear Compare match 1 Interrupt Flag
	Write to 1 to clear th	he COMP1 interrupt fla	g	
1	COMP0	0	W1	Clear Compare match 0 Interrupt Flag
	Write to 1 to clear th	he COMP0 interrupt fla	g	
0	OF	0	W1	Clear Overflow Interrupt Flag
	Write to 1 to clear th	he OF interrupt flag		

18.5.8 RTC_IEN - Interrupt Enable Register

Offset															Bi	t Pc	siti	on														
0x01C	31	30	29	78	27	26	22	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	2	4	က	2	-	0
Reset																														0	0	0
Access																														R W	W.	R W
Name																														COMP1	COMPO	OF

Bit	Name	Reset	Access	Description
31:3	Reserved	To ensure co	mpatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
2	COMP1	0	RW	Compare Match 1 Interrupt Enable
	Enable interrupt on co	mpare match 1		
1	COMP0	0	RW	Compare Match 0 Interrupt Enable
	Enable interrupt on co	mpare match 0		
0	OF	0	RW	Overflow Interrupt Enable

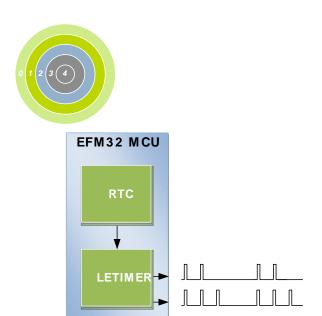
Bit	Name	Reset	Access	Description
	Enable interrupt on overflo	W		

18.5.9 RTC_FREEZE - Freeze Register

Offset															Bi	t Po	ositi	on														
0x020	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	=	10	6	8	7	9	2	4	က	7	-	0
Reset																																0
Access																																W.
Name																																REGFREEZE

Bit	Name	Reset	Access	Description
31:1	Reserved	To ensure co	mpatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3,
0	REGFREEZE	0	RW	Register Update Freeze
	With the new im	mediate synchronization s	scheme the REGF	FREEZE register is no longer used.
	Value	Mode	Des	cription
	0	UPDATE		h write access to an RTC register is updated into the Low Frequency domain as n as possible.
	1	FREEZE	The	RTC is not updated with the new written value until the freeze bit is cleared.

18.5.10 RTC_SYNCBUSY - Synchronization Busy Register


Offset	Bit Position																															
0x024	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	1	10	6	œ	7	9	2	4	8	7	-	0
Reset																														0	0	0
Access																														ď	22	~
Name																														COMP1	COMPO	CTRL

Bit	Name	Reset	Access	Description								
31:3	Reserved	To ensure c	ompatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)								
2	COMP1	0	R	RTC_COMP1 Register Busy								
	Set when the value written to RTC_COMP1 is being synchronized.											
1	COMP0	0	R	RTC_COMP0 Register Busy								
	Set when the value written to RTC_COMP0 is being synchronized.											
0	CTRL	0	R	RTC_CTRL Register Busy								
	Set when the value	Set when the value written to RTC_CTRL is being synchronized.										

www.energymicro.com 2010-12-21 - d0034_Rev0.90 279

19 LETIMER - Low Energy Timer

Quick Facts

What?

The LETIMER is a down-counter that can keep track of time and output configurable waveforms. Running on a 32.768 kHz clock the LETIMER is available even in EM2 with sub µA current consumption.

Why?

The LETIMER can be used to provide repeatable waveforms to external components while remaining in EM2. It is well suited for e.g. metering systems or to provide more compare values than available in the RTC.

How?

With buffered repeat and top value registers, the LETIMER can provide glitch-free waveforms at frequencies up to 16 kHz. It is tightly coupled to the RTC, which allows advanced time-keeping and wake-up functions in EM2.

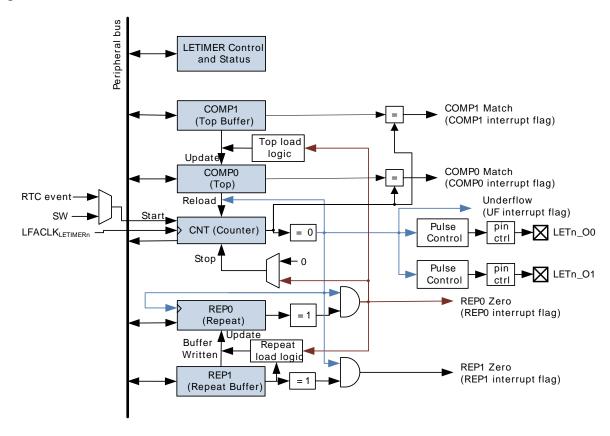
19.1 Introduction

The unique LETIMERTM, the Low Energy Timer, is a 16-bit timer that is available in energy mode EM2 in addition to EM1 and EM0. Because of this, it can be used for timing and output generation when most of the device is powered down, allowing simple tasks to be performed while the power consumption of the system is kept at an absolute minimum.

The LETIMER can be used to output a variety of waveforms with minimal software intervention. It is also connected to the Real Time Counter (RTC), and can be configured to start counting on compare matches from the RTC.

19.2 Features

- 16-bit down count timer
- 2 Compare match registers
- Compare register 0 can be top timer top value
- Compare registers can be double buffered
- Double buffered 8-bit Repeat Register
- Same clock source as the Real Time Counter
- LETIMER can be triggered (started) by an RTC event or by software
- 2 output pins can optionally be configured to provide different waveforms on timer underflow:
 - Toggle output pin
 - Apply a positive pulse (pulse width of one LFACLK, ETIMER period)
 - PWM
- Interrupt on:
 - · Compare matches
 - · Timer underflow



- Repeat done
- · Optionally runs during debug

19.3 Functional Description

An overview of the LETIMER module is shown in Figure 19.1 (p. 281). The LETIMER is a 16-bit down-counter with two compare registers, LETIMERn_COMP0 and LETIMERn_COMP1. The LETIMERn_COMP0 register can optionally act as a top value for the counter. The repeat counter LETIMERn_REP0 allows the timer to count a specified number of times before it stops. Both the LETIMERn_COMP0 and LETIMERn_REP0 registers can be double buffered by the LETIMERn_COMP1 and LETIMERn_REP1 registers to allow continuous operation. The timer can generate a single pin output, or two linked outputs.

Figure 19.1. LETIMER Overview

19.3.1 Timer

The timer is started by setting command bit START in LETIMERn_CMD, and stopped by setting the STOP command bit in the same register. RUNNING in LETIMERn_STATUS is set as long as the timer is running. The timer can also be started on external signals, such as a compare match from the Real Time Counter. If START and STOP are set at the same time, STOP has priority, and the timer will be stopped.

The timer value can be read using the LETIMERn_CNT register. The value cannot be written, but it can be cleared by setting the CLEAR command bit in LETIMERn_CMD. If the CLEAR and START commands are issued at the same time, the timer will be cleared, then start counting at the top value.

19.3.2 Compare Registers

The LETIMER has two compare match registers, LETIMERn_COMP0 and LETIMERn_COMP1. Each of these compare registers are capable of generating an interrupt when the counter value

LETIMERn_CNT becomes equal to their value. When LETIMERn_CNT becomes equal to the value of LETIMERn_COMP0, the interrupt flag COMP0 in LETIMERn_IF is set, and when LETIMERn_CNT becomes equal to the value of LETIMERn_COMP1, the interrupt flag COMP1 in LETIMERn_IF is set.

19.3.3 Top Value

If COMP0TOP in LETIMERn_CTRL is set, the value of LETIMERn_COMP0 acts as the top value of the timer, and LETIMERn_COMP0 is loaded into LETIMERn_CNT on timer underflow. Else, the timer wraps around to 0xFFFF. The underflow interrupt flag UF in LETIMERn_IF is set when the timer reaches zero.

19.3.3.1 Buffered Top Value

If BUFTOP in LETIMERn_CTRL is set, the value of LETIMERn_COMP0 is buffered by LETIMERn_COMP1. In this mode, the value of LETIMERn_COMP1 is loaded into LETIMERn_COMP0 every time LETIMERn_REP0 is about to decrement to 0. This can for instance be used in conjunction with the buffered repeat mode to generate continually changing output waveforms.

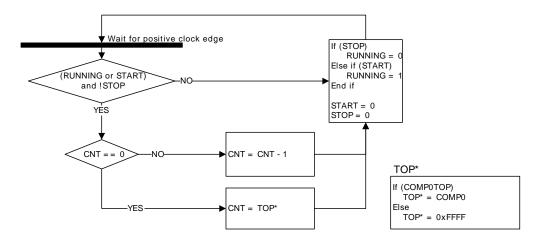
Write operations to LETIMERn_COMP0 have priority over buffer loads.

19.3.3.2 Repeat Modes

By default, the timer wraps around to the top value or 0xFFFF on each underflow, and continues counting. The repeat counters can be used to get more control of the operation of the timer, including defining the number of times the counter should wrap around. Four different repeat modes are available, see Table 19.1 (p. 282).

Table 19.1. LETIMER Repeat Modes

REPMODE	Mode	Description
00	Free	The timer runs until it is stopped
01	One-shot	The timer runs as long as LETIMERn_REP0 != 0. LETIMERn_REP0 is decremented at each timer underflow.
10	Buffered	The timer runs as long as LETIMERn_REP0 != 0. LETIMERn_REP0 is decremented on each timer underflow. If LETIMERn_REP1 has been written, it is loaded into LETIMERn_REP0 when LETIMERn_REP0 is about to be decremented to 0.
11	Double	The timer runs as long as LETIMERn_REP0 != 0 or LETIMERn_REP1 != 0. Both LETIMERn_REP0 and LETIMERn_REP1 are decremented at each timer underflow.


The interrupt flags REP0 and REP1 in LETIMERn_IF are set whenever LETIMERn_REP0 or LETIMERn_REP1 are decremented to 0 respectively. REP0 is also set when the value of LETIMERn_REP1 is loaded into LETIMERn_REP0 in buffered mode.

19.3.3.2.1 Free Mode

In the free running mode, the LETIMER acts as a regular timer, and the repeat counter is disabled. When started, the timer runs until it is stopped using the STOP command bit in LETIMERn_CMD. A state machine for this mode is shown in Figure 19.2 (p. 283) .

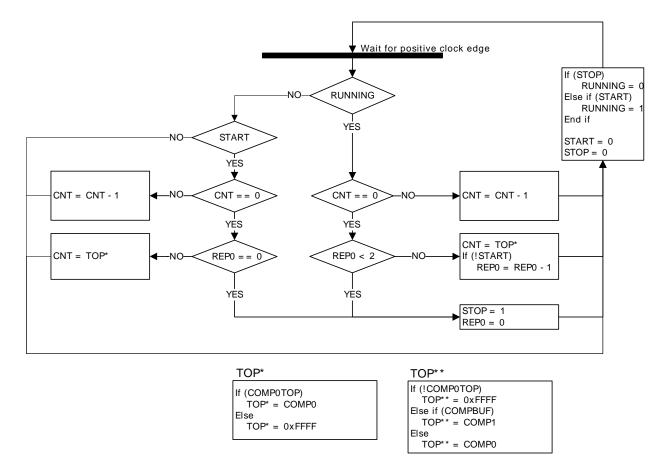
Figure 19.2. LETIMER State Machine for Free-running Mode

Note that the CLEAR command bit in LETIMERn_CMD always has priority over other changes to LETIMERn_CNT. When the clear command is used, LETIMERn_CNT is set to 0 and an underflow event will not be generated when LETIMERn_CNT wraps around to the top value or 0xFFFF. Since no underflow event is generated, no output action is performed. LETIMERn_REP0, LETIMERn_REP1, LETIMERn_COMP0 and LETIMERn_COMP1 are also left untouched.

19.3.3.2.2 One-shot Mode

The one-shot repeat mode is the most basic repeat mode. In this mode, the repeat register LETIMERn_REP0 is decremented every time the timer underflows, and the timer stops when LETIMERn_REP0 goes from 1 to 0. In this mode, the timer counts down LETIMERn_REP0 times, i.e. the timer underflows LETIMERn_REP0 times.

Note


Note that write operations to LETIMERn_REP0 have priority over the decrementation operation. So if LETIMERn_REP0 is assigned a new value in the same cycle it was supposed to be decremented, it is assigned the new value instead of being decremented.

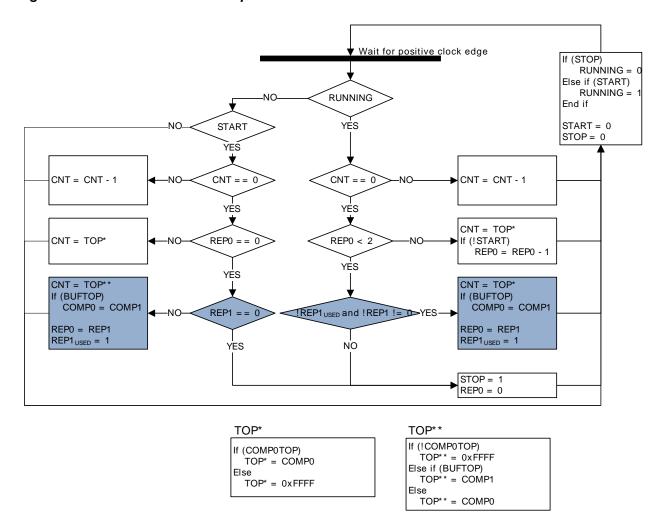
LETIMERn_REP0 can be written while the timer is running to allow the timer to run for longer periods at a time without stopping. Figure 19.3 (p. 284) .

Downloaded from Heddiscom 2010-12-21 - d0034_Rev0.90 283 www.energymicro.com

Figure 19.3. LETIMER One-shot Repeat State Machine

19.3.3.2.3 **Buffered Mode**

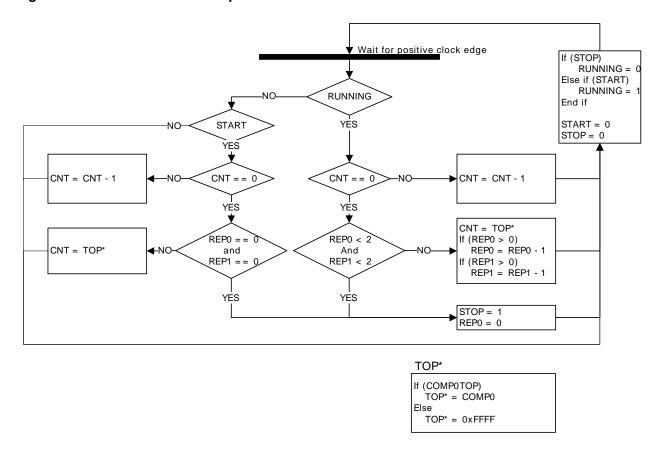
The Buffered repeat mode allows buffered timer operation. When started, the timer runs LETIMERn_REP0 number of times. If LETIMERn_REP1 has been written since the last time it was used and it is nonzero, LETIMERn_REP1 is then loaded into LETIMERn_REP0, and counting continues the new number of times. The timer keeps going as long as LETIMERn REP1 is updated with a nonzero value before LETIMERn_REP0 is finished counting down.


If the timer is started when both LETIMERn CNT and LETIMERn REP0 are zero but LETIMERn REP1 is non-zero, LETIMERn_REP1 is loaded into LETIMERn_REP0, and the counter counts the loaded number of times. The state machine for the one-shot repeat mode is shown in Figure 19.3 (p. 284).

Used in conjunction with a buffered top value, enabled by setting BUFTOP in LETIMERn_CTRL, the buffered mode allows buffered values of both the top and repeat values of the timer, and the timer can for instance be set to run 4 times with period 7 (top value 6), 6 times with period 200, then 3 times with period 50.

A state machine for the buffered repeat mode is shown in Figure 19.4 (p. 285). REP1_{USED} shown in the state machine is an internal variable that keeps track of whether the value in LETIMERn_REP1 has been loaded into LETIMERn_REP0 or not. The purpose of this is that a value written to LETIMERn_REP1 should only be counted once. REP1_{USED} is cleared whenever LETIMERn_REP1 is written.

Figure 19.4. LETIMER Buffered Repeat State Machine



19.3.3.2.4 Double Mode

The Double repeat mode works much like the one-shot repeat mode. The difference is that, where the one-shot mode counts as long as LETIMERn_REP0 is larger than 0, the double mode counts as long as either LETIMERn_REP0 or LETIMERn_REP1 is larger than 0. As an example, say LETIMERn_REP0 is 3 and LETIMERn_REP1 is 10 when the timer is started. If no further interaction is done with the timer, LETIMERn_REP0 will now be decremented 3 times, and LETIMERn_REP1 will be decremented 10 times. The timer counts a total of 10 times, and LETIMERn_REP0 is 0 after the first three timer underflows and stays at 0. LETIMERn_REP0 and LETIMERn_REP1 can be written at any time. After a write to either of these, the timer is guaranteed to underflow at least the written number of times if the timer is running. Use the Double repeat mode to generate output on both the LETIMER outputs at the same time. The state machine for this repeat mode can be seen in Figure 19.5 (p. 286).

Figure 19.5. LETIMER Double Repeat State Machine

19.3.3.3 Clock Source

The LETIMER clock source and its prescaler value are defined in the Clock Management Unit (CMU). The LFACLK_{LETIMERn} has a frequency given by Equation 19.1 (p. 286).

LETIMER Clock Frequency
$$f_{LFACKL_LETIMERn} = 32.768/2^{LETIMERn}$$
(19.1)

where the exponent LETIMERn is a 4 bit value in the CMU LFAPRESC0 register.

To use this module, the LE interface clock must be enabled in CMU_HFCORECLKEN0, in addition to the module clock.

19.3.3.4 RTC Trigger

The LETIMER can be configured to start on compare match events from the Real Time Counter (RTC). If RTCC0TEN in LETIMERn_CTRL is set, the LETIMER will start on a compare match on RTC compare channel 0. In the same way, RTCC1TEN in LETIMERn_CTRL enables the LETIMER to start on a compare match with RTC compare channel 1.

Note

The LETIMER can only use compare match events from the RTC if the LETIMER runs at a higher than or equal frequency than the RTC. Also, if the LETIMER runs at twice the frequency of the RTC, a compare match event in the RTC will trigger the LETIMER twice. Four times the frequency gives four consecutive triggers, etc. The LETIMER will only continue running if triggered while it is running, so the multiple-triggering will only have an effect if you try to disable the RTC when it is being triggered.

19.3.3.5 Debug

If DEBUGRUN in LETIMERn_CTRL is cleared, the LETIMER automatically stops counting when the CPU is halted during a debug session, and resumes operation when the CPU continues. Because of synchronization, the LETIMER is halted two clock cycles after the CPU is halted, and continues running two clock cycles after the CPU continues. RUNNING in LETIMERn_STATUS is not cleared when the LETIMER stops because of a debug-session.

Set DEBUGRUN in LETIMERn_CTRL to allow the LETIMER to continue counting even when the CPU is halted in debug mode.

19.3.4 Underflow Output Action

For each of the repeat registers, an underflow output action can be set. The configured output action is performed every time the counter underflows while the respective repeat register is nonzero. In PWM mode, the output is similarly only changed on COMP1 match if the repeat register is nonzero. As an example, the timer will perform 7 output actions if LETIMERn_REP0 is set to 7 when starting the timer in one-shot mode and leaving it untouched for a while.

The output actions can be set by configuring UFOA0 and UFOA1 in LETIMERn_CTRL. UFOA0 defines the action on output 0, and is connected to LETIMERn_REP0, while UFOA1 defines the action on output 1 and is connected to LETIMERn_REP1. The possible actions are defined in Table 19.2 (p. 287).

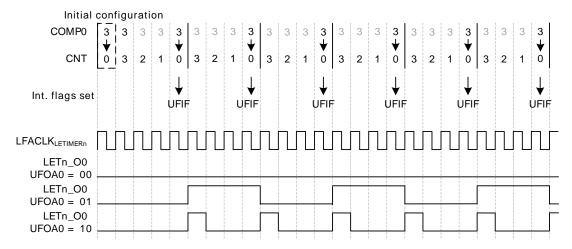
Table 19.2. LETIMER Underflow Output Actions

UF0A0/UF0A1	Mode	Description
00	Idle	The output is held at its idle value
01	Toggle	The output is toggled on LETIMERn_CNT underflow if LEIMERn_REPx is nonzero
10	Pulse	The output is held active for one clock cycle on LETIMERn_CNT underflow if LETIMERn_REPx is nonzero. It then returns to its idle value
11	PWM	The output is set idle on LETIMERn_CNT underflow and active on compare match with LETIMERn_COMP1 if LETIMERn_REPx is nonzero.

Note

For the Pulse and PWM modes, the outputs will return to their idle states regardless of the state of the corresponding LETIMERn_REPx registers. They will only be set active if the LETIMERn_REPx registers are nonzero however.

The polarity of the outputs can be set individually by configuring OPOL0 and OPOL1 in LETIMERn_CTRL. When these are cleared, their respective outputs have a low idle value and a high active value. When they are set, the idle value is high, and the active value is low.


When using the toggle action, the outputs can be driven to their idle values by setting their respective CTO0/CTO1 command bits in LETIMERn_CTRL. This can be used to put the output in a well-defined state before beginning to generate toggle output, which may be important in some applications. The command bit can also be used while the timer is running.

Some simple waveforms generated with the different output modes are shown in Figure 19.6 (p. 288). For the example, REPMODE in LETIMERn_CTRL has been cleared, COMP0TOP also in LETIMERn_CTRL has been set and LETIMERn_COMP0 has been written to 3. As seen in the figure, LETIMERn_COMP0 now decides the length of the signal periods. For the toggle mode, the period of the output signal is 2(LETIMERn_COMP0 + 1), and for the pulse modes, the periods of the output signals

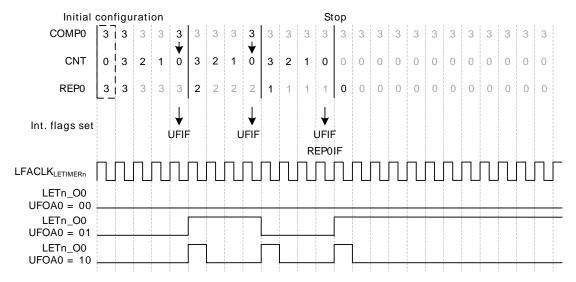

are LETIMERn_COMP0+1. Note that the pulse outputs are delayed by one period relative to the toggle output. The pulses come at the end of their periods.

Figure 19.6. LETIMER Simple Waveforms Output

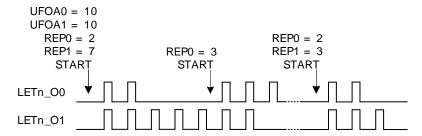

For the example in Figure 19.7 (p. 288), the One-shot repeat mode has been selected, and LETIMERn_REP0 has been written to 3. The resulting behavior is pretty similar to that shown in Figure 6, but in this case, the timer stops after counting to zero LETIMERn_REP0 times. By using LETIMERn_REP0 the user has full control of the number of pulses/toggles generated on the output.

Figure 19.7. LETIMER Repeated Counting

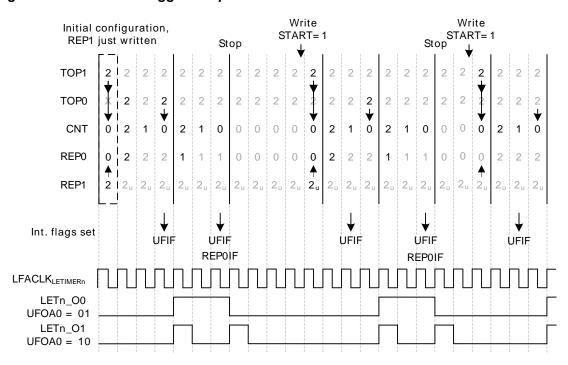
Using the Double repeat mode, output can be generated on both the LETIMER outputs. Figure 19.8 (p. 288) shows an example of this. UFOA0 and UFOA1 in LETIMERn_CTRL are configured for pulse output and the outputs are configured for low idle polarity. As seen in the figure, the number written to the repeat registers determine the number of pulses generated on each of the outputs.

Figure 19.8. LETIMER Dual Output

19.3.5 Examples

This section presents a couple of usage examples for the LETIMER.

19.3.5.1 Triggered Output Generation

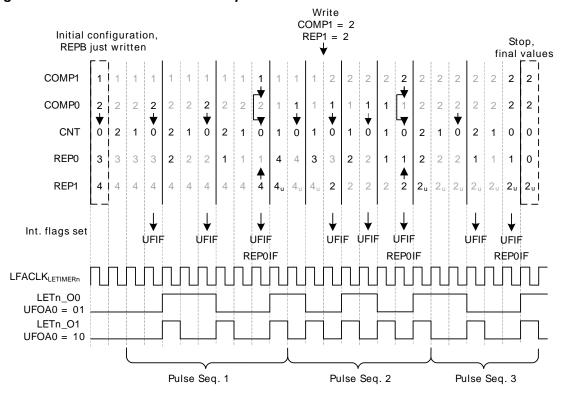

Example 19.1. LETIMER Triggered Output Generation

If both LETIMERn_CNT and LETIMERn_REP0 are 0 in buffered mode, and COMP0TOP and BUFTOP in LETIMERn_CTRL are set, the values of LETIMERn_COMP1 and LETIMERn_REP1 are loaded into LETIMERn_CNT and LETIMERn_REP0 respectively when the timer is started. If no additional writes to LETIMERn_REP1 are done before the timer stops, LETIMERn_REP1 determines the number of pulses/ toggles generated on the output, and LETIMERn_COMP1 determines the period lengths.

As the RTC can be used to start the LETIMER, the RTC and LETIMER can thus be combined to generate specific pulse-trains at given intervals. Software can update LETIMERn_COMP1 and LETIMERn_REP1 to change the number of pulses and pulse-period in each train, but if changes are not required, software does not have to update the registers between each pulse train.

For the example in Figure 19.9 (p. 289), the initial values cause the LETIMER to generate two pulses with 3 cycle periods, or a single pulse 3 cycles wide every time the LETIMER is started. After the output has been generated, the LETIMER stops, and is ready to be triggered again.

19.3.5.2 Continuous Output Generation


Example 19.2. LETIMER Continuous Output Generation

In some scenarios, it might be desired to make LETIMER generate a continuous waveform. Very simple constant waveforms can be generated without the repeat counter as shown in Figure 19.6 (p. 288), but to generate changing waveforms, using the repeat counter and buffer registers can prove advantageous.

For the example in Figure 19.10 (p. 290), the goal is to produce a pulse train consisting of 3 sequences with the following properties:

- 3 pulses with periods of 3 cycles
- · 4 pulses with periods of 2 cycles
- 2 pulses with periods of 3 cycles

Figure 19.10. LETIMER Continuous Operation

The first two sequences are loaded into the LETIMER before the timer is started.

LETIMERn_COMP0 is set to 2 (cycles – 1), and LETIMERn_REP0 is set to 3 for the first sequence, and the second sequence is loaded into the buffer registers, i.e. COMP1 is set to 1 and LETIMERn_REP1 is set to 4.

The LETIMER is set to trigger an interrupt when LETIMERn_REP0 is done by setting REP0 in LETIMERn_IEN. This interrupt is a good place to update the values of the buffers. Last but not least REPMODE in LETIMERN CTRL is set to buffered mode, and the timer is started.

In the interrupt routine the buffers are updated with the values for the third sequence. If this had not been done, the timer would have stopped after the second sequence.

The final result is shown in Figure 19.10 (p. 290). The pulse output is grouped to show which sequence generated which output. Toggle output is also shown in the figure. Note that the toggle output is not aligned with the pulse outputs. Note

Multiple LETIMER cycles are required to write a value to the LETIMER registers. The example in Figure 19.10 (p. 290) assumes that writes are done in advance so they arrive in the LETIMER as described in the figure.

Figure 19.11 (p. 291) shows an example where the LETIMER is started while LETIMERn_CNT is nonzero. In this case the length of the first repetition is given by the value in LETIMERn_CNT.

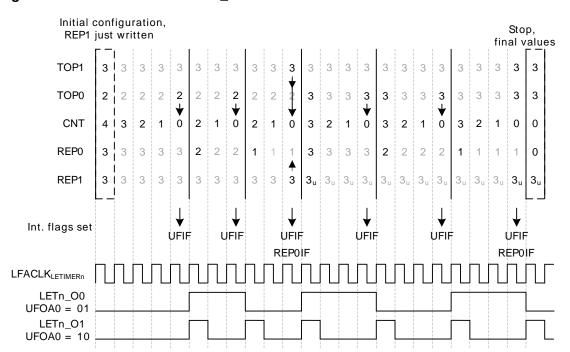


Figure 19.11. LETIMER LETIMERn CNT Not Initialized to 0

19.3.5.3 PWM Output

Example 19.3. LETIMER PWM Output

There are several ways of generating PWM output with the LETIMER, but the most straight-forward way is using the PWM output mode. This mode is enabled by setting UFOA0 or OFUA1 in LETIMERn_CTRL to 3. In PWM mode, the output is set idle on timer underflow, and active on LETIMERn_COMP1 match, so if for instance COMP0TOP = 1 and OPOL0 = 0 in LETIMERn_CTRL, LETIMERn_COMP0 determines the PWM period, and LETIMERn_LETIMERn_COMP1 determines the active period.

The PWM period in PWM mode is LETIMERn_COMP0 + 1. There is no special handling of the case where LETIMERn_COMP1 > LETIMERn_COMP0, so if LETIMERn_COMP1 > LETIMERn_COMP0, the PWM output is given by the idle output value. This means that for OPOLx = 0 in LETIMERn_CTRL, the PWM output will always be 0 for at least one clock cycle, and for OPOLx = 1 LETIMERn_CTRL, the PWM output will always be 1 for at least one clock cycle.

To generate a PWM signal using the full PWM range, invert OPOLx when LETIMERn_COMP1 is set to a value larger than LETIMERn_COMP0.

19.3.5.4 Interrupts

Example 19.4. LETIMER PWM Output

The interrupts generated by the LETIMER are combined into one interrupt vector. If the interrupt for the LETIMER is enabled, an interrupt will be made if one or more of the interrupt flags in LETIMERn_IF and their corresponding bits in LETIMER_IEN are set.

19.3.6 Register access

Since this module is a Low Energy Peripheral, and runs off a clock which is asynchronous to the HFCORECLK, special considerations must be taken when accessing registers. Please refer to Section 5.3 (p. 18) for a description on how to perform register accesses to Low Energy Peripherals.

Downloaded from Heads, com 2010-12-21 - d0034_Rev0.90 292 www.energymicro.com

19.4 Register Map

The offset register address is relative to the registers base address.

Offset	Name	Туре	Description
0x000	LETIMERn_CTRL	RW	Control Register
0x004	LETIMERn_CMD	W1	Command Register
0x008	LETIMERn_STATUS	R	Status Register
0x00C	LETIMERn_CNT	RWH	Counter Value Register
0x010	LETIMERn_COMP0	RW	Compare Value Register 0
0x014	LETIMERn_COMP1	RW	Compare Value Register 1
0x018	LETIMERn_REP0	RW	Repeat Counter Register 0
0x01C	LETIMERn_REP1	RW	Repeat Counter Register 1
0x020	LETIMERn_IF	R	Interrupt Flag Register
0x024	LETIMERn_IFS	W1	Interrupt Flag Set Register
0x028	LETIMERn_IFC	W1	Interrupt Flag Clear Register
0x02C	LETIMERn_IEN	RW	Interrupt Enable Register
0x030	LETIMERn_FREEZE	RW	Freeze Register
0x034	LETIMERn_SYNCBUSY	R	Synchronization Busy Register
0x040	LETIMERn_ROUTE	RW	I/O Routing Register

19.5 Register Description

19.5.1 LETIMERn_CTRL - Control Register (Async Reg)

For more information about Asynchronous Registers please see Section 5.3 (p. 18).

Offset	Bit Position					·			
0x000	33 30 30 30 30 30 30 30 30 30 30 30 30 3	12 2	10	6	∞	7	0 0 4	8 2	- 0
Reset		0	0	0	0	0	000	0x0	0x0
Access		A S	¥ 8 § §	RW	₩	RW	X X	S S	X X
Name			RICCIIEN	СОМРОТОР	BUFTOP	OPOL1	OPOL0 UFOA1	UFOA0	REPMODE

Bit	Name	Reset	Access	Description
31:13	Reserved	To ensure co	ompatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
12	DEBUGRUN	0	RW	Debug Mode Run Enable
	Set to keep the LET	IMER running in debu	ıg mode.	
	Value	Description		
	0	LETIMER is froze	en in debug mode	
	1	LETIMER is runr	ning in debug mode	
11	RTCC1TEN	0	RW	RTC Compare 1 Trigger Enable
	Allows the LETIMER	R to be started on a co	ompare match on	RTC compare channel 1.
	Value	Description		
	0	LETIMER is not a	affected by RTC com	npare channel 1

Bit	Name	Reset	Access	Description
	Value	Description		
	1	A compare match	n on RTC compare	e channel 1 starts the LETIMER if the LETIMER is not already started
10	RTCC0TEN	0	RW	RTC Compare 0 Trigger Enable
	Allows the LE	TIMER to be started on a co	mpare match or	n RTC compare channel 0.
	Value	Description		<u> </u>
	0		affected by RTC co	ompare channel 0
	1	A compare match	n on RTC compare	e channel 0 starts the LETIMER if the LETIMER is not already started
9	COMP0TOP	0	RW	Compare Value 0 Is Top Value
	When set, the	e counter is cleared in the clo	ock cycle after a	compare match with compare channel 0.
	Value	Description		
	0	· ·	the LETIMER is 65	5535 (0xFFFF)
	1		the LETIMER is gi	
8	BUFTOP	0	RW	Buffered Top
	Set to load C			allowing a buffered top value
	Value 0	Description COMPO is only w	vritten by software	
	1		COMP1 when RE	P0 reaches 0
7	OPOL1	0		
7		-	RW	Output 1 Polarity
		lle value of output 1.		
6	OPOL0	0	RW	Output 0 Polarity
	Defines the id	lle value of output 0.		
5:4	UFOA1	0x0	RW	Underflow Output Action 1
	Defines the a	ction on LETn_O1 on a LET	MER underflow	
	Value	Mode	De	escription
	0	NONE	LE	ETn_O1 is held at its idle value as defined by OPOL1.
	1	TOGGLE		ETn_O1 is toggled on CNT underflow.
	2	PULSE	LE	ETn_O1 is held active for one LFACLK _{LETIMER0} clock cycle on CNT underflow. The toput then returns to its idle value as defined by OPOL1.
	3	PWM	LE	ETn_O1 is set idle on CNT underflow, and active on compare match with COMP1
3:2	UFOA0	0x0	RW	Underflow Output Action 0
		ction on LETn_O0 on a LET		•
	Value	Mode	· · · · · · · · · · · · · · · · · · ·	
		IVIOGE		
	ln	NONE		escription Th. O0 is held at its idle value as defined by OPOL0.
	1	NONE TOGGLE	LE	ETn_O0 is held at its idle value as defined by OPOL0.
		NONE TOGGLE PULSE	LE LE	ETn_O0 is held at its idle value as defined by OPOL0. ETn_O0 is toggled on CNT underflow.
	1 2	TOGGLE PULSE	LE LE ou	ETn_O0 is held at its idle value as defined by OPOL0. ETn_O0 is toggled on CNT underflow. ETn_O0 is held active for one LFACLK _{LETIMER0} clock cycle on CNT underflow. The attput then returns to its idle value as defined by OPOL0.
	1 2 3	TOGGLE	LE LE OU LE	ETn_O0 is held at its idle value as defined by OPOL0. ETn_O0 is toggled on CNT underflow. ETn_O0 is held active for one LFACLK _{LETIMER0} clock cycle on CNT underflow. The
1:0	1 2	TOGGLE PULSE	LE LE ou	ETn_O0 is held at its idle value as defined by OPOL0. ETn_O0 is toggled on CNT underflow. ETn_O0 is held active for one LFACLK _{LETIMER0} clock cycle on CNT underflow. The utput then returns to its idle value as defined by OPOL0.
1:0	1 2 3 REPMODE	TOGGLE PULSE PWM	LE LE OU LE	ETn_O0 is held at its idle value as defined by OPOL0. ETn_O0 is toggled on CNT underflow. ETn_O0 is held active for one LFACLK _{LETIMER0} clock cycle on CNT underflow. The utput then returns to its idle value as defined by OPOL0. ETn_O0 is set idle on CNT underflow, and active on compare match with COMP1
1:0	1 2 3 REPMODE	TOGGLE PULSE PWM 0x0	LE LE OU LE RW and disabled.	ETn_O0 is held at its idle value as defined by OPOL0. ETn_O0 is toggled on CNT underflow. ETn_O0 is held active for one LFACLK _{LETIMER0} clock cycle on CNT underflow. The utput then returns to its idle value as defined by OPOL0. ETn_O0 is set idle on CNT underflow, and active on compare match with COMP1
1:0	1 2 3 REPMODE Allows the rep	TOGGLE PULSE PWM 0x0 Deat counter to be enabled a	LE LE OU LE RW and disabled.	ETn_O0 is held at its idle value as defined by OPOL0. ETn_O0 is toggled on CNT underflow. ETn_O0 is held active for one LFACLK _{LETIMER0} clock cycle on CNT underflow. The utput then returns to its idle value as defined by OPOL0. ETn_O0 is set idle on CNT underflow, and active on compare match with COMP1 Repeat Mode
1:0	1 2 3 REPMODE Allows the report Value 0 1	PULSE PWM OxO Deat counter to be enabled a Mode FREE ONESHOT	LE LE OU LE RW and disabled.	ETn_O0 is held at its idle value as defined by OPOL0. ETn_O0 is toggled on CNT underflow. ETn_O0 is held active for one LFACLK _{LETIMER0} clock cycle on CNT underflow. The attput then returns to its idle value as defined by OPOL0. ETn_O0 is set idle on CNT underflow, and active on compare match with COMP1 Repeat Mode escription Then started, the LETIMER counts down until it is stopped by software. The counter counts REP0 times. When REP0 reaches zero, the counter stops.
1:0	1 2 3 REPMODE Allows the report Value 0	TOGGLE PULSE PWM 0x0 Deat counter to be enabled a Mode FREE	LE LE OU LE RW and disabled. De W Tr Tr	ETn_O0 is held at its idle value as defined by OPOL0. ETn_O0 is toggled on CNT underflow. ETn_O0 is held active for one LFACLK _{LETIMER0} clock cycle on CNT underflow. The attput then returns to its idle value as defined by OPOL0. ETn_O0 is set idle on CNT underflow, and active on compare match with COMP1 Repeat Mode escription then started, the LETIMER counts down until it is stopped by software.

Downloaded from Elecules com

19.5.2 LETIMERn_CMD - Command Register

Offset															Bi	t Po	siti	on														
0x004	33	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	∞	7	9	2	4	က	2	-	0
Reset														•														0	0	0	0	0
Access																												W V	W V	W 1	W	W W
Name																												СТО1	СТОО	CLEAR	STOP	START

Bit	Name	Reset	Access	Description
31:5	Reserved	To ensure comp	atibility with fut	ure devices, always write bits to 0. More information in Section 2.1 (p. 3)
4	CTO1	0	W1	Clear Toggle Output 1
	Set to drive toggle output 1	to its idle value		
3	CTO0	0	W1	Clear Toggle Output 0
	Set to drive toggle output 0	to its idle value		
2	CLEAR	0	W1	Clear LETIMER
	Set to clear LETIMER			
1	STOP	0	W1	Stop LETIMER
	Set to stop LETIMER			
0	START	0	W1	Start LETIMER
	Set to start LETIMER			

19.5.3 LETIMERn_STATUS - Status Register

Offset															Bi	t Po	siti	on														
0x008	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	თ	∞	7	9	2	4	က	2	-	0
Reset				•							•																					0
Access																																~
Name																																RUNNING

Bit	Name	Reset	Access	Description
31:1	Reserved	To ensure co	ompatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
0	RUNNING	0	R	LETIMER Running
	Set when LETIMER	R is running.		

Downloaded from Heads, com 2010-12-21 - d0034_Rev0.90 295 www.energymicro.com

19.5.4 LETIMERn_CNT - Counter Value Register

Offset															Bit	t Po	siti	on														
0x00C	31	30	29	28	27	26	22	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	80	7	9	5	4	3	2	_	0
Reset																								0000	000000							
Access																									I M Y							
Name																								Ė	Z C C							

Bit	Name	Reset	Access	Description
31:16	Reserved	To ensure compa	atibility with fut	ure devices, always write bits to 0. More information in Section 2.1 (p. 3)
15:0	CNT	0x0000	RWH	Counter Value
	Use to read the current value	ue of the LETIMER		

19.5.5 LETIMERn_COMP0 - Compare Value Register 0 (Async Reg)

For more information about Asynchronous Registers please see Section 5.3 (p. 18).

Offset															Bi	t Pc	siti	on														
0x010	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	41	13	12	11	10	6	8	7	9	5	4	3	2	1	0
Reset																								0000	000000							
Access																								Š	≩							
Name																									OME DA							

Bit	Name	Reset	Access	Description
31:16	Reserved	To ensure co	mpatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
15:0	COMP0	0x0000	RW	Compare Value 0
	Compare and optionally to	op value for LETI	MER	

19.5.6 LETIMERn_COMP1 - Compare Value Register 1 (Async Reg)

For more information about Asynchronous Registers please see Section 5.3 (p. 18).

2010-12-21 - d0034_Rev0.90 296 www.energymicro.com

Offset															Bi	t Po	siti	on														
0x014	31	30	29	28	27	26	22	24	23	22	21	20	19	18	17	16	15	41	13	12	7	10	6	∞	_	9	2	4	က	2	-	0
Reset																								0000	000000							
Access													% ⊗																			
Name						-,																		0	2000 P							
Bit	Na	ame						Re	set			Α	CC	ess		De	scri	iptic	on													
31:16	Re	serv	ed					То	ensi	ıre c	отр	atibi	ility	with	futu	re de	evice	es, a	lwa	iys v	vrite	bits	to 0.	Mor	e ini	form	atio	n in	Sect	ion 2	.1 (p	. 3)
15:0	CC	MP1	1					0x0	0000			R	W			Co	npa	re V	alu	ie 1												
	Co	mpa	re ar	nd op	tion	ally	buf	fere	d top	valu	e fo	r LE	TIM	IER																		

19.5.7 LETIMERn_REP0 - Repeat Counter Register 0 (Async Reg)

For more information about Asynchronous Registers please see Section 5.3 (p. 18).

Offset														Bit P	ositi	ion	·													
0x018	33	30	29	28	27	26	25	23	22	21	20	19	17	16	15	41	13	12	1	10	6	8	7	9	2	4	3	2	-	0
Reset																											0x0			
Access																											ΑM			
Name																											REP0			
Bit	Na	ıme					R	Reset			Α	\cce	ss	D	escr	iptic	on													
31:8	Re	serv	ed				7	o ens	ure c	comp	atibi	ility w	ith fu	ture c	device	es, a	alwa	iys v	vrite	bits	to 0.	Mor	e inf	orm	atio	n in	Sect	ion 2	.1 (p	. 3)
7:0	RE	P0					0:	x00			R	W		Re	peat	Co	unt	er 0												
	Op	tiona	al rep	eat c	oun	ter.																								

19.5.8 LETIMERn_REP1 - Repeat Counter Register 1 (Async Reg)

For more information about Asynchronous Registers please see Section 5.3 (p. 18).

Offset															Bi	t Po	siti	on														
0x01C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	1	10	6	80	7	9	2	4	က	2	-	0
Reset																													0000			
Access																													X ≷			
Name																													REP1			
Bit	Na	me						Re	set			A	CC	ess		De	scri	iptio	on													
31:8	Re	serve	ed					То	ensi	ure c	omp	atibi	ility	with	futu	re de	evice	es, a	lwa	VS N	vrite	bits i	to 0.	Mor	e inf	orm	atio	n in S	Sect	ion 2	1 (p	. 3)

Downloaded from H 2010-12-21 - d0034_Rev0.90 297 www.energymicro.com

Bit	Name	Reset	Access	Description
7:0	REP1	0x00	RW	Repeat Counter 1
	Optional repeat counter or	buffer for REP0		

19.5.9 LETIMERn_IF - Interrupt Flag Register

Offset															Bi	t Pc	siti	on														
0x020	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	ი	∞	7	9	2	4	8	7	-	0
Reset																												0	0	0	0	0
Access																												<u>~</u>	8	~	~	<u>~</u>
Name																												REP1	REP0	UF	COMP1	СОМРО

Bit	Name	Reset	Access	Description
31:5	Reserved			ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
4	REP1	0	R	Repeat Counter 1 Interrupt Flag
	Set when repeat counte	er 1 reaches zero.		
3	REP0	0	R	Repeat Counter 0 Interrupt Flag
	Set when repeat counte	er 0 reaches zero o	or when the REP1	interrupt flag is loaded into the REP0 interrupt flag.
2	UF	0	R	Underflow Interrupt Flag
	Set on LETIMER under	flow.		
1	COMP1	0	R	Compare Match 1 Interrupt Flag
	Set when LETIMER rea	ches the value of	COMP1	
0	COMP0	0	R	Compare Match 0 Interrupt Flag
	Set when LETIMER rea	ches the value of	COMP0	

19.5.10 LETIMERn_IFS - Interrupt Flag Set Register

Offset															Bi	t Pc	siti	on														
0x024	31	30	29	28	27	56	22	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	œ	7	9	2	4	က	7	-	0
Reset			•	•							•																	0	0	0	0	0
Access																												W1	W W	W1	W W	N N
Name																												REP1	REP0	UF	COMP1	сомРо

Bit	Name	Reset	Access	Description
31:5	Reserved	To ensure co	mpatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
4	REP1	0	W1	Set Repeat Counter 1 Interrupt Flag
	Write to 1 to set the	e REP1 interrupt flag.		
3	REP0	0	W1	Set Repeat Counter 0 Interrupt Flag
	Write to 1 to set the	e REP0 interrupt flag.		
2	UF	0	W1	Set Underflow Interrupt Flag
	Write to 1 to set the	e UF interrupt flag.		

Downloaded from Heads, com 2010-12-21 - d0034_Rev0.90 298 www.energymicro.com

Bit	Name	Reset	Access	Description
1	COMP1	0	W1	Set Compare Match 1 Interrupt Flag
	Write to 1 to set th	ne COMP1 interrupt flag.		
0	COMP0	0	W1	Set Compare Match 0 Interrupt Flag
	Write to 1 to set th	ne COMP0 interrupt flag.		

19.5.11 LETIMERn_IFC - Interrupt Flag Clear Register

Offset												,			Bi	t Pc	siti	on														
0x028	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	41	13	12	7	10	6	8	7	9	2	4	က	2	-	0
Reset					•					•		•					•									•	-	0	0	0	0	0
Access																												W1	W	W	W	W
Name																												REP1	REP0	Ę,	COMP1	СОМРО

Bit	Name	Reset	Access	Description
31:5	Reserved	To ensure comp	atibility with fut	ure devices, always write bits to 0. More information in Section 2.1 (p. 3)
4	REP1	0	W1	Clear Repeat Counter 1 Interrupt Flag
	Write to 1 to clear the REF	21 interrupt flag.		
3	REP0	0	W1	Clear Repeat Counter 0 Interrupt Flag
	Write to 1 to clear the REF	0 interrupt flag.		
2	UF	0	W1	Clear Underflow Interrupt Flag
	Write to 1 to clear the UF	interrupt flag.		
1	COMP1	0	W1	Clear Compare Match 1 Interrupt Flag
	Write to 1 to clear the COI	MP1 interrupt flag.		
0	COMP0	0	W1	Clear Compare Match 0 Interrupt Flag
	Write to 1 to clear the COI	MP0 interrupt flag.		

19.5.12 LETIMERn_IEN - Interrupt Enable Register

Offset															Bi	t Po	ositi	on														
0x02C	31	30	29	28	27	26	22	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	80	7	9	2	4	က	2	-	0
Reset			•		•					•																		0	0	0	0	0
Access																												₩	₩ M	₩ M	₩	₹
Name																												REP1	REP0	UF	COMP1	сомРо

Bit	Name	Reset	Access	Description
31:5	Reserved	To ensure comp	atibility with fut	rure devices, always write bits to 0. More information in Section 2.1 (p. 3)
4	REP1	0	RW	Repeat Counter 1 Interrupt Enable
	Set to enable interrupt on t	he REP1 interrupt	flag.	
3	REP0	0	RW	Repeat Counter 0 Interrupt Enable
	Set to enable interrupt on t	he REP0 interrupt	flag.	

Downloaded from H couls com 2010-12-21 - d0034_Rev0.90 299 www.energymicro.com

Bit	Name	Reset	Access	Description
2	UF	0	RW	Underflow Interrupt Enable
	Set to enable interrupt or	the UF interrupt fla	g.	
1	COMP1	0	RW	Compare Match 1 Interrupt Enable
	Set to enable interrupt or	the COMP1 interru	pt flag.	
0	COMP0	0	RW	Compare Match 0 Interrupt Enable
	Set to enable interrupt or	the COMP0 interru	pt flag.	

19.5.13 LETIMERn_FREEZE - Freeze Register

Offset															Bi	t Pc	siti	on														
0x030	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	41	13	12	7	10	0	8	7	9	2	4	က	2	-	0
Reset																																0
Access																																R ≷
Name																																REGFREEZE

Bit	Name	Reset	Access	Description
31:1	Reserved	To ensure co	mpatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
0	REGFREEZE	0	RW	Register Update Freeze
	With the new imr	mediate synchronization s	scheme the REGF	REEZE register is no longer used.
	Value	Mode	Desc	cription
	0	UPDATE		n write access to a LETIMER register is updated into the Low Frequency domain oon as possible.
	1	FREEZE	The	LETIMER is not updated with the new written value.

19.5.14 LETIMERn_SYNCBUSY - Synchronization Busy Register

Offset															Bi	t Po	siti	on														
0x034	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	11	10	6	œ	7	9	2	4	က	2	-	0
Reset												•					•							•			0	0	0	0	0	0
Access																											~	~	~	~	~	~
Name																											REP1	REP0	COMP1	COMPO	CMD	CTRL

Bit	Name	Reset	Access	Description
31:6	Reserved	To ensure co	ompatibility with fut	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
5	REP1	0	R	LETIMERn_REP1 Register Busy
	Set when the value writt	en to LETIMERn_	_REP1 is being syr	nchronized.
4	REP0	0	R	LETIMERn_REP0 Register Busy
	Set when the value writt	en to LETIMERn_	_REP0 is being syr	nchronized.
3	COMP1	0	R	LETIMERn_COMP1 Register Busy
	Set when the value writt	en to LETIMERn_	_COMP1 is being s	synchronized.
2	COMP0	0	R	LETIMERn_COMP0 Register Busy

Downloaded from H course on 2010-12-21 - d0034_Rev0.90 300 www.energymicro.com

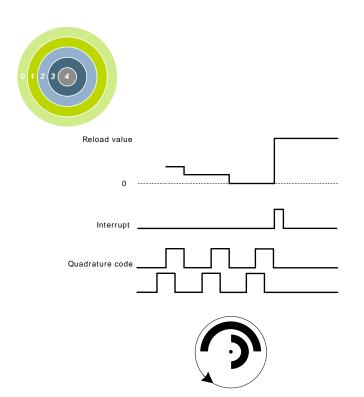
Value

0

Bit	Name	Reset	Access	Description	
	Set when the value wri	tten to LETIMERn_	COMP0 is being	synchronized.	
1	CMD	0	R	LETIMERn_CMD Register Busy	
	Set when the value wri	itten to LETIMERn_	CMD is being syn	chronized.	
0	CTRL	0	R	LETIMERn_CTRL Register Busy	
	Set when the value wri	tten to LETIMERn_	CTRL is being sy	nchronized.	

19.5.15 LETIMERn_ROUTE - I/O Routing Register

Description


The LETn_O0 pin is disabled
The LETn_O0 pin is enabled

Offset											В	it	Pos	itic	on															
0x040	- 0 6 8	27	25	4	8	2	_	20	19	18	1					13	12	_		2	6	8		9	2	_		7		
	30 30 28 28	27	1 0	24	23	22	21	7	-	-	17	1	-	15	4	~	-	7	1			ω	7	9	4)	4	က		-	
Reset																			L		0×0								0	, c
Access																					χ ≷								S ≷	2
Name										.,											LOCATION								OUT1PEN	NEGOTIO
Bit	Name			Re	set			F	Acc	ess	S	ı	Des	cri	ptic	on														
31:11	Reserved			То	ensi	ure	com	oatib	ility	witi	h fut	ure	e de	/ice	s, a	lwa	iys i	vrite	bi	ts to	0.	Mor	e inf	orm	atio	n in	Sec	tion	2.1 (p	o. 3
10:8	LOCATION			0x0				R	w			I,	/O L	.oca	itio	n														
	Decides the loc	ation of	the I	LETII	MER	R I/C) pin	s																						
	Value	Mod	е								Desc	ript	tion																	
	0	LOC	0								Locat	tion	n 0																	
	1	LOC									Locat	tion	n 1																	
	2	LOC									Locat	tion	12																	
	3	LOC	3								Locat	tion	13																	
7:2	Reserved			То	ensi	ure	com	oatib	ility	witi	h futi	ure	e de	/ice	s, a	lwa	iys I	vrite	bi	ts to	0.	Mor	e inf	orm	atio	n in	Sec	tion	2.1 (p	o. 3
	OUT1PEN			0				R	w			(Outp	out	1 Pi	n I	Ena	ble												
1	OOT II LIV						nahl	he																						
1	When set, outpo	ut 1 of t	he LI	ETIM	ER	ıs e	Ιαρι	Ju																						
1		ut 1 of t		ETIM Descri			IIabi																							
1	When set, outpo	ut 1 of t	С		ption	1			blec	i																				
1	When set, outpo	ut 1 of t	7	Descri	ption ETn_	01	pin is	disal																						

Downloaded from Elecules com

20 PCNT - Pulse Counter

Quick Facts

What?

The Pulse Counter (PCNT) decodes incoming pulses. The module has a quadrature mode which may be used to decode the speed and direction of a mechanical shaft. PCNT can operate in EM0-EM3.

Why?

The PCNT generates an interrupt after a specific number of pulses (or rotations), eliminating the need for timing- or I/O interrupts and CPU processing to measure pulse widths, etc.

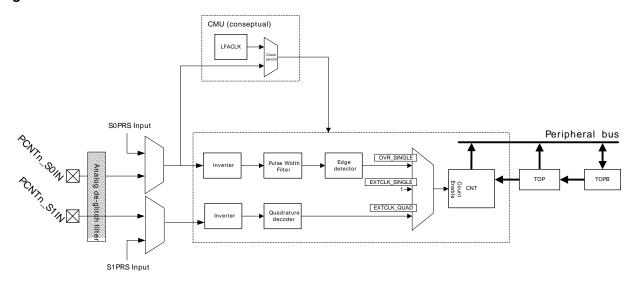
How?

PCNT uses the LFACLK or may be externally clocked from a pin. The module incorporates a 16-bit up/down-counter to keep track of incoming pulses or rotations.

20.1 Introduction

The Pulse Counter (PCNT) can be used for counting incoming pulses on a single input or to decode quadrature encoded inputs. It can run from the internal LFACLK (EM0-EM2) while counting pulses on the PCNTn_S0IN pin or using this pin as an external clock source (EM0-EM3) that runs both the PCNT counter and register access.

20.2 Features


- 16-bit counter with reload register
- Single input oversampling up/down counter mode (EM0-EM2)
- Externally clocked single input pulse up/down counter mode (EM0-EM3)
- Externally clocked quadrature decoder mode (EM0-EM3)
- · Interrupt on counter underflow and overflow
- Interrupt when a direction change is detected (quadrature decoder mode only)
- · Optional pulse width filter
- Optional input inversion/edge detect select
- PRS S0IN and S1IN input

20.3 Functional Description

An overview of the PCNT module is shown in Figure 20.1 (p. 303).

Figure 20.1. PCNT Overview

20.3.1 Pulse Counter Modes

The pulse counter can operate in single input oversampling mode (OVSSINGLE), externally clocked single input counter mode (EXTCLKSINGLE) and externally clocked quadrature decoder mode (EXTCLKQUAD). The following sections describe operation of each of the three modes and how they are enabled. Input timing constraints are described in Section 20.3.5 (p. 306) and Section 20.3.6 (p. 306).

20.3.1.1 Single Input Oversampling Mode

This mode is enabled by writing OVSSINGLE (0x1) to the MODE field in the PCNTn_CTRL register and disabled by writing DISABLE (0x0) to the same field. LFACLK is configured from the registers in the Clock Management Unit (CMU), Chapter 11 (p. 94).

The optional pulse width filter is enabled by setting to the FILT bit in the PCNTn_CTRL register. Additionally, the PCNTn_S0IN input may be inverted, so that falling edges are counted, by setting to the EDGE bit in the PCNTn_CTRL register.

If S1CDIR is cleared, PCNTn_S0IN is the only observed input in this mode. The PCNTn_S0IN input is sampled by the LFACLK and the number of detected positive or negative edges on PCNTn_S0IN appears in PCNTn_CNT. The counter may be configured to count down by setting to the CNTDIR bit in PCNTn_CTRL. Default is to count up.

The counting direction can also be controlled externally in this mode by setting S1CDIR in PCNTn_CTRL. This will make the input value on PCNTn_S1IN decide the direction counted on a PCNTn_S0IN edge. If PCNTn_S1IN is high, the count is done according to CNTDIR in PCNTn_CTRL. If low, the count direction is opposite.

20.3.1.2 Externally Clocked Single Input Counter Mode

This mode is enabled by writing EXTCLKSINGLE (0x2) to the MODE field in the PCNTn_CTRL register and disabled by writing DISABLE (0x0) to the same field. The external pin clock source must be configured from the registers in the CMU (Chapter 11 (p. 94)).

Positive edges on PCNTn_S0IN are used to clock the counter. Similar to the oversampled mode, PCNTn_S1IN is used to determine the count direction if S1CDIR in PCNTn_CTRL is set. If not, CNTDIR in PCNTn_CTRL solely defines count direction. As the LFACLK is not used in this mode, the PCNT module can operate in EM3.

The digital pulse width filter is not available in this mode. The analog de-glitch filter in the GPIO pads is capable of removing some unwanted noise. However, this mode may be susceptible to spikes and unintended pulses from devices such as mechanical switches, and is therefore most suited to take input from electronic sensors etc. that generate single wire pulses.

20.3.1.3 Externally Clocked Quadrature Decoder Mode

This mode is enabled by writing EXTCLKQUAD (0x3) to the MODE field in PCNTn_CTRL and disabled by writing DISABLE (0x0) to the same field. The external pin clock source must be configured from the registers in the CMU, (Chapter 11 (p. 94)).

Both edges on PCNTn_S0IN pin are used to sample PCNTn_S1IN pin to decode the quadrature code. Consequently, this mode does not depend on the internal LFACLK and may be operated in EM3. A quadrature coded signal contains information about the relative speed and direction of a rotating shaft as illustrated by Figure 20.2 (p. 304), hence the direction of the counter register PCNTn_CNT is controlled automatically.

Clockwise direction Reset 1 cycle/sector, 4 states 10 | 11 | 01 PCNTn_S0IN PCNTn_S1IN PCNTn_CNT) Counter clockwise direction cycle/sector, 4 states 00 | 01 11 10 PCNTn_S0IN PCNTn_S1IN PCNTn_CNT PCNTn_TOP PCNTn_TOP-1 X = sensor position

Figure 20.2. PCNT Quadrature Coding

If PCNTn_S0IN leads PCNTn_S1IN in phase, the direction is clockwise, and if it lags in phase the direction is counter-clockwise. Although the direction is automatically detected, the detected direction may be inverted by writing 1 to the EDGE bit in the PCNTn_CTRL register. Default behavior is illustrated by Figure 20.2 (p. 304).

The counter direction may be read from the DIR bit in the PCNTn_STATUS register. Additionally, the DIRCNG interrupt in the PCNTn_IF register is generated when a direction change is detected. When a change is detected, the DIR bit in the PCNTn_STATUS register must be read to determine the current new direction.

Note

The sector disc illustrated in the figure may be finer grained in some systems. Typically, they may generate 2-4 PCNTn_S0IN wave periods per 360° rotation.

The direction of the quadrature code and control of the counter is generated by the simple binary function outlined by Table 20.1 (p. 305). Note that this function also filters some invalid inputs that may occur when the shaft changes direction or temporarily toggles direction.

Table 20.1. PCNT QUAD Mode Counter Control Function

Inputs		Control/Status	
S1IN posedge	S1IN negedge	Count Enable	CNTDIR status bit
0	0	0	0
0	1	1	0
1	0	1	1
1	1	0	0

Note

PCNTn S1IN is sampled on both edges of PCNTn S0IN.

20.3.2 Hysteresis

By default the pulse counter wraps to 0 when passing the configured top value, and wraps to the top value when counting down from 0. On these events, a system will likely want to wake up to store and track the overflow count. This is fine if the pulse counter is tracking a monotonic value or a value that does not change directions frequently. If you have the latter however, and the counter changes directions around the overflow/underflow point, the system will have to wake up a lot to keep track of the rotations, causing high current consumptions

To solve this, the pulse counter has a way of introducing hysteresis to the counter. When HYST in PCNTn_CTRL is set, the pulse counter will always wrap to TOP/2 on underflows and overflows. This takes the counter away from the area where it might overflow or underflow, removing the problem.

Given a starting value of 0 for the counter, the absolute count value when hysteresis is enabled can be calculated with the equations Equation 20.1 (p. 305) or Equation 20.2 (p. 305), depending on whether the TOP value is even or odd.

Absolute position with hysteresis and even TOP value

$$CNT_{abs} = CNT - UF_{CNT} \times (TOP/2+1) + OF_{CNT} \times (TOP/2+1)$$
 (20.1)

Absolute position with hysteresis and odd TOP value

$$CNT_{abs} = CNT - UF_{CNT} \times (TOP/2+1) + OF_{CNT} \times (TOP/2+2)$$
 (20.2)

20.3.3 Auxillary counter

To be able to keep explicit track of counting in one direction in addition to the regular counter which counts both up and down, the auxillary counter can be used. The pulse counter can for instance be configured to keep track of the absolute rotation of the wheel, and at the same time the auxillary counter kan keep track of how much the wheel has reversed.

The auxillary counter is enabled by configuring AUXCNTEV in PCNTn_CTRL. It will always count up, but it can be configured whether it should count up on up-events, down-events or both, keeping track of rotation either way or general movement. The value of the auxillary counter can be read from the PCNTn_AUXCNT register.

Overflows on the auxillary counter happen when the auxillary counter passes the top value of the pulse counter, configured in PCNTn_TOP. In that event, the AUXOF interrupt flag is set, and the auxillary counter wraps to 0.

As the auxillary counter, the main counter can be configured to count only on certain events. This is done through CNTEV in PCNTn_CTRL, and it is possible like for the auxillary counter, to make the main counter count on only up and down events. The difference between the counters is that where the auxillary counter will only count up, the main counter will count up or down depending on the direction of the count event.

20.3.4 Register Access

The counter-clock domain may be clocked externally. To update the counter-clock domain registers from software in this mode, 2-3 clock pulses on the external clock are needed to synchronize accesses to the externally clocked domain. Clock source switching is controlled from the registers in the CMU (Chapter 11 (p. 94)).

When the RSTEN bit in the PCNTn_CTRL register is set to 1, the PCNT clock domain is asynchronously held in reset. The reset is synchronously released two PCNT clock edges after the RSTEN bit in the PCNTn CTRL register is cleared by software. This asynchronous reset restores the reset values in PCNTn_TOP, PCNTn_CNT and other control registers in the PCNT clock domain.

Since this module is a Low Energy Peripheral, and runs off a clock which is asynchronous to the HFCORECLK, special considerations must be taken when accessing registers. Please refer to Section 5.3 (p. 18) for a description on how to perform register accesses to Low Energy Peripherals.

Note

PCNTn TOP and PCNTn CNT are read-only registers. When writing to PCNTn TOPB, make sure that the counter value, PCNTn_CNT, can not exceed the value written to PCNTn_TOPB within two clock cycles.

20.3.5 Clock Sources

The 32 kHz LFACLK is one of two possible clock sources. The clock select register is described in Chapter 11 (p. 94). The default clock source is the LFACLK.

This PCNT module may also use PCNTn_S0IN as an external clock to clock the counter (EXTCLKSINGLE mode) and to sample PCNTn_S1IN (EXTCLKQUAD mode). Setup, hold and max frequency constraints for PCNTn S0IN and PCNTn S1IN for these modes are specified in the device datasheet.

To use this module, the LE interface clock must be enabled in CMU HFCORECLKENO, in addition to the module clock.

Note

PCNT Clock Domain Reset, RSTEN, should be set when changing clock source for PCNT. If changing to an external clock source, the clock pin has to be enabled as input prior to deasserting RSTEN. Changing clock source without asserting RSTEN results in undefined behaviour.

20.3.6 Input Filter

An optional pulse width filter is available in OVSSINGLE mode. The filter is enabled by writing 1 to the FILT bit in the PCNTn CTRL register. When enabled, the high and low periods of PCNTn S0IN must be stable for 5 consecutive clock cycles before the edge is passed to the edge detector.

In EXTCLKSINGLE and EXTCLKQUAD mode, there is no digital pulse width filter available.

20.3.7 Edge Polarity

The edge polarity can be set by configuring the EDGE bit in the PCNTn_CTRL register. When this bit is cleared, the pulse counter counts positive edges in OVSSINGLE mode and negative edges if the bit is set.

In EXTCLKQUAD mode, the EDGE bit in PCNTn_CTRL inverts the direction of the counter (which is automatically detected).

Note

The EDGE bit in PCNTn_CTRL has no effect in EXTCLKSINGLE mode.

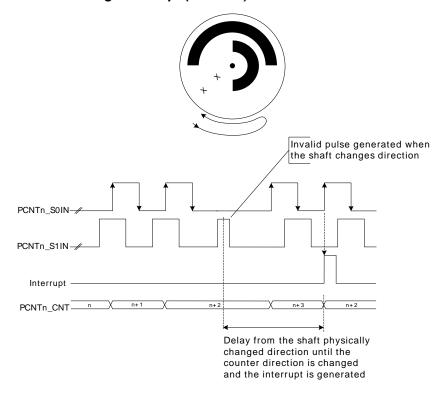
20.3.8 PRS S0IN and S1IN Input

It is possible to receive input from PRS on both SOIN and S1IN by setting S0PRSEN or S1PRSEN in PCNTn_INPUT. The PRS channel used can be selected using S0PRSSEL in PCNTn_INPUT.

20.3.9 Interrupts

The interrupt generated by PCNT uses the PCNTn_INT interrupt vector. Software must read the PCNTn_IF register to determine which module interrupt that generated the vector invocation.

20.3.9.1 Underflow and Overflow Interrupts


The underflow interrupt flag (UF) is set when the counter counts down from 0. I.e. when the value of the counter is 0 and a new pulse is received. The PCNTn_CNT register is loaded with the PCNTn_TOP value after this event.

The overflow interrupt flag (OF) is set when the counter counts up from the PCNTn_TOP (reload) value. I.e. if PCNTn_CNT = PCNTn_TOP and a new pulse is received. The PCNTn_CNT register is loaded with the value 0 after this event.

20.3.9.2 Direction Change Interrupt

The PCNTn_PCNT module sets the DIRCNG interrupt flag (PCNTn_IF register) when the direction of the quadrature code changes. The behavior of this interrupt is illustrated by Figure 20.3 (p. 307).

Figure 20.3. PCNT Direction Change Interrupt (DIRCNG) Generation

20.4 Register Map

The offset register address is relative to the registers base address.

Offset	Name	Туре	Description
0x000	PCNTn_CTRL	RW	Control Register
0x004	PCNTn_CMD	W1	Command Register
0x008	PCNTn_STATUS	R	Status Register
0x00C	PCNTn_CNT	R	Counter Value Register
0x010	PCNTn_TOP	R	Top Value Register
0x014	PCNTn_TOPB	RW	Top Value Buffer Register
0x018	PCNTn_IF	R	Interrupt Flag Register
0x01C	PCNTn_IFS	W1	Interrupt Flag Set Register
0x020	PCNTn_IFC	W1	Interrupt Flag Clear Register
0x024	PCNTn_IEN	RW	Interrupt Enable Register
0x028	PCNTn_ROUTE	RW	I/O Routing Register
0x02C	PCNTn_FREEZE	RW	Freeze Register
0x030	PCNTn_SYNCBUSY	R	Synchronization Busy Register
0x038	PCNTn_AUXCNT	RWH	Auxillary Counter Value Register
0x03C	PCNTn_INPUT	RW	PCNT Input Register

20.5 Register Description

20.5.1 PCNTn_CTRL - Control Register (Async Reg)

For more information about Asynchronous Registers please see Section 5.3 (p. 18).

Offset															Bi	t Po	sitio	on								,					
0x000	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	41	13	1	10	თ	∞	7	9	2	4	က	2	1	0
Reset																	OXO	3			0 0 0 0	0	0			0	0	0	0	0	OXO.
Access																	× ×	2			≥ Y	RW	RW			RW	ΚW	RW	RW	Ma	<u> </u>
Name																	ALIXCNTEV	2000			CNIE	S1CDIR	HYST			RSTEN	FILT	EDGE	CNTDIR	HOOM	<u> </u>

Bit	Name	Reset	Access	Description
31:16	Reserved	To ensure co	ompatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
15:14	AUXCNTEV	0x0	RW	Controls when the auxillary counter counts
	Selects whethe	r the regular counter respo	onds to up-count e	events, down-count events or both
	Value	Mode	Des	cription
	0	NONE	Nev	er counts
	1	UP	Cou	ints up on up-count events
	2	DOWN	Cou	ints up on down-count events
	3	вотн	Cou	ints up on both up-count and down-count events
13:12	Reserved	To ensure co	ompatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
11:10	CNTEV	0x0	RW	Controls when the counter counts

Selects whether the regular counter responds to up-count events, down-count events or both

Bit	Name	Reset	Acce	ss Description
	Value	Mode		Description
	0	вотн		Counts up on up-count and down on down-count events
	1	UP		Only counts up on up-count events
	2	DOWN		Only counts down on down-count events
	3	NONE		Never counts
9	S1CDIR	0	RW	Count direction determined by S1
		rection of counting when in I when S1 is low, the cour		GLE or EXTCLKSINGLE modes. When S1 is high, the count direction is given the opposite ${\sf SI}$
8	HYST	0	RW	Enable Hysteresis
	When hysteres	sis is enabled, the PCNT v	vill always ove	erflow and underflow to TOP/2.
7:6	Reserved	To ensure o	compatibility w	vith future devices, always write bits to 0. More information in Section 2.1 (p. 3)
5	RSTEN	0	RW	Enable PCNT Clock Domain Reset
		s bit is cleared. If externa		set when this bit is set. The reset is synchronously released two PCNT clock the reset should be performed by setting and clearing the bit without pending
4	FILT	0	RW	Enable Digital Pulse Width Filter
	The filter passe	es all high and low periods	s that are at le	ast 5 clock cycles long. This filter is only available on OVSSINGLE mode.
3	EDGE	0	RW	Edge Select
		e polarity of the incoming of the incoming of the polarity of the incoming of the polarity of the incoming of the polarity of		it should be written when PCNT is in DISABLE mode, otherwise the behavior $\overline{\mbox{\footnotesize E}}$ mode.
	Value	Mode		Description
	0	POS		Positive edges on the PCNTn_S0IN inputs are counted in OVSSINGLE mode.
	1	NEG		Negative edges on the PCNTn_S0IN inputs are counted in OVSSINGLE mode, and the counter direction is inverted in EXTCLKQUAD mode.
2	CNTDIR	0	RW	Non-Quadrature Mode Counter Direction Control
		f the counter must be set in is automatically detected		GLE and EXTCLKSINGLE modes. This bit is ignored in EXTCLKQUAD mode
	Value	Mode		Description
	0	UP		Up counter mode
	1	DOWN		Down counter mode
1:0	MODE	0x0	RW	Mode Select
	Selects the mo	de of operation. The corre	esponding clo	ck source must be selected from the CMU.
	Value	Mode		Description
	0	DISABLE		The module is disabled
	1	OVSSINGLE		Single input LFACLK oversampling mode (available in EM0-EM2)
	2	EXTCLKSINGLE		Externally clocked single input counter mode (available in EM0-EM3)
	3	EXTCLKQUAD		Externally clocked quadrature decoder mode (available in EM0-EM3)

20.5.2 PCNTn_CMD - Command Register (Async Reg)

For more information about Asynchronous Registers please see Section 5.3 (p. 18).

Offset															Bi	t Pc	siti	on														
0x004	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	41	13	12	1	10	ი	8	7	9	2	4	က	2	-	0
Reset																															0	0
Access																														-	W1	M
Name																															LTOPBIM	LCNTIM

Bit	Name	Reset	Access	Description
31:2	Reserved	To ensure co	ompatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
1	LTOPBIM	0	W1	Load TOPB Immediately
				is loaded directly into TOP. For EFM32TG revisions A and B: Load atasheet for a description on how to extract the chip revision.
0	LCNTIM	0	W1	Load CNT Immediately
	Load PCNTn_TOP	into PCNTn_CNT on t	he next counter c	lock cycle.

20.5.3 PCNTn_STATUS - Status Register

Offset															Bi	t Pc	siti	on														
0x008	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	41	13	12	1	10	ი	œ	7	9	2	4	က	2	-	0
Reset			•									•			•		•															0
Access																																22
Name																																DIR

Bit	Name	Reset	Access	Description
31:1	Reserved	To ensure c	ompatibility with	future devices, always write bits to 0. More information in Section 2.1 (p. 3)
0	DIR	0	R	Current Counter Direction
	Current direction	status of the counter. Th	nis bit is valid in E	EXTCLKQUAD mode only.
	Value	Mode	De	escription
	0	UP		o counter mode (clockwise in EXTCLKQUAD mode with the NEDGE bit in CNTn_CTRL set to 0)
	1	DOWN	Do	own counter mode

20.5.4 PCNTn_CNT - Counter Value Register

Offset															Bit	t Po	siti	on														
0x00C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	=	10	თ	8	_	9	2	4	ო	2	-	0
Reset																									000000							
Access																								ú	Y							
Name																								Ė	S							

Bit	Name	Reset	Access	Description
31:16	Reserved	To ensure co	mpatibility with fu	uture devices, always write bits to 0. More information in Section 2.1 (p. 3)
15:0	CNT	0x0000	R	Counter Value
	Gives read access to the	he counter.		

2010-12-21 - d0034_Rev0.90 www.energymicro.com

20.5.5 PCNTn_TOP - Top Value Register

Offset															Bi	t Po	siti	on														
0x010	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	9	2	4	3	2	_	0
Reset																								L	UXOOFF							
Access																								c	Y							
Name																								C H	<u>ਤੇ</u>							

Bit	Name	Reset	Access	Description
31:16	Reserved	To ensure co	empatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
15:0	TOP	0x00FF	R	Counter Top Value
	When counting down, t			n_CNT when counting past 0. When counting up, 0 is written to the

20.5.6 PCNTn_TOPB - Top Value Buffer Register (Async Reg)

For more information about Asynchronous Registers please see Section 5.3 (p. 18).

Offset															Bi	t Pc	siti	on														
0x014	33	93	53	78	27	26	22	24	23	22	21	20	19	18	17	16	15	41	13	12	7	10	6	80	7	9	2	4	3	2	-	0
Reset																								L	UXOOFI							
Access																								3	<u>}</u>							
Name																								G	n D							

Bit	Name	Reset	Access	Description
31:16	Reserved	To ensure comp	atibility with fut	rure devices, always write bits to 0. More information in Section 2.1 (p. 3)
15:0	ТОРВ	0x00FF	RW	Counter Top Buffer
	,			revisions A and B: Loaded into TOP when LTOPBIM in PCNTn_CMD bition on how to extract the chip revision.

20.5.7 PCNTn_IF - Interrupt Flag Register

Offset															Bi	t Pc	siti	on														
0x018	31	30	29	28	27	56	22	24	23	22	21	20	19	18	17	16	15	4	13	12	=	10	6	80	7	9	2	4	က	7	-	0
Reset																													0	0	0	0
Access																													~	~	~	~
Name																													AUXOF	DIRCNG	OF	F)

Downloaded from H couls com 2010-12-21 - d0034_Rev0.90 311 www.energymicro.com

Bit	Name	Reset	Access	Description
31:4	Reserved	To ensure co	ompatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
3	AUXOF	0	R	Overflow Interrupt Read Flag
	Set when an Auxillar	ry CNT overflow occu	rs	
2	DIRCNG	0	R	Direction Change Detect Interrupt Flag
	Set when the count	direction changes. Se	t in EXTCLKQUA	D mode only.
1	OF	0	R	Overflow Interrupt Read Flag
	Set when a CNT over	erflow occurs		
0	UF	0	R	Underflow Interrupt Read Flag
	Set when a CNT und	derflow occurs		

20.5.8 PCNTn_IFS - Interrupt Flag Set Register

Offset															Bi	t Pc	siti	on														
0x01C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	41	13	12	7	10	6	∞	7	9	2	4	8	2	_	0
Reset																													0	0	0	0
Access																													W1	W1	N N	W
Name																													AUXOF	DIRCNG	OF	5

Name	Reset	Access	Description
Reserved	To ensure co	ompatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
AUXOF	0	W1	Auxillary Overflow Interrupt Set
Write to 1 to set the	auxillary overflow inte	rrupt flag	
DIRCNG	0	W1	Direction Change Detect Interrupt Set
Write to 1 to set the	direction change inter	rupt flag	
OF	0	W1	Overflow Interrupt Set
Write to 1 to set the	overflow interrupt flag		
UF	0	W1	Underflow interrupt set
Write to 1 to set the	underflow interrupt fla	ıg	
	Reserved AUXOF Write to 1 to set the DIRCNG Write to 1 to set the OF Write to 1 to set the UF	Reserved AUXOF O Write to 1 to set the auxillary overflow interpretation of the set o	AUXOF 0 W1 Write to 1 to set the auxillary overflow interrupt flag DIRCNG 0 W1 Write to 1 to set the direction change interrupt flag OF 0 W1 Write to 1 to set the overflow interrupt flag

20.5.9 PCNTn_IFC - Interrupt Flag Clear Register

Offset															Bi	t Po	siti	on														
0x020	33	30	29	28	27	56	22	24	23	22	21	20	19	18	17	16	15	4	13	12	1	10	6	8	7	9	2	4	က	2	~	0
Reset				•																									0	0	0	0
Access																													W1	W1	M1	×
Name																													AUXOF	DIRCNG	OF	-U

Bit	Name	Reset	Access	Description
31:4	Reserved	To ensure compa	atibility with futu	ure devices, always write bits to 0. More information in Section 2.1 (p. 3)
3	AUXOF	0	W1	Auxillary Overflow Interrupt Clear

Downloaded from Heads.com 2010-12-21 - d0034_Rev0.90 312 www.energymicro.com

Bit	Name	Reset	Access	Description
	Write to 1 to clear	the auxillary overflow in	terrupt flag	
2	DIRCNG	0	W1	Direction Change Detect Interrupt Clear
	Write to 1 to clear	the direction change de	tect interrupt flag	
1	OF	0	W1	Overflow Interrupt Clear
	Write to 1 to clear	the overflow interrupt fla	ag	
0	UF	0	W1	Underflow Interrupt Clear
	Write to 1 to clear	the underflow interrupt f	flag	

20.5.10 PCNTn_IEN - Interrupt Enable Register

Offset															Bi	t Po	siti	on														
0x024	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	41	13	12	7	10	6	8	7	9	2	4	က	7	-	0
Reset																													0	0	0	0
Access																													ΑW	% ⊗	W.	RW
Name																													AUXOF	DIRCNG	OF	-J

Bit	Name	Reset	Access	Description
31:4	Reserved	To ensure co	mpatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
3	AUXOF	0	RW	Auxillary Overflow Interrupt Enable
	Enable the auxillar	y overflow interrupt		
2	DIRCNG	0	RW	Direction Change Detect Interrupt Enable
	Enable the direction	n change detect interru	pt.	
1	OF	0	RW	Overflow Interrupt Enable
	Enable the overflo	w interrupt		
0	UF	0	RW	Underflow Interrupt Enable
	Enable the underfl	ow interrupt		

20.5.11 PCNTn_ROUTE - I/O Routing Register

Offset															Bi	t Po	siti	on														
0x028	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	41	13	12	11	10	6	œ	7	9	2	4	က	2	_	0
Reset												•											0x0									
Access																							R ≪									
Name																							LOCATION									

Bit	Name	Reset	Access	Description
31:11	Reserved	To ensure co	mpatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
10:8	LOCATION	0x0	RW	I/O Location
	Defines the locati	ion of the PCNT input pin	s. E.g. PCNTn_S	0#0, #1 or #2.
	Value	Mode	Des	cription
	0	LOC0	Sele	ect location 0

Bit	Name	Reset Acces	ss Description
	Value	Mode	Description
	1	LOC1	Select location 1
	2	LOC2	Select location 2
	3	LOC3	Select location 3
7:0	Reserved	To ensure compatibility w	ith future devices, always write bits to 0. More information in Section 2.1 (p. 3)

20.5.12 PCNTn_FREEZE - Freeze Register

Offset													,		Bi	it Po	siti	on														
0x02C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	2	4	က	7	-	0
Reset														•					·									•	•			0
Access																																S S
Name																																REGFREEZE

Bit	Name	Reset	Access	Description
31:1	Reserved	To ensure c	ompatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
0	REGFREEZE	0	RW	Register Update Freeze
	When set, the u simultaneously.	pdate of the PCNT cloo	ck domain is postp	poned until this bit is cleared. Use this bit to update several registers
	Value	Mode	Des	cription
	0	UPDATE		h write access to a PCNT register is updated into the Low Frequency domain as
			3001	n as possible.

20.5.13 PCNTn_SYNCBUSY - Synchronization Busy Register

Offset	Bit Position																															
0x030	31	30	29	28	27	56	22	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	ი	80	7	9	2	4	က	2	_	0
Reset				•							•				•														,	0	0	0
Access																														œ	œ	~
Name																														TOPB	CMD	CTRL

Bit	Name	Reset	Access	Description
31:3	Reserved	To ensure co	ompatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
2	ТОРВ	0	R	PCNTn_TOPB Register Busy
	Set when the value	written to PCNTn_TO	PB is being synch	oronized.
1	CMD	0	R	PCNTn_CMD Register Busy
	Set when the value	written to PCNTn_CM	ID is being synchr	onized.
0	CTRL	0	R	PCNTn_CTRL Register Busy
	Set when the value	written to PCNTn_CT	RL is being synch	ronized.

www.energymicro.com 2010-12-21 - d0034_Rev0.90

20.5.14 PCNTn_AUXCNT - Auxillary Counter Value Register

Offset															Bi	t Pc	siti	on														
0x038	33	30	53	28	27	56	25	24	3	22	21	20	19	18	17	16	15	4	13	12	1	10	6	8	7	9	2	4	3	2	-	0
Reset																								6	000000							
Access																									I À Y							
Name																								!	AUXCNI							

Bit	Name	Reset	Access	Description
31:16	Reserved	To ensure compa	atibility with fut	ure devices, always write bits to 0. More information in Section 2.1 (p. 3)
15:0	AUXCNT	0x0000	RWH	Auxillary Counter Value
	Gives read access to the a	uxillary counter.		

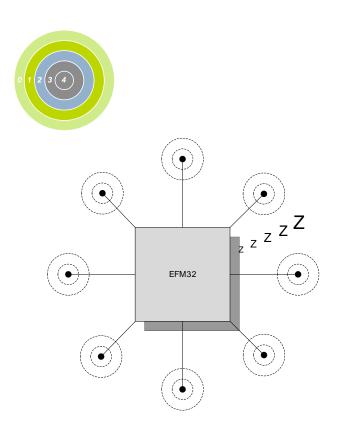
20.5.15 PCNTn_INPUT - PCNT Input Register

Offset															Bi	it Po	siti	on														
0x03C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	41	13	12	7	10	6	8	7	9	5	4	က	2	-	0
Reset											•					•						0			0x0			0			0x0	
Access																						RW			RW W			RW			RW	
Name																						S1PRSEN			S1PRSSEL			SOPRSEN			SOPRSSEL	

Bit	Name	Reset	Access	s Description
31:11	Reserved	To ensure	compatibility with	h future devices, always write bits to 0. More information in Section 2.1 (p. 3)
10	S1PRSEN	0	RW	S1IN PRS Enable
	When set, the	PRS channel is selected	as input to S1IN.	
9	Reserved	To ensure	compatibility with	h future devices, always write bits to 0. More information in Section 2.1 (p. 3)
8:6	S1PRSSEL	0x0	RW	S1IN PRS Channel Select
	Select PRS ch	annel as input to S1IN.		
	Value	Mode	Г	Description
	0	PRSCH0	F	PRS Channel 0 selected
	1	PRSCH1	F	PRS Channel 1 selected
	2	PRSCH2	F	PRS Channel 2 selected
	3	PRSCH3	F	PRS Channel 3 selected
	4	PRSCH4	F	PRS Channel 4 selected
	5	PRSCH5	F	PRS Channel 5 selected
	6	PRSCH6	F	PRS Channel 6 selected
	7	PRSCH7	F	PRS Channel 7 selected
5	Reserved	To ensure	compatibility with	h future devices, always write bits to 0. More information in Section 2.1 (p. 3)
4	SOPRSEN	0	RW	S0IN PRS Enable

2010-12-21 - d0034_Rev0.90 www.energymicro.com

When set, the PRS channel is selected as input to S0IN.



Bit	Name	Reset	Acces	s Description
3	Reserved	To ensure co	ompatibility w	th future devices, always write bits to 0. More information in Section 2.1 (p. 3)
2:0	S0PRSSEL	0x0	RW	S0IN PRS Channel Select
	Select PRS chann	nel as input to S0IN.		
	Value	Mode		Description
	0	PRSCH0		PRS Channel 0 selected
	1	PRSCH1		PRS Channel 1 selected
	2	PRSCH2		PRS Channel 2 selected
	3	PRSCH3		PRS Channel 3 selected
	4	PRSCH4		PRS Channel 4 selected
	5	PRSCH5		PRS Channel 5 selected
	6	PRSCH6		PRS Channel 6 selected
	7	PRSCH7		PRS Channel 7 selected

Downloaded from Elecules com

21 LESENSE - Low Energy Sensor Interface

Quick Facts

What?

LESENSE is a low energy sensor interface capable of autonomously collecting and processing data from multiple sensors even when in EM2. Flexible configuration makes LESENSE a versatile sensor interface compatible with a wide range of sensors and measurement schemes.

Why?

Capability to autonomously monitor sensors allows the EFM32TG to reside in a low energy mode for long periods of time while keeping track of sensor status and sensor events.

How?

LESENSE is highly configurable and is capable of collecting data from a wide range of sensor types. Once the data is collected, the programmable state machine, LESENSE decoder, is capable of processing sensor data without CPU intervention. A large result buffer allows the chip to remain in EM2 for long periods of time while autonomously collecting data.

21.1 Introduction

LESENSE is a low energy sensor interface which utilizes on-chip peripherals to perform measurement of a configurable set of sensors. The results from sensor measurements can be processed by the LESENSE decoder, which is a configurable state machine with up to 16 states. The results can also be stored in a result buffer to be collected by CPU or DMA for further processing.

LESENSE operates in EM2, in addition to EM1 and EM0, and can wake up the CPU on configurable events.

21.2 Features

- Up to 16 sensors
- Autonomous sensor monitoring in EM0, EM1, and EM2
- Highly configurable decoding of sensor results
- · Interrupt on sensor events
- Configurable enable signals to external sensors
- Circular buffer for storage of up to 16 sensor results.
- Support for multiple sensor types
 - · LC sensors
 - · Capacitive sensing
 - · General analog sensors

Downloaded from F 2010-12-21 - d0034_Rev0.90 317 www.energymicro.com

21.3 Functional description

LESENSE is a module capable of controlling on-chip peripherals in order to perform monitoring of different sensors with little or no CPU intervention. LESENSE uses the analog comparators, ACMP, for measurement of sensor signals. LESENSE can also control the DAC to generate accurate reference voltages. Figure 21.1 (p. 318) shows an overview of the LESENSE module. LESENSE consists of a sequencer, count and compare block, a decoder, and a RAM block used for configuration and result storage. The sequencer handles interaction with other peripherals as well as timing of sensor measurements. The count and compare block is used to count pulses from ACMP outputs before comparing with a configurable threshold. To autonomously analyze sensor results, the LESENSE decoder provides possibility to define a finite state machine with up to 16 states, and programmable actions upon state transitions. This allows the decoder to implement a wide range of decoding schemes, for instance quadrature decoding. A RAM block is used for storage of configuration and measurement results. This allows LESENSE to have a relatively large result buffer enabling the chip to remain in a low energy mode for long periods of time while collecting sensor data.

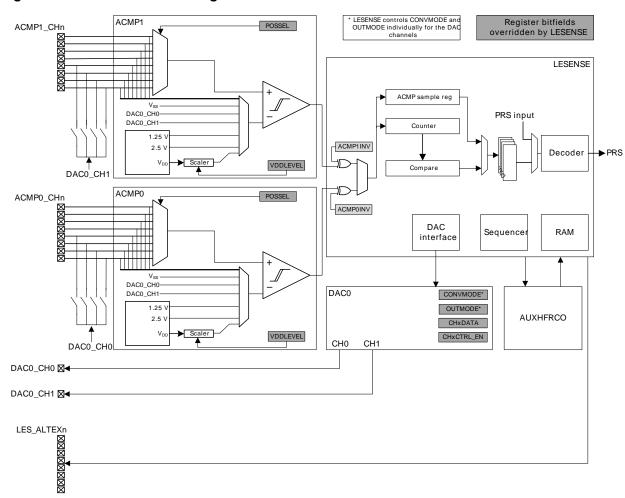


Figure 21.1. LESENSE block diagram

21.3.1 Channel configuration

LESENSE has 16 individually configurable channels, the first eight are mapped to the channels of ACMP0, while the last eight are mapped to the channels of ACMP1. Each LESENSE channel has its own set of configuration registers. Channel configuration is split into three registers; CHx_TIMING, CHx_INTERACT, and CHx_EVAL. Individual timing for each sensor is configured in CHx_TIMING, sensor interaction is configured in CHx_INTERACT, and configurations regarding evaluation of the measurements are done in CHx_EVAL. For improved readability, CHx_CONF will be used to address

the channel configuration registers, CHx_TIMING, CHx_INTERACT, and CHx_EVAL, throughout this chapter.

By default, the channel configuration registers are directly mapped to the channel number. Configuring SCANCONF in CTRL makes it possible to alter this mapping.

Configuring SCANCONF to INVMAP will make channels 0-7 use the channel configuration registers for channels 8-15, and vice versa. This feature allows an application to quickly and easily switch configuration set for the channels.

Setting SCANCONF to TOGGLE will make channel x alternate between using CH_{χ} _CONF and CH_{χ} _RONF. The configuration used is decided by the state of the corresponding bit in SCANRES. For instance, if channel 3 is performing a scan and bit 3 in SCANRES is set, CH_{11} _CONF will be used. Channels 8 through 15 will toggle between CH_{χ} _CONF and CH_{χ} _8_CONF. This mode provides an easy way for implementation of hysteresis on channel events as threshold values can be changed depending on sensor status.

Setting SCANCONF to DECDEF will make the state of the decoder define which scan configuration to be used. If the decoder state is at index 8 or higher, channel x will use CH_{X+8} _CONF, otherwise it will use CH_X configuration. Similarly, channels 8 through 15 will use CH_X configuration when decoder state index is less than 8 and CH_{X-8} _CONF when decoder state index is higher than 7. Allowing the decoder state to define which configuration to use, enables easy implementation of for instance hysteresis, as different threshold values can be used for the same channel, depending on the state of the application. Table 21.1 (p. 319) summarizes how channel configuration is selected for different setting of SCANCONF.

LESENSE **INVMAP TOGGLE DECDEF** channel x SCANRES[n] = 0 SCANRES[n] = 1 CH_{x+8}_CONF 8 > x = 0CH_x_CONF CH_x CH_x_CONF CH_{x+8}_CONF CH_x_CONF +8_CONF CH_{x-8}_CONF $8 \le x \le 16$ CH_x_CONF CH_{x-8}_CONF | CH_x_CONF CH_{x-8}_CONF CH_x_CONF

Table 21.1. LESENSE scan configuration selection

Channels are enabled in the CHEN register, where bit x enables channel x. During a scan, all enabled channels are measured, starting with the lowest indexed channel. Figure 21.2 (p. 320) illustrates a scan sequence with channels 3, 5, and 9 enabled.

21.3.2 Scan sequence

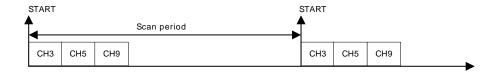
LESENSE runs on LFACLK_{LESENSE}, which is a prescaled version of LFACLK. The prescaling factor for LFACLK_{LESENSE} is selected in the CMU, available prescaling factors are:

- DIV1: LFACLK_{I ESENSE} = LFACLK/1
- DIV2: LFACLK_{LESENSE} = LFACLK/2
- DIV4: LFACLK_{LESENSE} = LFACLK/4
- DIV8: LFACLK_{LESENSE} = LFACLK/8

Note

LFACLK_{I ESENSE} should not exceed 50kHz.

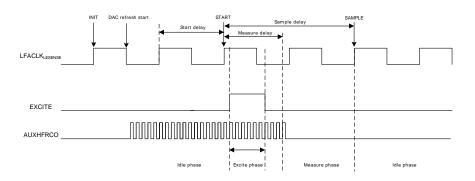
All enabled channels are scanned each scan period. How a new scan is started is configured in the SCANMODE bit field in CTRL. If set to PERIODIC, the scan frequency is generated using a counter which



is clocked by LFACLK_{LESENSE}. This counter has its own prescaler. This prescaling factor is configured in PCPRESC in TIMCTRL. A new scan sequence is started each time the counter reaches the top value, PCTOP. The scan frequency is calculated using Equation 21.1 (p. 320). If SCANMODE is set to ONESHOT, a single scan will be made when START in CMD is set. To start a new scan on a PRS event, set SCANMODE to PRS and configure PRS channel in PRSSEL. The PRS start signal needs to be active for at least one LFACLK_{LESENSE} cycle to make sure LESENSE is able to register it.

Scan frequency
$$F_{scan} = LFACLK_{LESENSE} / ((1 + PCTOP)^*2^{PCPRESC})$$
 (21.1)

It is possible to interleave additional sensor measurements in between the periodic scans. Issuing a start command when LESENSE is idle will immediately start a new scan, without disrupting the frequency of the periodic scans. If the period counter overflows during the interleaved scan, the periodically scheduled scan will start immediately after the interleaved scan completes.


Figure 21.2. Scan sequence

21.3.3 Sensor timing

For each channel in the scan sequence, the LESENSE interface goes through three phases: Idle phase, excite phase, and measure phase. The durations of the excite and measure phases are configured in the CHx_TIMING registers. Timing of the excite phase can be either a number of AUXHFRCO cycles or a number of LFACLK, ESENSE cycles, depending on which one is selected in EXCLK. LESENSE includes two timers: A low frequency timer, running on LFACLK_{LESENSE}, and a high frequency timer, running on AUXHFRCO. The low frequency timer can be prescaled by configuring LFPRESC in TIMCTRL, and the high frequency timer prescaling factor is configured in AUXPRESC in the same register. The duration of the measure phase is programmed via MEASUREDLY and SAMPLEDLY. The output of the ACMP will be inactive for MEASUREDLY EXCLK cycles after start of the sensor measurement. Sampling of the sensor will happen after SAMPLEDLY LFACLK_{LESENSE}, or AUXHFRCO cycles, depending on the configuration of SAMPLECLK. Figure 21.3 (p. 320) depicts a sensor sequence where excitation and measure delay is timed using AUXHFRCO and the sample delay is timed using LFACLK_{LESENSE}. The configurable measure- and sample delays enables LESENSE to easily define exact time windows for sensor measurements. A start delay can be inserted before sensor measurement begin by configuring STARTDLY in TIMCTRL. This delay can be used to ensure that the DAC is done and voltages have stabilized before sensor measurement begins.

Figure 21.3. Timing diagram, short excitation

21.3.4 Sensor interaction

Many sensor types require some type of excitation in order to work. LESENSE can generate a variety of sensor stimuli, both on the same pin as the measurement is to be made on, and on alternative pins.

By default, excitation is performed on the pin associated with the channel, i.e. excitation and sensor measurement is performed on the same pin. The mode of the pin during the excitation phase is configured in EXMODE in CHx_INTERACT. The available modes during the excite phase are:

- DISABLED: The pin is disabled.
- HIGH: The pin is driven high.
- LOW: The pin is driven low.
- DACOUT: The pin is connected to the output of a DAC channel.

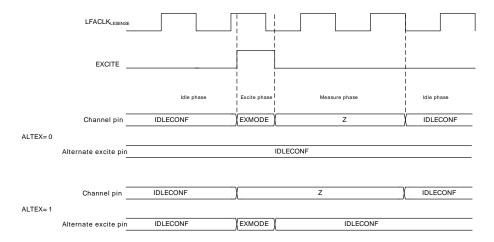
Note

Excitation with DAC output is only available on channels 0, 1, 2, and 3 (DAC0_CH0) and channels 12, 13, 14, and 15 (DAC0_CH1).

If the DAC is in opamp-mode, setting EXMODE to DACOUT will result in excitation with output from the opamp.

LESENSE is able to perform sensor excitation on another pin than the one to be measured. When ALTEX in CHx_INTERACT is set, the excitation will occur on the alternative excite pin associated with the given channel. All LESENSE channels mapped to ACMP0 have their alternative channel mapped to the corresponding channel on ACMP1, and vice versa. Alternatively, the alternative excite pins can be routed to the LES_ALTEX pins. Mapping of the alternative excite pins is configured in ALTEXMAP in CTRL. Table 21.2 (p. 321) summarizes the mapping of excitation pins for different configurations.

Table 21.2. LESENSE excitation pin mapping


LESENSE channel	ALTEX = 0	ALT	EX = 1
LESENSE CHAIITIEI		ALTEXMAP = ACMP	ALTEXMAP = ALTEX
0	ACMP0_CH0	ACMP1_CH0	LES_ALTEX0
1	ACMP0_CH1	ACMP1_CH1	LES_ALTEX1
2	ACMP0_CH2	ACMP1_CH2	LES_ALTEX2
3	ACMP0_CH3	ACMP1_CH3	LES_ALTEX3
4	ACMP0_CH4	ACMP1_CH4	LES_ALTEX4
5	ACMP0_CH5	ACMP1_CH5	LES_ALTEX5
6	ACMP0_CH6	ACMP1_CH6	LES_ALTEX6
7	ACMP0_CH7	ACMP1_CH7	LES_ALTEX7
8	ACMP1_CH0	ACMP0_CH0	LES_ALTEX0
9	ACMP1_CH1	ACMP0_CH1	LES_ALTEX1
10	ACMP1_CH2	ACMP0_CH2	LES_ALTEX2
11	ACMP1_CH3	ACMP0_CH3	LES_ALTEX3
12	ACMP1_CH4	ACMP0_CH4	LES_ALTEX4
13	ACMP1_CH5	ACMP0_CH5	LES_ALTEX5
14	ACMP1_CH6	ACMP0_CH6	LES_ALTEX6
15	ACMP1_CH7	ACMP0_CH7	LES_ALTEX7

Downloaded from Headis.com 321 www.energymicro.com

Figure 21.4 (p. 322) illustrates the sequencing of the pin associated with the active channel and its alternative excite pin.

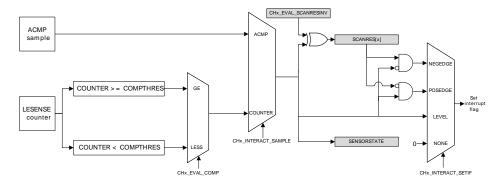
Figure 21.4. Pin sequencing

The alternative excite pins, LES_ALTEXn, have the possibility to excite regardless of what channel is active. Setting AEXn in ALTEXCONF will make LES ALTEXn excite for all channels using alternative excitation, i.e. ALTEX in CHx_INTERACT is set.

Note

When exciting on the pin associated with the active channel, the pin will go through a tristated phase before returning to the idle configuration. This will not happen on pins used as alternative excitation pins.

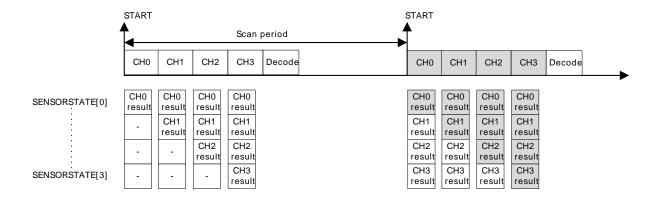
The pin configuration for the idle phase can be configured individually for each LESENSE channel and alternative excite pin in the IDLECONF and ALTEXCONF registers. The modes available are the same as the modes available in the excitation phase. In the measure phase, the pin mode on the active channel is always disabled (analog input).


To enable LESENSE to control GPIO, the pin has to be enabled in the ROUTE register. In addition, the given pin must be configured as push-pull. IDLECONF configuration should not be altered when pin enable for the given pin is set in ROUTE.

21.3.5 Sensor evaluation

Sensor evaluation can be based on either analog comparator outputs, or the counter output. This is configured in the SAMPLE bitfield in CHx INTERACT. The LESENSE counter is used to count pulses on the ACMP output in the measurement phase. When a measurement phase is completed, the counter value is compared to the value configured in COMPTHRES in CHx_EVAL. By configuring COMP, it is possible to choose comparison mode: Less than, or greater than or equal. If a comparison for a channel triggers, the corresponding bit in the result register, SCANRES, is set. To set an interrupt flag on a sensor event, configure SETIF in CHx_INTERACT. Figure 21.5 (p. 323) illustrates how the counter value or ACMP sample is used for evaluation and interrupt generation.

Figure 21.5. Scan result and interrupt generation



LESENSE includes the possibility to sample both analog comparators simultaneously, effectively cutting the time spent on sensor interaction in some applications in half. Setting DUALSAMPLE in CTRL enables this mode. In dual sample mode, the channels of ACMP0 are paired together with the corresponding channel on ACMP1, i.e. channel x on ACMP0 and channel x on ACMP1 are sampled simultaneously. The results from sensor measurements can be fed into the decoder register and/or stored in the result buffer. In this mode, the samples from the AMCPs are placed in the two LSBs of the result stored in the result buffer. Results from both ACMPs will be evaluated for interrupt generation.

21.3.6 Decoder

Many applications require some sort of processing of the sensor readings, for instance in the case of quadrature decoding. In quadrature decoding, the sensors repeatedly pass through a set of states which corresponds to the position of the sensors. This sequence, and many other decoding schemes, can be described as a finite state machine. To support this type of decoding without CPU intervention, LESENSE includes a highly configurable decoder, capable of decoding input from up to four sensors. The decoder is implemented as a programmable state machine with up to 16 states. When doing a sensor scan, the results from the sensors are placed in the decoder input register, SENSORSTATE, if DECODE in CHx INTERACT is set. The resulting position after a scan is illustrated in Figure 21.6 (p. 323), where the bottom blocks show how the SENSORSTATE register is filled. When the scan sequence is complete, the decoder evaluates the state of the sensors chosen for decoding, as depicted in Figure 21.6 (p. 323)

Figure 21.6. Sensor scan and decode sequence

The decoder is a programmable state machine with support for up to 16 states. The behavior of each state is individually configured in the STx_TCONFA and STx_TCONFB registers. The registers define possible transitions from the present state. If the sensor state matches COMP in either STx_TCONFA or STx TCONFB, a transition to the state defined in NEXTSTATE will be made. It is also possible to mask out one or more sensors using the MASK bit field. The state of a masked sensor is interpreted as don't care.

Upon a state transition, LESENSE can generate a pulse on one or more of the decoder PRS channels. Which channel to generate a pulse on is configured in the PRSACT bit field. If PRSCNT in DECCTRL is set, count signals will be generated on decoder PRS channels 0 and 1 according to the PRSACT configuration. In this mode, channel 0 will pulse each time a count event occurs while channel 1 indicates the count direction, 1 being up and 0 being down. The count direction will be kept at its previous state in between count events. The EFM32TG pulse counter may be used to keep track of events based on these PRS outputs.

If SETIF is set, the DECODER interrupt flag will be set when the transition occurs. If INTMAP in DECCTRL and SETIF is set, a transition from state x will set the CHx interrupt flag in addition to the DECODER flag.

Setting CHAIN in STx_TCONFA enables the decoder to evaluate more than two possible transitions for each state. If none of the transitions defined in STx_TCONFA or STx_TCONFB matches, the decoder will jump to the next descriptor pair and evaluate the transitions defined there. The decoder uses two LFACLK_{LESENSE} cycles for each descriptor pair to be evaluated. If ERRCHK in CTRL is set, the decoder will check that the sensor state has not changed if none of the defined transitions match. The DECERR interrupt flag will be set if none of the transitions match and the sensor state has changed. Figure 21.7 (p. 324) illustrates state transitions. The "Generate PRS signals and set interrupt flag" blocks will perform actions according to the configuration in STx TCONFA and STx TCONFB.

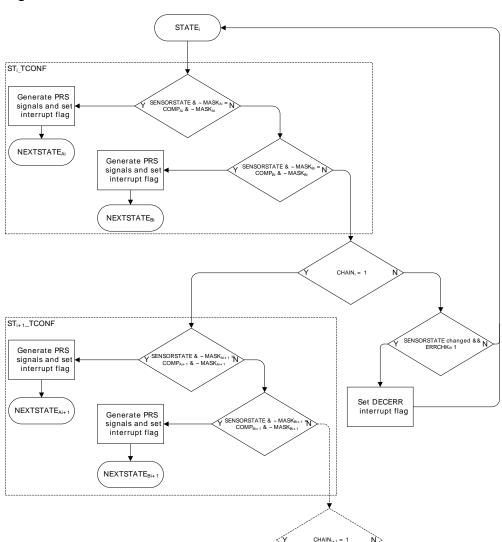
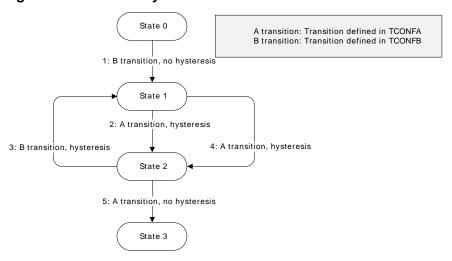


Figure 21.7. Decoder state transition evaluation

Downloaded from H 2010-12-21 - d0034_Rev0.90 324 www.energymicro.com



Note

If only one transition from a state is used, STx_TCONFA and STx_TCONFB should be configured equally.

To prevent unnecessary interrupt requests or PRS outputs when the decoder toggles back and forth between two states, a hysteresis option is available. The hysteresis function is triggered if a type A transition is preceded by a type B transition, and vice versa. A type A transition is a transition defined in STx_TCONFA, and a type B transition is a transition defined in STx_TCONFB. When descriptor chaining is used, a jump to another descriptor will cancel out the hysteresis effect. Figure 21.8 (p. 325) illustrates how the hysteresis triggers upon state transitions.

Figure 21.8. Decoder hysteresis

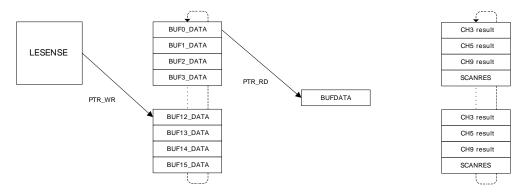
The events suppressed by the hysteresis are configured in bit fields HYSTPRS0-2 and HYSTIRQ in DECCTRL.

- When HYSTPRSx is set, PRS signal x is suppressed when the hysteresis triggers.
- When HYSTIRQ is set, interrupt requests are suppressed when the hysteresis triggers.

Note

The decoder error interrupt flag, DECERR, is not affected by the hysteresis.

21.3.7 Measurement results


Part of the LESENSE RAM is treated as a circular buffer for storage of up to 16 results from sensor measurements. Each time LESENSE writes data to the result buffer, the result write pointer, PTR_WR, is incremented. Each time a new result is read through the BUFDATA register, the result read pointer, PTR_RD, is incremented. The read pointer will not be incremented if there is no valid, unread data in the result buffer. By default LESENSE will not write additional data to a full result buffer until the data is read by software or DMA. Setting BUFOW in CTRL enables LESENSE to write to the result buffer, even if it is full. In this mode, the result read pointer will follow the write pointer if the buffer is full. The result of this is that data read from the result read register, BUFDATA, is the oldest unread result. The location pointers are available in PTR. The result buffer has three status flags; BUFDATAV, BUFHALFFULL, and BUFFULL. The flags indicate when new data is available, when the buffer is half full, and when it is full, respectively. The interrupt flag BUFDATAV is set when data is available in the buffer. BUFLEVEL is set when the buffer is either full or halffull, depending on the configuration of BUFIDL in CTRL. If the result buffer overflows, the BUFOF interrupt flag will be set.

During a scan, the state of each sensor is stored in SCANRES. If a sensor triggers, a 1 is stored in SCANRES, else a 0 is stored in SCANRES. Whether or not a sensor is said to be triggered depends of the configuration for the given channel. If SAMPLE is set to ACMP, the sensor is said to be triggered if the output from the analog comparator is 1 when sensor sampling is performed. If SAMPLE is set to COUNTER, a sensor is said to be triggered if the LESENSE counter value is greater than or equal, or

less than COMPTHRES, depending on the configuration of COMP. If STRSAMPLE in CHx_EVAL is set, the counter value or ACMP sample for each channel will be stored in the LESENSE result buffer. If STRSCANRES in CTRL is set, the result vector, SCANRES, will also be stored in the result buffer. This will be stored after each scan and will be interleaved with the counter values. The contents of the result buffer can be read from BUFDATA or from BUF[x]_DATA. When reading from BUF[x]_DATA, neither the result read pointer or the status flags BUFDATAV, BUFHALFFULL, or BUFFULL will be updated. When reading through the BUFDATA register, the oldest unread result will be read.

Figure 21.9. Circular result buffer

The right hand side of Figure 21.9 (p. 326) illustrates how the result buffer would be filled when channels 3,5, and 9 are enabled and have STRSAMPLE in CHx_EVAL set, in addition to STRSCANRES in CTRL. The measurement result from the three channels will be sequentially written during the scan, while SCANRES is written to the result buffer upon scan completion.

21.3.8 DAC interface

LESENSE is able to drive the DAC for generation of accurate reference voltages. DAC channels 0 and 1 are individually configured in the PERCTRL register. The conversion mode can be set to either continuous, sample/hold or sample/off. For further details about these modes, refer to Section 25.3.1 (p. 406). Both DAC channels are refreshed prior to each sensor measurement, as depicted in Figure 21.3 (p. 320). The conversion data is either taken from the data registers in the EFM32TG DAC interface (DAC0_CH0DATA and DAC0_CH1DATA) or from the ACMPTHRES bitfield in the CHx_INTERACT register for the active LESENSE channel. DAC data used is configured in DACCHXDATA in PERCTRL.

The DAC interface runs on AUXHFRCO and will enable this when it is needed. The DACPRESC bitfield in PERCTRL is used to prescale the AUXHFRCO to achieve wanted clock frequency for the LESENSE DAC interface. The frequency should not exceed 1MHz. The prescaler may also be used to tune how long the DAC should drive its outputs in sample/off mode.

Bias configuration, calibration and reference selection is done in the EFM32TG DAC module and LESENSE will not override these configurations. If a bandgap reference is selected for the DAC, the DACREF bit in PERCTRL should be set to BANDGAP.

LESENSE has the possibility to control switches that connect the DAC outputs to the pins associated with ACMP0_CH0-3 and ACMP1_CH12-15. This makes LESENSE able to excite sensors with output from the DAC channels.

The DAC may be chosen as reference to the analog comparators for accurate reference generation. If the DAC is configured in continuous or sample/hold mode this does not require any external components. If sample/off mode is used, an external capacitor is needed to keep the voltage in between samples. To connect the input from the DAC to the ACMP to this external capacitor, connect the capacitor to the DAC pin for the given channel and set OPAxSHORT in DAC_OPACTRL.

Note

The DAC mode should not be altered while DACACTIVE in STATUS is set

21.3.9 ACMP interface

The ACMPs are used to measure the sensors, and have to be configured according to the application in order for LESENSE to work properly. Depending on the configuration in the ACMP0MODE and ACMP1MODE bitfields in PERCTRL, LESENSE will take control of the positive input mux and the Vdd scaling factor (VDDLEVEL) for ACMP0 and ACMP1. The remaining configuration of the analog comparators are done in the ACMP register interface. It is recommended to set the MUXEN bit in ACMPn_CTRL for the ACMPs used by LESENSE. Each channel has the possibility to control the value of the Vdd scaling factor on the negative input of the ACMP, VDDLEVEL in ACMP_INPUTSEL. This is done in the 6 LSBs of ACMPTHRES in CHx_INTERACT. LESENSE automatically controls the ACMP mux to connect the correct channel.

21.3.10 ACMP and DAC duty cycling

By default, the analog comparators and DAC are shut down in between LESENSE scans to save energy. If this is not wanted, WARMUPMODE in PERCTRL can be configured to prevent them from being shut down.

Both the DAC and analog comparators rely on a bias module for correct operation. This bias module has a low power mode which consumes less energy at the cost of reduced accuracy. BIASMODE in BIASCTRL configures how the bias module is controlled by LESENSE. When set to DUTYCYCLE, LESENSE will set the bias module in high accuracy mode whenever LESENSE is active, and keep it in the low power mode otherwise. When BIASMODE is set to HIGHACC, the high accuracy mode is always selected. When set to DONTTOUCH, LESENSE will not control the bias module.

21.3.11 DMA requests

LESENSE issues a DMA request when the result buffer is either full or half full, depending on the configuration of BUFIDL in CTRL. The request is cleared when the buffer level drops below the threshold defined in BUFIDL. A single DMA request is also set whenever there is unread data in the buffer. DMAWU in CTRL configures at which buffer level LESENSE should wake up the DMA when in EM2.

Note

The DMA controller should always fetch data from the BUFDATA register.

21.3.12 PRS output

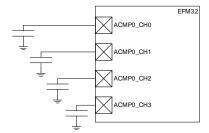
LESENSE is an asynchronous PRS producer and has nineteen PRS outputs. The decoder has three outputs and in addition, all bits in the SCANRES register are available as PRS outputs. For further information on the decoder PRS output, refer to Section 21.3.6 (p. 323).

21.3.13 RAM

LESENSE includes a RAM block used for storage of configuration and results. If LESENSE is not used, this RAM block can be powered down eliminating its current consumption due to leakage. The RAM is powered down by setting the RAM bit in the POWERDOWN register. Once the RAM has been shut down it cannot be turned back on without a reset of the chip. Registers mapped to the RAM include: STx_TCONFA, STx_TCONFB, BUFx_DATA, BUFDATA, CHx_TIMING, CHx_INTERACT, and CHx EVAL. These registers have unknown value out of reset and have to be initialized before use.

Note

Read-modify-write operations on uninitialized RAM register produces undefined values.

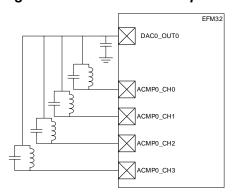

21.3.14 Application examples

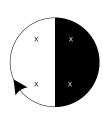
21.3.14.1 Capacitive sense

Figure 21.10 (p. 328) illustrates how the EFM32TG can be configured to monitor four capacitive buttons.

Figure 21.10. Capacitive sense setup

The following steps show how to configure LESENSE to scan through the four buttons 100 times per second, issuing an interrupt if one of them is pressed.

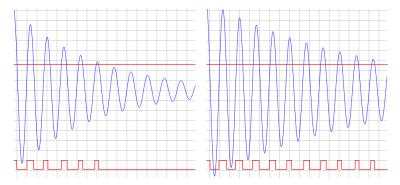

- Assuming LFACLK_{LESENSE} is 32kHz, set PCPRESC to 3 and PCTOP to 39 in CTRL. This will make the LESENSE scan frequency 100Hz.
- 2. Enable channels 0 through 3 in CHEN and set IDLECONF for these channels to DISABLED. In capacitive sense mode, the GPIO should always be disabled (analog input).
- 3. Configure the ACMP to operate in CAPSENSE mode, refer to Section 22.3.5 (p. 366) for details.
- 4. Configure the following bit fields in CHx_CONF, for channels 0 through 3:
 - a. Set EXTIME to 0. No excitation is needed in this mode.
 - b. Set SAMPLE to COUNTER and COMP to LESS. This makes LESENSE interpret a sensor as active if the frequency on a channel drops below the threshold, i.e. the button is pressed.
 - c. Set SAMPLEDLY to an appropriate value, each sensor will be measured for SAMPLEDLY/LFACLK_{LESENSE} seconds. MEASUREDLY should be set to 0
- 5. Set CTRTHRESHOLD to an appropriate value. An interrupt will be issued if the counter value for a sensor is below this threshold after the measurement phase.
- 6. Enable interrupts on channels 0 through 3.
- 7. Start scan sequence by writing a 1 to START in CMD.


In a capacitive sense application, it might be required to calibrate the threshold values on a periodic basis, this is done in order to compensate for humidity and other physical variations. LESENSE is able to store up to 16 counter values from a configurable number of channels, making it possible to collect sample data while in EM2. When calibration is to be performed, the CPU only has to be woken up for a short period of time as the data to be processed already lies in the result registers. To enable storing of the count value for a channel, set STRSAMPLE in the CHx_INTERACT register.

21.3.14.2 LC sensor

Figure 21.11 (p. 328) below illustrates how the EFM32TG can be set up to monitor four LC sensors.

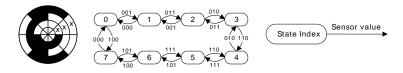
Figure 21.11. LC sensor setup



LESENSE can be used to excite and measure the damping factor in LC sensor oscillations. To measure the damping factor, the ACMP can be used to generate a high output each time the sensor voltage exceeds a certain level. These pulses are counted using an asynchronous counter and compared with

the threshold in COMPTHRES in the CHx_EVAL register. If the number of pulses exceeds the threshold level, the sensor is said to be active, otherwise it is inactive. Figure 21.12 (p. 329) illustrates how the output pulses from the ACMP correspond to damping of the oscillations. The results from sensor evaluation can automatically be fed into the decoder in order to keep track of rotations.

Figure 21.12. LC sensor oscillations


The following steps show how to configure LESENSE to scan through the four LC sensors 100 times per second.

- Assuming LFACLK_{LESENSE} is 32kHz, set PCPRESC to 3 and PCTOP to 39 in CTRL. This will make the LESENSE scan frequency 100Hz.
- 2. Enable the DAC and configure it to produce a voltage of Vdd/2.
- 3. Enable channels 0 through 3 in CHEN. Set IDLECONF for the active channels to DACOUT. The channel pins should be set to Vdd/2 in the idle phase to damp the oscillations.
- 4. Configure the ACMP to use scaled Vdd as negative input, refer to ACMP chapter for details.
- 5. Enable and configure PCNT and asynchronous PRS.
- 6. Configure the GPIOs used as PUSHPULL.
- 7. Configure the following bit fields in CHx CONF, for channels 0 through 3:
 - a. Set EXCLK to AUXHFRCO. AUXHFRCO is needed to achieve short excitation time.
 - b. Set EXTIME to an appropriate value. Excitation will last for EXTIME/AUXHFRCO seconds.
 - c. Set EXMODE to LOW. The LC sensors are excited by pulling the excitation pin low.
 - d. Set SAMPLE to COUNTER and COMP to LESS. Status of each sensor is evaluated based on the number of pulses generated by the ACMP. If they are less than the threshold value, the sensor is said to be active.
 - e. Set SAMPLEDLY to an appropriate value, each sensor will be measured for SAMPLEDLY/ LFACLK_{LESENSE} seconds.
- 8. Set CTRTHRESHOLD to an appropriate value. If the sensor is active, the counter value after the measurement phase should be less than the threshold. If it inactive, the counter value should be greater than the threshold.
- 9. Start scan sequence by writing a 1 to START in CMD.

21.3.14.3 LESENSE decoder 1

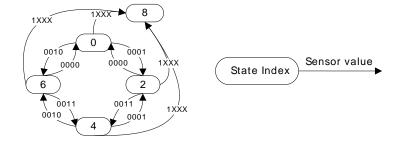
The example below illustrates how the LESENSE module can be used for decoding using three sensors

Figure 21.13. FSM example 1

To set up the decoder to decode rotation using the encoding scheme seen in Figure 21.13 (p. 329) , configure the following LESENSE registers:

- 1. Configure the channels to be used, be sure to set DECODE in CHx_EVAL.
- 2. Set PRSCNT to enable generation of count waveforms on PRS. Also configure a PCNT to listen to the PRS channels and count accordingly.
- 3. Configure the following in STx_TCONFA and STx_TCONFB:
 - a. Set MASK = 0b1000 in STx_TCONFA and STx_TCONFB for all used states. This enables three sensors to be evaluated by the decoder.
 - b. Configure the remaining bit fields in STx_TCONFA and STx_TCONFB as described in Table 21.3 (p. 330) .

Table 21.3. LESENSE decoder configuration


Register	TCONFA_NEXT	TCONFA_COMP	TCONFA_PRSACT	TCONFB_NEXT	TCONFB_COMP	TCONFB_PRSACT
ST0	1	0b001	UP	7	0b100	DOWN
ST1	2	0b011	UP	0	0b000	DOWN
ST2	3	0b010	UP	1	0b001	DOWN
ST3	4	0b110	UP	2	0b011	DOWN
ST4	5	0b111	UP	3	0b010	DOWN
ST5	6	0b101	UP	4	0b110	DOWN
ST6	7	0b100	UP	5	0b111	DOWN
ST7	0	0b000	UP	6	0b101	DOWN

- 4. To initialize the decoder, run one scan, and read the present sensor status from SENSORSTATE. Then write the index of this state to DECSTATE.
- 5. Write to START in CMD to start scanning of sensors and decoding.

21.3.14.4 LESENSE decoder 2

The example below illustrates how the LESENSE decoder can be used to implement the state machine seen in Figure 21.14 (p. 330) .

Figure 21.14. FSM example 2

1. Configure STx_TCONFA and STx_TCONFB as described in Table 21.4 (p. 331) .

Table 21.4. LESENSE decoder configuration

Register	NEXTSTATE	COMP	MASK	CHAIN
ST0_TCONFA	8	0b1000	0b0111	1
ST0_TCONFB	2	0b0001	0b1000	-
ST1_TCONFA	6	0b0010	0b1000	0
ST1_TCONFB	6	0b0010	0b1000	-
ST2_TCONFA	8	0b1000	0b0111	1
ST2_TCONFB	4	0b0011	0b1000	-
ST3_TCONFA	0	0b0000	0b1000	0
ST3_TCONFB	0	0b0000	0b1000	-
ST4_TCONFA	8	0b1000	0b0111	1
ST4_TCONFB	6	0b0010	0b1000	-
ST5_TCONFA	2	0b0001	0b1000	0
ST5_TCONFB	2	0b0001	0b1000	-
ST6_TCONFA	8	0b1000	0b0111	1
ST6_TCONFB	0	0b0000	0b1000	-
ST7_TCONFA	4	0b0011	0b1000	0
ST7_TCONFB	4	0b0011	0b1000	-

^{2.} To initialize the decoder, run one scan, and read the present sensor status from SENSORSTATE. Then write the index of this state to DECSTATE.

^{3.} Write to START in CMD to start scanning of sensors and decoding.

21.4 Register Map

The offset register address is relative to the registers base address.

	-		
Offset	Name	Туре	Description
0x000	LESENSE_CTRL	RW	Control Register
0x004	LESENSE_TIMCTRL	RW	Timing Control Register
0x008	LESENSE_PERCTRL	RW	Peripheral Control Register
0x00C	LESENSE_DECCTRL	RW	Decoder control Register
0x010	LESENSE_BIASCTRL	RW	Bias Control Register
0x014	LESENSE_CMD	W1	Command Register
0x018	LESENSE_CHEN	RW	Channel enable Register
0x01C	LESENSE_SCANRES	R	Scan result register
0x020	LESENSE_STATUS	R	Status Register
0x024	LESENSE_PTR	R	Result buffer pointers
0x028	LESENSE_BUFDATA	R	Result buffer data register
0x02C	LESENSE_CURCH	R	Current channel index
0x030	LESENSE_DECSTATE	RWH	Current decoder state
0x034	LESENSE_SENSORSTATE	RWH	Decoder input register
0x038	LESENSE_IDLECONF	RW	GPIO Idlephase configuration
0x03C	LESENSE_ALTEXCONF	RW	Alternative excite pin configuration
0x040	LESENSE_IF	R	Interrupt Flag Register
0x044	LESENSE_IFC	W1	Interrupt Flag Clear Register
0x048	LESENSE_IFS	W1	Interrupt Flag Set Register
0x04C	LESENSE_IEN	RW	Interrupt Enable Register
0x050	LESENSE_SYNCBUSY	R	Synchronization Busy Register
0x054	LESENSE_ROUTE	RW	I/O Routing Register
0x058	LESENSE_POWERDOWN	RW	LESENSE RAM power-down resgister
0x200	LESENSE_ST0_TCONFA	RW	State transition configuration A
0x204	LESENSE_ST0_TCONFB	RW	State transition configuration B
0x208	LESENSE_ST1_TCONFA	RW	State transition configuration A
0x20C	LESENSE_ST1_TCONFB	RW	State transition configuration B
0x210	LESENSE_ST2_TCONFA	RW	State transition configuration A
0x214	LESENSE_ST2_TCONFB	RW	State transition configuration B
0x218	LESENSE_ST3_TCONFA	RW	State transition configuration A
0x21C	LESENSE_ST3_TCONFB	RW	State transition configuration B
0x220	LESENSE_ST4_TCONFA	RW	State transition configuration A
0x224	LESENSE_ST4_TCONFB	RW	State transition configuration B
0x228	LESENSE_ST5_TCONFA	RW	State transition configuration A
0x22C	LESENSE_ST5_TCONFB	RW	State transition configuration B
0x230	LESENSE_ST6_TCONFA	RW	State transition configuration A
0x234	LESENSE_ST6_TCONFB	RW	State transition configuration B
0x238	LESENSE_ST7_TCONFA	RW	State transition configuration A
0x23C	LESENSE_ST7_TCONFB	RW	State transition configuration B
0x240	LESENSE_ST8_TCONFA	RW	State transition configuration A
	<u> </u>		<u> </u>

Offset	Name	Туре	Description
0x244	LESENSE_ST8_TCONFB	RW	State transition configuration B
0x248	LESENSE_ST9_TCONFA	RW	State transition configuration A
0x24C	LESENSE_ST9_TCONFB	RW	State transition configuration B
0x250	LESENSE_ST10_TCONFA	RW	State transition configuration A
0x254	LESENSE_ST10_TCONFB	RW	State transition configuration B
0x258	LESENSE_ST11_TCONFA	RW	State transition configuration A
0x25C	LESENSE_ST11_TCONFB	RW	State transition configuration B
0x260	LESENSE_ST12_TCONFA	RW	State transition configuration A
0x264	LESENSE_ST12_TCONFB	RW	State transition configuration B
0x268	LESENSE_ST13_TCONFA	RW	State transition configuration A
0x26C	LESENSE_ST13_TCONFB	RW	State transition configuration B
0x270	LESENSE_ST14_TCONFA	RW	State transition configuration A
0x274	LESENSE_ST14_TCONFB	RW	State transition configuration B
0x278	LESENSE_ST15_TCONFA	RW	State transition configuration A
0x27C	LESENSE_ST15_TCONFB	RW	State transition configuration B
0x280	LESENSE_BUF0_DATA	RW	Scan results
0x284	LESENSE_BUF1_DATA	RW	Scan results
0x288	LESENSE_BUF2_DATA	RW	Scan results
0x28C	LESENSE_BUF3_DATA	RW	Scan results
0x290	LESENSE_BUF4_DATA	RW	Scan results
0x294	LESENSE_BUF5_DATA	RW	Scan results
0x298	LESENSE_BUF6_DATA	RW	Scan results
0x29C	LESENSE_BUF7_DATA	RW	Scan results
0x2A0	LESENSE_BUF8_DATA	RW	Scan results
0x2A4	LESENSE_BUF9_DATA	RW	Scan results
0x2A8	LESENSE_BUF10_DATA	RW	Scan results
0x2AC	LESENSE_BUF11_DATA	RW	Scan results
0x2B0	LESENSE_BUF12_DATA	RW	Scan results
0x2B4	LESENSE_BUF13_DATA	RW	Scan results
0x2B8	LESENSE_BUF14_DATA	RW	Scan results
0x2BC	LESENSE_BUF15_DATA	RW	Scan results
0x2C0	LESENSE_CH0_TIMING	RW	Scan configuration
0x2C4	LESENSE_CH0_INTERACT	RW	Scan configuration
0x2C8	LESENSE_CH0_EVAL	RW	Scan configuration
0x2D0	LESENSE_CH1_TIMING	RW	Scan configuration
0x2D4	LESENSE_CH1_INTERACT	RW	Scan configuration
0x2D8	LESENSE_CH1_EVAL	RW	Scan configuration
0x2E0	LESENSE_CH2_TIMING	RW	Scan configuration
0x2E4	LESENSE_CH2_INTERACT	RW	Scan configuration
0x2E8	LESENSE_CH2_EVAL	RW	Scan configuration
0x2F0	LESENSE_CH3_TIMING	RW	Scan configuration
0x2F4	LESENSE_CH3_INTERACT	RW	Scan configuration

Downloaded from Elecules com

Offset	Name	Туре	Description
0x2F8	LESENSE_CH3_EVAL	RW	Scan configuration
0x300	LESENSE_CH4_TIMING	RW	Scan configuration
0x304	LESENSE_CH4_INTERACT	RW	Scan configuration
0x308	LESENSE_CH4_EVAL	RW	Scan configuration
0x310	LESENSE_CH5_TIMING	RW	Scan configuration
0x314	LESENSE_CH5_INTERACT	RW	Scan configuration
0x318	LESENSE_CH5_EVAL	RW	Scan configuration
0x320	LESENSE_CH6_TIMING	RW	Scan configuration
0x324	LESENSE_CH6_INTERACT	RW	Scan configuration
0x328	LESENSE_CH6_EVAL	RW	Scan configuration
0x330	LESENSE_CH7_TIMING	RW	Scan configuration
0x334	LESENSE_CH7_INTERACT	RW	Scan configuration
0x338	LESENSE_CH7_EVAL	RW	Scan configuration
0x340	LESENSE_CH8_TIMING	RW	Scan configuration
0x344	LESENSE_CH8_INTERACT	RW	Scan configuration
0x348	LESENSE_CH8_EVAL	RW	Scan configuration
0x350	LESENSE_CH9_TIMING	RW	Scan configuration
0x354	LESENSE_CH9_INTERACT	RW	Scan configuration
0x358	LESENSE_CH9_EVAL	RW	Scan configuration
0x360	LESENSE_CH10_TIMING	RW	Scan configuration
0x364	LESENSE_CH10_INTERACT	RW	Scan configuration
0x368	LESENSE_CH10_EVAL	RW	Scan configuration
0x370	LESENSE_CH11_TIMING	RW	Scan configuration
0x374	LESENSE_CH11_INTERACT	RW	Scan configuration
0x378	LESENSE_CH11_EVAL	RW	Scan configuration
0x380	LESENSE_CH12_TIMING	RW	Scan configuration
0x384	LESENSE_CH12_INTERACT	RW	Scan configuration
0x388	LESENSE_CH12_EVAL	RW	Scan configuration
0x390	LESENSE_CH13_TIMING	RW	Scan configuration
0x394	LESENSE_CH13_INTERACT	RW	Scan configuration
0x398	LESENSE_CH13_EVAL	RW	Scan configuration
0x3A0	LESENSE_CH14_TIMING	RW	Scan configuration
0x3A4	LESENSE_CH14_INTERACT	RW	Scan configuration
0x3A8	LESENSE_CH14_EVAL	RW	Scan configuration
0x3B0	LESENSE_CH15_TIMING	RW	Scan configuration
0x3B4	LESENSE_CH15_INTERACT	RW	Scan configuration
0x3B8	LESENSE_CH15_EVAL	RW	Scan configuration

21.5 Register Description

21.5.1 LESENSE_CTRL - Control Register (Async Reg)

For more information about Asynchronous Registers please see Section 5.3 (p. 18).

Downloaded from Headles com 2010-12-21 - d0034_Rev0.90 334 www.energymicro.com

Offset															Bi	t Po	ositi	on														
0x000	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	1	10	6	8	7	9	2	4	3	2	-	0
Reset										0	9	OXO		0	0	0		•	0		0	0	0		000				0x0		2	OXO.
Access										RW	3	≥ Y		W.	₩	R W			W.		R W	RW	₩		S. S.				RW.		<u> </u>	 }
Name										DEBUGRUN		DIMANO		BUFIDL	STRSCANRES	BUFOW			DUALSAMPLE		ALTEXMAP	ACMP1INV	ACMPOINV		SCANCONF	2			PRSSEL		E CONTRACTOR	

				DEBI			STRSC	H		DUALS	ALTE	2	ACM ACM		SCAL		P. S.	SCAL
							0)		J								J	
Bit	Name		Reset		А	cces	ss	De	scripti	on								
31:23	Reserved		To ens	ure c	ompatib	ility wi	ith futu	ıre d	evices, a	always	write	bit	ts to C	. Mor	re infori	natio	n in Section 2	2.1 (p. 3
22	DEBUGRUN		0		R	W		De	bug Mo	de Rui	n Ena	abl	е					
	Set to keep LES	SENSE run	ning in de	bug ı	mode.													
	Value		Description	n														
	0		LESENSE	can r	not start ne	ew sca	ans in o	debug	mode									
	1		LESENSE	can s	start new s	scans i	in debu	ug mo	de									
21:20	DMAWU		0x0		R	W		DN	A wake	up fro	m EN	VI2						
	Value	Mode					Desc	riptior	<u> </u>									
	0	DISABL	 E					-	akeup fro	m EM2								
	1	BUFDAT	ΓΑV				DMA	wake	up from E	M2 wh	en da	ta i	s valid	in the	result b	uffer		
	2	BUFLEV	/EL				DMA config			EM2 w	hen th	ne i	result	buffer	is full/h	alffull	depending on	BUFIDL
19	Reserved	·	To ens	ure c	ompatib	ility wi	ith futu	ıre d	evices, a	always	write	bit	ts to C	. Mor	re infori	natio	n in Section 2	2.1 (p. 3
18	BUFIDL	Value Mode Description																
	Г у ,																	
			11.1							ane eat	when	ı re	sult hi	ffor is	halffull			
	Value Mode Description 0 HALFFULL DMA and interrupt flags set when result buffer is halffull 1 FULL DMA and interrupt flags set when result buffer is full																	
17	STRSCANRES		0		R	W		En	able sto	ring o	f SC	ΑN	RES					
	When set, SCA	NRES will	be stored	in the	e result b	ouffer	after (each	scan									
16	BUFOW		0		R	W		Re	sult buf	fer ove	erwri	te						
	If set, LESENSI	E will alway	s write to	the r	esult buf	ffer, e	ven if	it is t	ull									
15:14	Reserved		To ens	ure c	ompatib	ility wi	ith futu	ıre d	evices, a	always	write	bit	ts to C	. Mor	re infori	natio	n in Section 2	2.1 (p. 3
13	DUALSAMPLE		0		R	W		En	able dua	al sam	ple n	no	de					
	When set, both	ACMPs wi	ll be samp	oled s	simultane	eously	<i>'</i> .											
12	Reserved		To ens	ure c	ompatib	ility wi	ith futu	ıre d	evices, a	always	write	bit	ts to C	. Mor	re infori	natio	n in Section 2	2.1 (p. 3
11	ALTEXMAP		0		R	W		Alt	ernative	excit	ation	m	ар					
	Value	Mode					Desc	riptior	<u> </u>									
	0	ALTEX					Alterr	ative	excitation	n is map	ped t	to th	ne LES	S_ALT	EX pins			
	1	ACMP					Alterr	ative	excitation	n is map	oped t	to th	ne pins	of the	e other /	ACMF	٠.	
10	ACMP1INV		0		R	W		lnv	ert anal	og co	mpar	rato	or 1 o	utpu	t			
9	ACMPOINV		0		R	W		Inv	ert anal	og co	mpar	rato	or 0 o	utpu	t			
8	Reserved		Tolens	ure c	ompatih	ility wi	ith futi	ıre d	evices a	always	write	hii	ts to C	. Mor	re infor	natio	n in Section 2	2.1 (n. 3
								5 0		ay o		210						(ρ. ο,

Downloaded from Elecules com

			·	
Bit	Name	Reset	Access	S Description
7:6	SCANCONF	0x0	RW	Select scan configuration
	These bits contr	ol which CHx_CONF regi	sters to be use	d.
	Value	Mode	Г	Description
	0	DIRMAP		The channel configuration register registers used are directly mapped to the channel number.
	1	INVMAP		The channel configuration register registers used are CH _{X+8} _CONF for channels 0-7 and CH _{X-8} _CONF for channels 8-15.
	2	TOGGLE		The channel configuration register registers used toggles between CH_{X} _CONF and $CH_{X+\theta}$ _CONF when channel x triggers
	3	DECDEF	Т	The decoder state defines the CONF registers to be used.
5	Reserved	To ensure co	ompatibility with	n future devices, always write bits to 0. More information in Section 2.1 (p. 3)
4:2	PRSSEL	0x0	RW	Scan start PRS select
	Select PRS sou	rce for scan start if SCAN	MODE is set to	PRS.
	Value	Mode	T _F	Occasionism.
	0	PRSCH0		Description Description
				PRS Channel 0 selected as input
	1	PRSCH1		PRS Channel 1 selected as input
	2	PRSCH2		PRS Channel 2 selected as input
	3	PRSCH3		PRS Channel 3 selected as input
	4	PRSCH4	F	PRS Channel 4 selected as input
	5	PRSCH5	F	PRS Channel 5 selected as input
	6	PRSCH6	F	PRS Channel 6 selected as input
	7	PRSCH7	F	PRS Channel 7 selected as input
1:0	SCANMODE	0x0	RW	Configure scan mode
	These bits contr	ol how the scan frequency	y is decided	
	Value	Mode	[Description
	0	PERIODIC	P	A new scan is started each time the period counter overflows
	1	ONESHOT	A	A single scan is performed when START in CMD is set
	2	PRS	F	Pulse on PRS channel

21.5.2 LESENSE_TIMCTRL - Timing Control Register (Async Reg)

For more information about Asynchronous Registers please see Section 5.3 (p. 18).

Offset															Bi	t Pc	siti	on				,										
0x004	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	1	10	6	80	7	9	2	4	3	2	-	0
Reset									Ç	2						0	0000						0x0				0x0				Ş	2
Access		≥ 2														<u> </u>	2						W.				RW				Š	 ≩ Y
Name	STARTDLY RW													aCTO							PCPRESC				LFPRESC				0	AUXPRESC		

Bit	Name	Reset	Access	Description
31:24	Reserved	To ensure co	mpatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
23:22	STARTDLY	0x0	RW	Start delay configuration
	Delay sensor interact	ion STARTDELAY LI	FACLK _{LESENSE} cy	cles for each channel
21:20	Reserved	To ensure co	mpatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
19:12	PCTOP	0x00	RW	Period counter top value
	These bits contain the	e top value for the pe	riod counter.	
11	Reserved	To ensure co	mpatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)

Downloaded from H couls com 336 www.energymicro.com

Bit	Name	Reset	Access	Description
10:8	PCPRESC	0x0	RW	Period counter prescaling
	Value	Mode	Des	scription
	0	DIV1	The	e period counter clock frequency is LFACLK _{LESENSE} /1
	1	DIV2	The	e period counter clock frequency is LFACLK _{LESENSE} /2
	2	DIV4	The	e period counter clock frequency is LFACLK _{LESENSE} /4
	3	DIV8	The	e period counter clock frequency is LFACLK _{LESENSE} /8
	4	DIV16	The	e period counter clock frequency is LFACLK _{LESENSE} /16
	5	DIV32	The	e period counter clock frequency is LFACLK _{LESENSE} /32
	6	DIV64	The	e period counter clock frequency is LFACLK _{LESENSE} /64
	7	DIV128	The	e period counter clock frequency is LFACLK _{LESENSE} /128
7	Reserved	To ensure co	mpatibility with fo	uture devices, always write bits to 0. More information in Section 2.1 (p. 3)
6:4	LFPRESC	0x0	RW	Prescaling factor for low frequency timer
				3 3
			,	
	Value	Mode		scription
	0	DIV1		w frequency timer is clocked with LFACLK _{LESENSE} /1
	1	DIV2		w frequency timer is clocked with LFACLK _{LESENSE} /2
	2	DIV4		w frequency timer is clocked with LFACLK _{LESENSE} /4
	3	DIV8	Lov	w frequency timer is clocked with LFACLK _{LESENSE} /8
	4	DIV16		w frequency timer is clocked with LFACLK _{LESENSE} /16
	5	DIV32		w frequency timer is clocked with LFACLK _{LESENSE} /32
	6	DIV64	Lov	w frequency timer is clocked with LFACLK _{LESENSE} /64
	7	DIV128	Lov	w frequency timer is clocked with LFACLK _{LESENSE} /128
3:2	Reserved	To ensure co	mpatibility with fo	uture devices, always write bits to 0. More information in Section 2.1 (p. 3)
1:0	AUXPRESC	0x0	RW	Prescaling factor for high frequency timer
	Value	Mode	Des	scription
	0	DIV1	Hig	h frequency timer is clocked with AUXHFRCO/1
	1	DIV2	Hig	h frequency timer is clocked with AUXHFRCO/2
	2	DIV4	Hig	h frequency timer is clocked with AUXHFRCO/4
	3	DIV8	Hig	h frequency timer is clocked with AUXHFRCO/8

21.5.3 LESENSE_PERCTRL - Peripheral Control Register (Async Reg)

For more information about Asynchronous Registers please see Section 5.3 (p. 18).

Offset															Bi	t Po	siti	on														
0x008	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	∞	7	9	2	4	8	2	1	0
Reset					0×0	2			6	OXO	5	OXO		0						0x0			0	OXO	0	2		OXO	0^0	2	0	0
Access					S S				₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩											RW			i	Ž	2	2	i	≩ Y	Μď	2	RW	§.
Name					WARMUPMODE			ODE						DACREF						DACPRESC			1	DACCHIOOL	FICOHOUS			DACCHICONV	DACCHOCONY		DACCH1DATA	DACCHODATA
Bit	N	ame					Reset Access									De	scri	iptio	on													
31:28	Re	serv	ed					То	ensi	ıre c	omp	atibi	lity	with	futu	re de	evice	es, a	alwa	ays v	vrite	bits	to 0.	Mor	e inf	orm	atio	n in S	Secti	on 2	.1 (p	. 3)
27:26	W	٩RM	UPN	IODI	=			0x0)			R	W			AC	MP a	and	DA	C d	uty	cycle	e mo	ode								

Downloaded from Headlescom 2010-12-21 - d0034_Rev0.90 337 www.energymicro.com

Bit	Name	Reset	Acce	ss Description
	Value	Mode		Description
	0	NORMAL		The analog comparators and DAC are shut down when LESENSE is idle
	1	KEEPACMPWARM		The analog comparators are kept powered up when LESENSE is idle
	2	KEEPDACWARM		The DAC is kept powered up when LESENSE is idle
	3	KEEPACMPDACWARM		The analog comparators and DAC are kept powered up when LESENSE is idle
25:24	Reserved	To ensure co.	mpatibility w	vith future devices, always write bits to 0. More information in Section 2.1 (p. 3
23:22	ACMP1MODE	0x0	RW	ACMP1 mode
	Configure how LI	ESENSE controls ACMP1		
	Value	Mode		Description
	0	DISABLE		LESENSE does not control ACMP1
	1	MUX		LESENSE controls the input mux (POSSEL) of ACMP1
	2	MUXTHRES		LESENSE controls the input mux and the threshold value (VDDLEVEL) of ACMP1
21:20	ACMP0MODE	0x0	RW	ACMP0 mode
	Configure how LI	ESENSE controls ACMP0)	
	Value	Mode		Description
	0	DISABLE		LESENSE does not control ACMP0
	1	MUX		LESENSE controls the input mux (POSSEL) of ACMP0
	2	MUXTHRES		LESENSE controls the input mux (POSSEL) and the threshold value (VDDLEVEL) of ACMP0
19	Reserved	To ensure co.	mpatibility w	vith future devices, always write bits to 0. More information in Section 2.1 (p. 3
18	DACREF	0	RW	DAC bandgap reference used
	Set to BANDGAF	P if the DAC is configured	to use band	lgap reference
	Value	Mode		Description
	0	VDD		DAC uses VDD reference
	1	BANDGAP		DAC uses bandgap reference
17:15	Reserved	To ensure co.	mpatibility w	rith future devices, always write bits to 0. More information in Section 2.1 (p. 3
14:10	DACPRESC	0x00	RW	DAC prescaler configuration.
	Prescaling factor	of DACPRESC+1 for the	LESENSE	DAC interface
9:8	DACCH1OUT	0x0	RW	DAC channel 1 output mode
	Value	Mode		Description
	0	DISABLE		DAC CH1 output to pin and ACMP/ADC disabled
	1	PIN		DAC CH1 output to pin enabled, output to ADC and ACMP disabled
	2	ADCACMP		DAC CH1 output to pin disabled, output to ADC and ACMP enabled
	3	PINADCACMP		DAC CH1 output to pin, ADC, and ACMP enabled.
7:6	DACCH0OUT	0x0	RW	DAC channel 0 output mode
	Value	Mode		Description
	0	DISABLE		DAC CH0 output to pin and ACMP/ADC disabled
	1	PIN		DAC CH0 output to pin enabled, output to ADC and ACMP disabled
	2	ADCACMP		DAC CH0 output to pin disabled, output to ADC and ACMP enabled
	3	PINADCACMP		DAC CH0 output to pin, ADC, and ACMP enabled.
5:4	DACCH1CONV	0x0	RW	DAC channel 1 conversion mode
	Value	Mode		Description
	7 4.40			
	0	DISABLE		LESENSE does not control DAC CH1.
		DISABLE CONTINUOUS		LESENSE does not control DAC CH1. DAC channel 1 is driven in continuous mode.

Downloaded from Electrical 2010-12-21 - d0034_Rev0.90 338 www.energymicro.com

Bit	Name	Reset	Acces	SS Description
	Value	Mode		Description
	3	SAMPLEOFF		DAC channel 1 is driven in sample off mode.
3:2	DACCH0CONV	0x0	RW	DAC channel 0 conversion mode
	Value	Mode		Description
	0	DISABLE		LESENSE does not control DAC CH0.
	1	CONTINUOUS		DAC channel 0 is driven in continuous mode.
	2	SAMPLEHOLD		DAC channel 0 is driven in sample hold mode.
	3	SAMPLEOFF		DAC channel 0 is driven in sample off mode.
1	DACCH1DATA	0	RW	DAC CH1 data selection.
	Configure DAC da	ata control.		
	Value	Mode		Description
	0	DACDATA		DAC data is defined by CH1DATA in the DAC interface.
	1	ACMPTHRES		DAC data is defined by ACMPTHRES in CHx_INTERACT.
0	DACCH0DATA	0	RW	DAC CH0 data selection.
	Value	Mode		Description
	0	DACDATA		DAC data is defined by CH0DATA in the DAC interface.
	1	ACMPTHRES		DAC data is defined by ACMPTHRES in CHx_INTERACT.

21.5.4 LESENSE_DECCTRL - Decoder control Register (Async Reg)

For more information about Asynchronous Registers please see Section 5.3 (p. 18).

Offset															Bi	t Pc	siti	on														
0x00C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	41	13	12	11	10	ი	œ	7	9	2	4	က	2	-	0
Reset					•				0x0				000				0x0				0×0			0	0	0	0	0	0	0	0	0
Access									Z.				N N											W.	R W	R.W	W.	₩ M	S.	W.	S.	W.
Name									PRSSEL3				PRSSEL2				PRSSEL1				PRSSELO			INPUT	PRSCNT	HYSTIRQ	HYSTPRS2	HYSTPRS1	HYSTPRS0	INTMAP	ERRCHK	DISABLE

Bit	Name	Reset	Access	Description
31:25	Reserved	To ensure co	mpatibility with f	tuture devices, always write bits to 0. More information in Section 2.1 (p. 3)
24:22	PRSSEL3	0x0	RW	
	Select PRS in	put for bit 3 of the LESENSE	decoder	
	Value	Mode	De	escription
	0	PRSCH0	PR	S Channel 0 selected as input
	1	PRSCH1	PR	RS Channel 1 selected as input
	2	PRSCH2	PR	S Channel 2 selected as input
	3	PRSCH3	PR	S Channel 3 selected as input
	4	PRSCH4	PR	RS Channel 4 selected as input
	5	PRSCH5	PR	RS Channel 5 selected as input

PRSCH7 PRS Channel 7 selected as input 21 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3) 20:18 PRSSEL2 0x0

PRS Channel 6 selected as input

Select PRS input for bit 2 of the LESENSE decoder

PRSCH6

Bit	Name		Reset	Acces	ss Description
	Value	Mode			Description
	0	PRSCH0			PRS Channel 0 selected as input
	1	PRSCH1			PRS Channel 1 selected as input
	2	PRSCH2			PRS Channel 2 selected as input
	3	PRSCH3			PRS Channel 3 selected as input
	4	PRSCH4			PRS Channel 4 selected as input
	5	PRSCH5			PRS Channel 5 selected as input
	6	PRSCH6			PRS Channel 6 selected as input
	7	PRSCH7			PRS Channel 7 selected as input
17	Reserved	_	To ensure com	npatibility w	ith future devices, always write bits to 0. More information in Section 2.1 (p. 3,
16:14	PRSSEL1 Select PRS inp) put for the bit 1	0x0 of the LESEN	RW SE decode	r
	Value	Mode			Description
	0	PRSCH0			PRS Channel 0 selected as input
	1	PRSCH1			PRS Channel 1 selected as input
	2	PRSCH2			PRS Channel 2 selected as input
	3	PRSCH3			PRS Channel 3 selected as input
	4	PRSCH4			PRS Channel 4 selected as input
	5	PRSCH5			PRS Channel 5 selected as input
	6	PRSCH6			PRS Channel 6 selected as input
	7	PRSCH7			PRS Channel 7 selected as input
13	Reserved		To ensure com	npatibility w	ith future devices, always write bits to 0. More information in Section 2.1 (p. 3
12:10	PRSSEL0		0x0	RW	
			370	1744	
	Select PRS inp	put for the bit 0			r
	Value	Mode			Description
	Value 0	Mode PRSCH0			Description PRS Channel 0 selected as input
	Value 0 1	Mode PRSCH0 PRSCH1			Description PRS Channel 0 selected as input PRS Channel 1 selected as input
	Value 0 1 2	Mode PRSCH0 PRSCH1 PRSCH2			Description PRS Channel 0 selected as input PRS Channel 1 selected as input PRS Channel 2 selected as input
	Value 0 1 2 3	Mode PRSCH0 PRSCH1 PRSCH2 PRSCH3			Description PRS Channel 0 selected as input PRS Channel 1 selected as input PRS Channel 2 selected as input PRS Channel 3 selected as input
	Value 0 1 2 3 4	Mode PRSCH0 PRSCH1 PRSCH2 PRSCH3 PRSCH4			Description PRS Channel 0 selected as input PRS Channel 1 selected as input PRS Channel 2 selected as input PRS Channel 3 selected as input PRS Channel 4 selected as input
	Value 0 1 2 3 4 5	Mode PRSCH0 PRSCH1 PRSCH2 PRSCH3 PRSCH4 PRSCH5			Description PRS Channel 0 selected as input PRS Channel 1 selected as input PRS Channel 2 selected as input PRS Channel 3 selected as input PRS Channel 4 selected as input PRS Channel 5 selected as input
	Value 0 1 2 3 4	Mode PRSCH0 PRSCH1 PRSCH2 PRSCH3 PRSCH4			Description PRS Channel 0 selected as input PRS Channel 1 selected as input PRS Channel 2 selected as input PRS Channel 3 selected as input PRS Channel 4 selected as input
9	Value 0 1 2 3 4 5	Mode PRSCH0 PRSCH1 PRSCH2 PRSCH3 PRSCH4 PRSCH5 PRSCH6 PRSCH7	of the LESEN	SE decode	Description PRS Channel 0 selected as input PRS Channel 1 selected as input PRS Channel 2 selected as input PRS Channel 3 selected as input PRS Channel 4 selected as input PRS Channel 5 selected as input PRS Channel 5 selected as input PRS Channel 7 selected as input
	Value 0 1 2 3 4 5 6 7	Mode PRSCH0 PRSCH1 PRSCH2 PRSCH3 PRSCH4 PRSCH5 PRSCH6 PRSCH6	of the LESEN	SE decode	Description PRS Channel 0 selected as input PRS Channel 1 selected as input PRS Channel 2 selected as input PRS Channel 3 selected as input PRS Channel 4 selected as input PRS Channel 5 selected as input PRS Channel 5 selected as input PRS Channel 7 selected as input
	Value 0 1 2 3 4 5 6 7 Reserved	Mode PRSCH0 PRSCH1 PRSCH2 PRSCH3 PRSCH4 PRSCH5 PRSCH6 PRSCH6	To ensure com	SE decode	Description PRS Channel 0 selected as input PRS Channel 1 selected as input PRS Channel 2 selected as input PRS Channel 3 selected as input PRS Channel 4 selected as input PRS Channel 5 selected as input PRS Channel 5 selected as input PRS Channel 7 selected as input
	Value 0 1 2 3 4 5 6 7 Reserved	Mode PRSCH0 PRSCH1 PRSCH2 PRSCH3 PRSCH4 PRSCH5 PRSCH6 PRSCH7	To ensure com	SE decode	Description PRS Channel 0 selected as input PRS Channel 1 selected as input PRS Channel 2 selected as input PRS Channel 3 selected as input PRS Channel 4 selected as input PRS Channel 5 selected as input PRS Channel 6 selected as input
	Value 0 1 2 3 4 5 6 7 Reserved INPUT Select input to	Mode PRSCH0 PRSCH1 PRSCH2 PRSCH3 PRSCH4 PRSCH5 PRSCH6 PRSCH7	To ensure com	SE decode	Description PRS Channel 0 selected as input PRS Channel 1 selected as input PRS Channel 2 selected as input PRS Channel 3 selected as input PRS Channel 4 selected as input PRS Channel 5 selected as input PRS Channel 6 selected as input PRS Channel 7 selected as input
	Value 0 1 2 3 4 5 6 7 Reserved INPUT Select input to	Mode PRSCH0 PRSCH1 PRSCH2 PRSCH3 PRSCH4 PRSCH5 PRSCH6 PRSCH7	To ensure com	SE decode	Description PRS Channel 0 selected as input PRS Channel 1 selected as input PRS Channel 2 selected as input PRS Channel 3 selected as input PRS Channel 4 selected as input PRS Channel 5 selected as input PRS Channel 5 selected as input PRS Channel 7 selected as input PRS Channel 7 selected as input PRS Channel 7 selected as input
8	Value 0 1 2 3 4 5 6 7 Reserved INPUT Select input to Value 0	Mode PRSCH0 PRSCH1 PRSCH2 PRSCH3 PRSCH4 PRSCH5 PRSCH6 PRSCH7	To ensure com	SE decode	Description PRS Channel 0 selected as input PRS Channel 1 selected as input PRS Channel 2 selected as input PRS Channel 3 selected as input PRS Channel 4 selected as input PRS Channel 5 selected as input PRS Channel 6 selected as input PRS Channel 7 selected as input PRS Channel 7 selected as input Description The SENSORSTATE register is used as input to the decoder.
8	Value 0 1 2 3 4 5 6 7 Reserved INPUT Select input to Value 0 1 PRSCNT	Mode PRSCH0 PRSCH1 PRSCH2 PRSCH3 PRSCH4 PRSCH5 PRSCH6 PRSCH7 (a) the LESENSE Mode SENSORST PRS	To ensure com O decoder	SE decode	Description PRS Channel 0 selected as input PRS Channel 1 selected as input PRS Channel 2 selected as input PRS Channel 3 selected as input PRS Channel 4 selected as input PRS Channel 5 selected as input PRS Channel 6 selected as input PRS Channel 7 selected as input The SENSORSTATE register is used as input to the decoder. PRS channels are used as input to the decoder.
7	Value 0 1 2 3 4 5 6 7 Reserved INPUT Select input to Value 0 1 PRSCNT	Mode PRSCH0 PRSCH1 PRSCH2 PRSCH3 PRSCH4 PRSCH5 PRSCH6 PRSCH7 the LESENSE Mode SENSORST PRS coder PRSO and	To ensure com O decoder	SE decode	Description PRS Channel 0 selected as input PRS Channel 1 selected as input PRS Channel 2 selected as input PRS Channel 3 selected as input PRS Channel 4 selected as input PRS Channel 5 selected as input PRS Channel 6 selected as input PRS Channel 7 selected as input Enable count mode on decoder PRS channels 0 and 1
7	Value 0 1 2 3 4 5 6 7 Reserved INPUT Select input to Value 0 1 PRSCNT When set, dec	Mode PRSCH0 PRSCH1 PRSCH2 PRSCH3 PRSCH4 PRSCH5 PRSCH6 PRSCH6 PRSCH7 Othe LESENSE Mode SENSORST PRS coder PRS0 and	To ensure com O decoder TATE O PRS1 will be	RW used to pro	Description PRS Channel 0 selected as input PRS Channel 1 selected as input PRS Channel 2 selected as input PRS Channel 3 selected as input PRS Channel 4 selected as input PRS Channel 5 selected as input PRS Channel 6 selected as input PRS Channel 7 selected as input Description The SENSORSTATE register is used as input to the decoder. PRS channels are used as input to the decoder. Enable count mode on decoder PRS channels 0 and 1 oduce output which can be used by a PCNT to count up or down.
7	Value 0 1 2 3 4 5 6 7 Reserved INPUT Select input to Value 0 1 PRSCNT When set, dec HYSTIRQ When set, hys	Mode PRSCH0 PRSCH1 PRSCH2 PRSCH3 PRSCH4 PRSCH5 PRSCH6 PRSCH7 the LESENSE Mode SENSORST PRS coder PRS0 and	To ensure com decoder ATE PRS1 will be decoder decoder	RW used to pro	Description PRS Channel 0 selected as input PRS Channel 1 selected as input PRS Channel 2 selected as input PRS Channel 3 selected as input PRS Channel 4 selected as input PRS Channel 5 selected as input PRS Channel 6 selected as input PRS Channel 7 selected as input Ith future devices, always write bits to 0. More information in Section 2.1 (p. 3) Description The SENSORSTATE register is used as input to the decoder. PRS channels are used as input to the decoder. Enable count mode on decoder PRS channels 0 and 1 oduce output which can be used by a PCNT to count up or down. Enable decoder hysteresis on interrupt requests essing interrupt requests. Enable decoder hysteresis on PRS2 output
7 6 5	Value 0 1 2 3 4 5 6 7 Reserved INPUT Select input to Value 0 1 PRSCNT When set, dec HYSTIRQ When set, hys: HYSTPRS2 When set, hys:	Mode PRSCH0 PRSCH1 PRSCH2 PRSCH3 PRSCH4 PRSCH5 PRSCH6 PRSCH6 PRSCH7 Othe LESENSE Mode SENSORS1 PRS coder PRS0 and cuteresis is enable cuteresis is enable	To ensure com decoder TATE Ded PRS1 will be ded in the deco ed in the deco	RW used to pro RW der, suppre	Description PRS Channel 0 selected as input PRS Channel 1 selected as input PRS Channel 2 selected as input PRS Channel 3 selected as input PRS Channel 4 selected as input PRS Channel 5 selected as input PRS Channel 6 selected as input PRS Channel 7 selected as input PRS Channel 7 selected as input PRS Channel 7 selected as input PRS Channel 8 selected as input PRS Channel 9 selected as input Ith future devices, always write bits to 0. More information in Section 2.1 (p. 3) Description The SENSORSTATE register is used as input to the decoder. PRS channels are used as input to the decoder. Enable count mode on decoder PRS channels 0 and 1 Deduce output which can be used by a PCNT to count up or down. Enable decoder hysteresis on interrupt requests PRS changes on PRS channel 2
9 8 7 6 5	Value 0 1 2 3 4 5 6 7 Reserved INPUT Select input to Value 0 1 PRSCNT When set, dec HYSTIRQ When set, hys: HYSTPRS2 When set, hys:	Mode PRSCH0 PRSCH1 PRSCH2 PRSCH3 PRSCH4 PRSCH5 PRSCH6 PRSCH7 Othe LESENSE Mode SENSORST PRS coder PRSO and cuteresis is enable cuteresis is enable	To ensure com of the LESEN: To	RW used to pro RW der, suppre RW der, suppre	Description PRS Channel 0 selected as input PRS Channel 1 selected as input PRS Channel 2 selected as input PRS Channel 3 selected as input PRS Channel 3 selected as input PRS Channel 4 selected as input PRS Channel 5 selected as input PRS Channel 6 selected as input PRS Channel 7 selected as input PRS Channel 7 selected as input ith future devices, always write bits to 0. More information in Section 2.1 (p. 3) Description The SENSORSTATE register is used as input to the decoder. PRS channels are used as input to the decoder. Enable count mode on decoder PRS channels 0 and 1 adduce output which can be used by a PCNT to count up or down. Enable decoder hysteresis on interrupt requests essing interrupt requests. Enable decoder hysteresis on PRS2 output essing changes on PRS channel 2 Enable decoder hysteresis on PRS1 output
7 6 5	Value 0 1 2 3 4 5 6 7 Reserved INPUT Select input to Value 0 1 PRSCNT When set, dec HYSTIRQ When set, hys: HYSTPRS2 When set, hys:	Mode PRSCH0 PRSCH1 PRSCH2 PRSCH3 PRSCH4 PRSCH5 PRSCH6 PRSCH6 PRSCH7 Othe LESENSE Mode SENSORST PRS coder PRS0 and cuteresis is enable cuteresis is enable cuteresis is enable cuteresis is enable	To ensure com of the LESEN: To	RW used to pro RW der, suppre RW der, suppre	Description PRS Channel 0 selected as input PRS Channel 1 selected as input PRS Channel 2 selected as input PRS Channel 3 selected as input PRS Channel 4 selected as input PRS Channel 5 selected as input PRS Channel 6 selected as input PRS Channel 7 selected as input PRS Channel 7 selected as input PRS Channel 7 selected as input PRS Channel 8 selected as input PRS Channel 9 selected as input Ith future devices, always write bits to 0. More information in Section 2.1 (p. 3) Description The SENSORSTATE register is used as input to the decoder. PRS channels are used as input to the decoder. Enable count mode on decoder PRS channels 0 and 1 Deduce output which can be used by a PCNT to count up or down. Enable decoder hysteresis on interrupt requests PRS changes on PRS channel 2

Downloaded from Electric com

Bit	Name	Reset	Access	Description
2	INTMAP	0	RW	Enable decoder to channel interrupt mapping
	When set, a transition from	state x in the deco	oder will set into	errupt flag CHx
1	ERRCHK	0	RW	Enable check of current state
	When set, the decoder che	ecks the current sta	te in addition to	the states defined in TCONF
0	DISABLE	0	RW	Disable the decoder
	When set, the decoder is d	isabled. When disa	abled the deco	der will keep its current state

21.5.5 LESENSE_BIASCTRL - Bias Control Register (Async Reg)

For more information about Asynchronous Registers please see Section 5.3 (p. 18).

Offset	Bit Position																															
0x010	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	7	10	6	8	7	9	2	4	က	2	-	0
Reset																															6	e e
Access																															2	 }
Name																																BIASIMODE

Bit	Name	Reset	Access	Description
31:2	Reserved	To ensure compa	atibility with fut	ure devices, always write bits to 0. More information in Section 2.1 (p. 3)
1:0	BIASMODE	0x0	RW	Select bias mode

Value	Mode	Description
0	DUTYCYCLE	Bias module duty cycled between low power and high accuracy mode
1	HIGHACC	Bias module always in high accuracy mode
2	DONTTOUCH	Bias module is controlled by the EMU and not affected by LESENSE

21.5.6 LESENSE_CMD - Command Register

Offset	Bit Position																															
0x014	31	30	29	28	27	56	25	24	23	22	21	20	19	18	17	16	15	41	13	12	1	10	0	œ	7	9	2	4	ю	7	-	0
Reset			•	•									•		•	•							•						0	0	0	0
Access																													W V	W1	W 1	W
Name																													CLEARBUF	DECODE	STOP	START

Bit	Name	Reset	Access	Description
31:4	Reserved	To ensure comp	atibility with fut	ure devices, always write bits to 0. More information in Section 2.1 (p. 3)
3	CLEARBUF	0	W1	Clear result buffer
2	DECODE	0	W1	Start decoder
1	STOP	0	W1	Stop scanning of sensors

Bit	Name	Reset	Access	Description	
	If issued during a s	scan, the command will	take effect after	scan completion.	
0	START	0	W1	Start scanning of sensors.	

21.5.7 LESENSE_CHEN - Channel enable Register (Async Reg)

For more information about Asynchronous Registers please see Section 5.3 (p. 18).

Offset															Bi	t Pc	siti	on	,							· ·						
0x018	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	9	2	4	က	2	-	0
Reset																								0000	000000							
Access																								2	<u>}</u>							
Name																								į	CHEN							

Bit	Name	Reset	Access	Description
31:16	Reserved	To ensure compa	atibility with futu	ure devices, always write bits to 0. More information in Section 2.1 (p. 3)
15:0	CHEN	0x0000	RW	Enable scan channel
	Set bit X to enable channel	X		

21.5.8 LESENSE_SCANRES - Scan result register (Async Reg)

For more information about Asynchronous Registers please see Section 5.3 (p. 18).

Offset															Bi	t Pc	siti	on														
0x01C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	1	10	6	8	7	9	2	4	က	2	1	0
Reset																								0000	000000							
Access																									צ							
Name																									SCANKES							

Bit	Name	Reset	Access	Description
31:16	Reserved	To ensure compa	atibility with fut	ure devices, always write bits to 0. More information in Section 2.1 (p. 3)
15:0	SCANRES	0x0000	R	Scan results
	Bit X will be set depending	on channel X evalu	ation	

21.5.9 LESENSE_STATUS - Status Register (Async Reg)

For more information about Asynchronous Registers please see Section 5.3 (p. 18).

Downloaded from H couls com 342 www.energymicro.com

Offset			•		•			•				•		•	Bi	t Po	siti	on			•	•									•	
0x020	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	=	10	6	∞	7	9	2	4	က	7	-	0
Reset																									•		0	0	0	0	0	0
Access																											œ	~	~	~	œ	<u>~</u>
Name																											DACACTIVE	SCANACTIVE	RUNNING	BUFFULL	BUFHALFFULL	BUFDATAV

Bit	Name	Reset	Access	Description
31:6	Reserved	To ensure co	mpatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
5	DACACTIVE	0	R	LESENSE DAC interface is active
	COANA OTIVE			LECENCE is assessed interfering and an arrangement of the control
4	SCANACTIVE	0	R	LESENSE is currently interfacing sensors.
3	RUNNING	0	R	LESENSE is active
2	BUFFULL	0	R	Result buffer full
	Set when the result buf	fer is full		
1	BUFHALFFULL	0	R	Result buffer half full
	Set when the result buf	fer is half full		
0	BUFDATAV	0	R	Result data valid
	Set when data is availa	ble in the result but	ffer. Cleared whe	n the buffer is empty.

21.5.10 LESENSE_PTR - Result buffer pointers (Async Reg)

For more information about Asynchronous Registers please see Section 5.3 (p. 18).

Bit	Name	Reset	Access	Description
31:9	Reserved	To ensure o	compatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
8:5	WR	0x0	R	Result buffer write pointer.
	These bits show the	e next index in the res	ult buffer to be wri	tten to. Incremented when LESENSE writes to result buffer
4	Reserved	To ensure o	compatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
3:0	RD	0x0	R	Result buffer read pointer.
	These bits show the	e index of the oldest u	inread data in the r	result buffer. Incremented on read from BUFDATA.

21.5.11 LESENSE_BUFDATA - Result buffer data register (Async Reg)

For more information about Asynchronous Registers please see Section 5.3 (p. 18).

Downloaded from Houlescom 2010-12-21 - d0034_Rev0.90 343 www.energymicro.com

Offset															Bi	t Po	siti	on											,			
0x028	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	7	10	0	8	7	9	2	4	ო	7	-	0
Reset																									XXXXX0							
Access																									<u>~</u>							
Name																									BUFDATA							
Bit	Na	me						Re	set			Α	/CC	ess	;	De	scri	iptic	on													
31:16	Re	serve	ed					То	ensi	ure c	omp	atibi	ility	with	futu	re de	evice	es, a	lwa	ays v	vrite	bits	to 0.	Мог	re in	form	natio	n in	Seci	ion 2	.1 (p	o. 3)
15:0	BU	FDA	TA					0x>	(XX)	(R				Res	sult	data	a													
	Thi	s reg	giste	r car	be	use	ed to	rea	d the	old	est u	nrea	ad d	lata	from	the	resu	ılt bu	uffe	er.												

21.5.12 LESENSE_CURCH - Current channel index (Async Reg)

For more information about Asynchronous Registers please see Section 5.3 (p. 18).

Offset															Bi	t Po	siti	on													
0x02C	33	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	∞	7	9	2	4	3	7	0
Reset																														0x0	·
Access																														22	
Name																														CURCH	
Bit	Na	me						Re	set			Α	CC	ess		De	scri	iptio	on												
31:4	Re	serve	ed					То	ensi	ıre c	omp	atibi	ility	with	futu	re de	evice	es, a	lwa	ys v	vrite	bits	to 0.	Mor	re int	form	atio	n in	Sect	ion 2.1	(p. 3)
3:0	CU	RCH	ł					0x0)			R				Sho	ows	the	ind	lex o	of th	е си	ırren	nt ch	nann	el					

21.5.13 LESENSE_DECSTATE - Current decoder state (Async Reg)

For more information about Asynchronous Registers please see Section 5.3 (p. 18).

Offset															Bi	t Pc	siti	on														
0x030	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	1	10	6	æ	7	9	2	4	က	2	-	0
Reset			•	•	•		•	•		•	•				,										•		•	,			nxn	
Access																														í	E M Y	
Name																														! !	DECOLATE	
Bit	Na	me						Re	set			A	\cc	ess		De	scri	iptio	on													

To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)

Shows the current decoder state

2010-12-21 - d0034_Rev0.90 www.energymicro.com Downloaded from I

 RWH

0x0

31:4

3:0

Reserved

DECSTATE

Bit	Name	Reset	Access	Description	

21.5.14 LESENSE_SENSORSTATE - Decoder input register (Async Reg)

For more information about Asynchronous Registers please see Section 5.3 (p. 18).

Offset														Bi	t Po	sitio	on									·				
0x034	31	30	29	28	27	26	24	53	22	21	20	19	18	17	16	15	4	13	1 [10	6	80	7	9	2	4	က	7	-	0
Reset																												0x0		
Access																												RWH		
Name																												SENSORSTATE		

Bit	Name	Reset	Access	Description
31:4	Reserved	To ensure comp	atibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
3:0	SENSORSTATE	0x0	RWH	Shows the status of sensors chosen as input to the decoder

21.5.15 LESENSE_IDLECONF - GPIO Idlephase configuration (Async Reg)

For more information about Asynchronous Registers please see Section 5.3 (p. 18).

Offset													Bit F	Po:	sition				·				
0x038	8 3	29	78	27	56	22	24	23	22	21	20	6 8	17	2	5 4	13	=	9	တ ထ	7	3 4	ю Q	- 0
Reset	0x0	OxO	8	OxO		5	8	5	3	3	2	0x0	0×0		0x0	0x0	0×0		0x0	0x0	0x0	0x0	0x0
Access			2	N N		À	2	À		Š	Ž	A. W	§ S		₩ M	RW	₹		₩ N	₩ M	A W	R W	S.
Name	CH15	CH14	-	CH13		21,		1	=	2	-	СНЭ	CH8		CH7	СН6	CFS		CH4	СНЗ	CH2	CH1	CHO

Bit	Name	Reset	Access	Description
31:30	CH15	0x0	RW	Channel 15 idlephase configuration

Value	Mode	Description
0	DISABLE	CH15 output is disabled in idle phase
1	HIGH	CH15 output is high in idle phase
2	LOW	CH15 output is low in idle phase
3	DACCH1	CH15 output is connected to DAC CH1 output in idle phase

29:28 CH14 0x0 RW Channel 14 idlephase configuration

Value	Mode	Description
0	DISABLE	CH14 output is disabled in idle phase
1	HIGH	CH14 output is high in idle phase
2	LOW	CH14 output is low in idle phase
3	DACCH1	CH14 output is connected to DAC CH1 output in idle phase

27:26 CH13 0x0 RW Channel 13 idlephase configuration

Downloaded from Hoods, com 2010-12-21 - d0034_Rev0.90 345 www.energymicro.com

Bit	Name	Reset	Acces	s Description
	Value	Mode		Description
	0	DISABLE		CH13 output is disabled in idle phase
	1	HIGH		CH13 output is high in idle phase
	2	LOW		CH13 output is low in idle phase
	3	DACCH1		CH13 output is connected to DAC CH1 output in idle phase
25:24	CH12	0x0	RW	Channel 12 idlephase configuration
	Value	Mode		Description
	0	DISABLE		CH12 output is disabled in idle phase
	1	HIGH		CH12 output is high in idle phase
	2	LOW		CH12 output is low in idle phase
	3	DACCH1		CH12 output is connected to DAC CH1 output in idle phase
23:22	CH11	0x0	RW	Channel 11 idlephase configuration
	Value	Mode		Description
	0	DISABLE		CH11 output is disabled in idle phase
	1	HIGH		CH11 output is high in idle phase
	2	LOW		CH11 output is low in idle phase
21:20	CH10	0x0	RW	Channel 10 idlephase configuration
	Value	Mode		Description
	0	DISABLE		CH10 output is disabled in idle phase
	1	HIGH		CH10 output is high in idle phase
	2	LOW		CH10 output is low in idle phase
19:18	CH9	0x0	RW	Channel 9 idlephase configuration
	Value	Mode		Description
	0	DISABLE		CH9 output is disabled in idle phase
	1	HIGH		CH9 output is high in idle phase
	2	LOW		CH9 output is low in idle phase
17:16	CH8	0x0	RW	Channel 8 idlephase configuration
	Value	Mode		Description
	0	DISABLE		CH8 output is disabled in idle phase
	1	HIGH		CH8 output is high in idle phase
	2	LOW		CH8 output is low in idle phase
15:14	CH7	0x0	RW	Channel 7 idlephase configuration
	Value	Mode		Description
	0	DISABLE		CH7 output is disabled in idle phase
	1	HIGH		CH7 output is high in idle phase
	2	LOW		CH7 output is low in idle phase
13:12	CH6	0x0	RW	Channel 6 idlephase configuration
	Value	Mode		Description
	0	DISABLE		CH6 output is disabled in idle phase
	1	HIGH		CH6 output is high in idle phase
	L.			one suspense right in large prides

Downloaded from Electrical 2010-12-21 - d0034_Rev0.90 346 www.energymicro.com

Bit	Name	Reset	Acce	ess Description
11:10	CH5	0x0	RW	Channel 5 idlephase configuration
	Value	Mode		Description
	0	DISABLE		CH5 output is disabled in idle phase
	1	HIGH		CH5 output is high in idle phase
	2	LOW		CH5 output is low in idle phase
9:8	CH4	0x0	RW	Channel 4 idlephase configuration
	Value	Mode		Description
	0	DISABLE		CH4 output is disabled in idle phase
	1	HIGH		CH4 output is high in idle phase
	2	LOW		CH4 output is low in idle phase
7:6	CH3	0x0	RW	Channel 3 idlephase configuration
	Value	Mode		Description
	0	DISABLE		CH3 output is disabled in idle phase
	1	HIGH		CH3 output is high in idle phase
	2	LOW		CH3 output is low in idle phase
	3	DACCH0		CH3 output is connected to DAC CH0 output in idle phase
5:4	CH2	0x0	RW	Channel 2 idlephase configuration
	Value	Mode		Description
	0	DISABLE		CH2 output is disabled in idle phase
	1	HIGH		CH2 output is high in idle phase
	2	LOW		CH2 output is low in idle phase
	3	DACCH0		CH2 output is connected to DAC CH0 output in idle phase
3:2	CH1	0x0	RW	Channel 1 idlephase configuration
	Value	Mode		Description
	0	DISABLE		CH1 output is disabled in idle phase
	1	HIGH		CH1 output is high in idle phase
	2	LOW		CH1 output is low in idle phase
	3	DACCH0		CH1 output is connected to DAC CH0 output in idle phase
1:0	CH0	0x0	RW	Channel 0 idlephase configuration
	Value	Mode		Description
	0	DISABLE		CH0 output is disabled in idle phase
	1	HIGH		CH0 output is high in idle phase
	2	LOW		CH0 output is low in idle phase
	3	DACCH0		CH0 output is connected to DAC CH0 output in idle phase

21.5.16 LESENSE_ALTEXCONF - Alternative excite pin configuration (Async Reg)

For more information about Asynchronous Registers please see Section 5.3 (p. 18).

Downloaded from Headles com 2010-12-21 - d0034_Rev0.90 347 www.energymicro.com

Offset															Bi	t Po	siti	on	,													
0x03C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	2	4	3	2	1	0
Reset							0	0	0	0	0	0	0	0	2	OXO	6	OXO	2	S S	2	OX O	0x0		0	2	OxO	2	0			
Access								_	R W	₩	% W	RW	RW	RW	₩	₩	2	<u>}</u>	i	≩ Ƴ	>	<u> </u>	<u> </u>	<u> </u>	R ≷		×		NA NA		Λ <u>α</u>	
Name									AEX7	AEX6	AEX5	AEX4	AEX3	AEX2	AEX1	AEX0	ECONET	IDCECOINT,	C L	IDLECONF6		IDEE CONT.	אבועטטבו וכו		IDLECONF3		IDI ECONE?		IDI ECONE1		IDI ECONEO	

Bit	Name	Reset	Acce	ess Description
31:24	Reserved	To ensure co	ompatibility v	vith future devices, always write bits to 0. More information in Section 2.1 (p. 3)
23	AEX7	0	RW	ALTEX7 always excite enable
22	AEX6	0	RW	ALTEX6 always excite enable
21	AEX5	0	RW	ALTEX5 always excite enable
20	AEX4	0	RW	ALTEX4 always excite enable
19	AEX3	0	RW	ALTEX3 always excite enable
18	AEX2	0	RW	ALTEX2 always excite enable
17	AEX1	0	RW	ALTEX1 always excite enable
16	AEX0	0	RW	ALTEX0 always excite enable
15:14	IDLECONF7	0x0	RW	ALTEX7 idle phase configuration
	Value	Mode		Description
	0	DISABLE		ALTEX7 output is disabled in idle phase
	1	HIGH		ALTEX7 output is high in idle phase
	2	LOW		ALTEX7 output is low in idle phase
13:12	IDLECONF6	0x0	RW	ALTEX6 idle phase configuration
	Value	Mode		Description
	0	DISABLE		ALTEX6 output is disabled in idle phase
	1	HIGH		ALTEX6 output is high in idle phase
	2	LOW		ALTEX6 output is low in idle phase
11:10	IDLECONF5	0x0	RW	ALTEX5 idle phase configuration
	Value	Mode		Description
	0	DISABLE		ALTEX5 output is disabled in idle phase
	1	HIGH		ALTEX5 output is high in idle phase
	2	LOW		ALTEX5 output is low in idle phase
9:8	IDLECONF4	0x0	RW	ALTEX4 idle phase configuration

2010-12-21 - d0034_Rev0.90 348 www.energymicro.com

Bit	Name	Reset	Acce	ss Description
	Value	Mode		Description
	0	DISABLE		ALTEX4 output is disabled in idle phase
	1	HIGH		ALTEX4 output is high in idle phase
	2	LOW		ALTEX4 output is low in idle phase
7:6	IDLECONF3	0x0	RW	ALTEX3 idle phase configuration
	Value	Mode		Description
	0	DISABLE		ALTEX3 output is disabled in idle phase
	1	HIGH		ALTEX3 output is high in idle phase
	2	LOW		ALTEX3 output is low in idle phase
5:4	IDLECONF2	0x0	RW	ALTEX2 idle phase configuration
	Value	Mode		Description
	0	DISABLE		ALTEX2 output is disabled in idle phase
	1	HIGH		ALTEX2 output is disabled in rule phase ALTEX2 output is high in idle phase
	2	LOW		ALTEX2 output is low in idle phase
				<u> </u>
3:2	IDLECONF1	0x0	RW	ALTEX1 idle phase configuration
	Value	Mode		Description
	0	DISABLE		ALTEX1 output is disabled in idle phase
	1	HIGH		ALTEX1 output is high in idle phase
	2	LOW		ALTEX1 output is low in idle phase
1:0	IDLECONF0	0x0	RW	ALTEX0 idle phase configuration
	Value	Mode		Description
	0	DISABLE		ALTEX0 output is disabled in idle phase
	1	HIGH		ALTEX0 output is high in idle phase
	2	LOW		ALTEX0 output is low in idle phase

21.5.17 LESENSE_IF - Interrupt Flag Register

Offset																																
0x040	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	11	10	6	œ	7	9	2	4	က	7	-	0
Reset			•							0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access										~	œ	~	22	~	~	~	œ	22	ď	œ	2	~	~	œ	~	ď	~	~	œ	~	~	~
Name										CNTOF	BUFOF	BUFLEVEL	BUFDATAV	DECERR	DEC	SCANCOMPLETE	CH15	CH14	CH13	CH12	CH11	CH10	СНЭ	CH8	CH7	CH6	CHS	CH4	СНЗ	CH2	CH1	CH0

Bit	Name	Reset	Access	Description
31:23	Reserved	To ensure co	mpatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
22	CNTOF	0	R	
	Set when the LESENS	SE counter overflows	S.	
21	BUFOF	0	R	
	Set when the result bu	iffer overflows		

Bit	Name	Reset	Access	Description	
20	BUFLEVEL	0	R		
	Set when the data buf				
19	BUFDATAV	0	R		
	Set when data is avail	able in the result bu	ffer.		
18	DECERR	0	R		
	Set when the decoder	detects an error			
17	DEC	0	R		
	Set when the decoder	has issued and inte	errupt request		
16	SCANCOMPLETE	0	R		
	Set when a scan sequ	ence is completed			
15	CH15	0	R		
	Set when channel 15 t	riggers			
14	CH14	0	R		
	Set when channel 14 t	riggers			
13	CH13	0	R		
	Set when channel 13 t				
12	CH12	0	R		
	Set when channel 12 t				
11	CH11	0	R		
	Set when channel 11 t				
10	CH10	0	R		
	Set when channel 10 t				
9	CH9	0	R		
	Set when channel 9 tri				
8	CH8	0	R		
	Set when channel 8 tri				
7	CH7	0	R		
	Set when channel 7 tri				
6	CH6	0	R		
-	Set when channel 6 tri				
5	CH5	0	R		
e.	Set when channel 5 tri		- -		
4	CH4	0	R		
•	Set when channel 4 tri		- -		
3	CH3	0	R		
-	Set when channel 3 tri		••		
2	CH2	0	R		
_	Set when channel 2 tri		••		
1	CH1	0	R		
•	Set when channel 1 tri				
0	CH0	0	R		
J	Set when channel 0 tri				
	Oct when challie 0 th	99010			

Downloaded from Electrical 2010-12-21 - d0034_Rev0.90 350 www.energymicro.com

21.5.18 LESENSE_IFC - Interrupt Flag Clear Register

Offset					•										Bi	t Po	siti	on			•				•					•		
0x044	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	1	10	6	œ	7	9	2	4	က	7	-	0
Reset										0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access										W	W	W	W	W	W	W	W	×	W1	×	W	W	×	W	W	W	W	×	W	×	W	W
Name										CNTOF	BUFOF	BUFLEVEL	BUFDATAV	DECERR	DEC	SCANCOMPLETE	CH15	CH14	CH13	CH12	CH11	CH10	СНЭ	CH8	CH7	CH6	CH5	CH4	CH3	CH2	CH1	CHO

Name				
22	Bit	Name	Reset	Access Description
Write to 1 to clear CNTOF interrupt flag 21	31:23	Reserved	To ensure co	ompatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3
BUFOF	22	CNTOF	0	W1
Write to 1 to clear BUFOF interrupt flag 20		Write to 1 to clear CN	TOF interrupt flag	
20	21	BUFOF	0	W1
Write to 1 to clear BUFLEVEL interrupt flag		Write to 1 to clear BU	FOF interrupt flag	
19	20	BUFLEVEL	0	W1
Notice to 1 to clear BUFDATAV interrupt flag BECERR		Write to 1 to clear BU	FLEVEL interrupt fla	ıg
18	19	BUFDATAV	0	W1
Write to 1 to clear DECERR interrupt flag		Write to 1 to clear BU	FDATAV interrupt fla	ag
17	18	DECERR	0	W1
Write to 1 to clear DEC interrupt flag		Write to 1 to clear DE	CERR interrupt flag	
16	17	DEC	0	W1
Write to 1 to clear SCANCOMPLETE interrupt flag		Write to 1 to clear DE	C interrupt flag	
15	16	SCANCOMPLETE	0	W1
Write to 1 to clear CH15 interrupt flag		Write to 1 to clear SC	ANCOMPLETE inter	rrupt flag
14	15	CH15	0	W1
Write to 1 to clear CH14 interrupt flag		Write to 1 to clear CH	l15 interrupt flag	
13	14	CH14	0	W1
Write to 1 to clear CH13 interrupt flag		Write to 1 to clear CH	l14 interrupt flag	
12	13	CH13	0	W1
Write to 1 to clear CH12 interrupt flag		Write to 1 to clear CH	l13 interrupt flag	
11 CH11 0 W1 Write to 1 to clear CH11 interrupt flag 10 CH10 0 W1 Write to 1 to clear CH10 interrupt flag 9 CH9 0 W1 Write to 1 to clear CH9 interrupt flag 8 CH8 0 W1 Write to 1 to clear CH8 interrupt flag 7 CH7 0 W1 Write to 1 to clear CH7 interrupt flag	12	CH12	0	W1
Write to 1 to clear CH11 interrupt flag		Write to 1 to clear CH	l12 interrupt flag	
10 CH10 0 W1 Write to 1 to clear CH10 interrupt flag 9 CH9 0 W1 Write to 1 to clear CH9 interrupt flag 8 CH8 0 W1 Write to 1 to clear CH8 interrupt flag 7 CH7 0 W1 Write to 1 to clear CH7 interrupt flag	11	CH11	0	W1
Write to 1 to clear CH10 interrupt flag 9 CH9 0 W1 Write to 1 to clear CH9 interrupt flag W1 8 CH8 0 W1 Write to 1 to clear CH8 interrupt flag W1 7 CH7 0 W1 Write to 1 to clear CH7 interrupt flag		Write to 1 to clear CH	l11 interrupt flag	
9 CH9 0 W1 Write to 1 to clear CH9 interrupt flag 8 CH8 0 W1 Write to 1 to clear CH8 interrupt flag 7 CH7 0 W1 Write to 1 to clear CH7 interrupt flag	10	CH10	0	W1
Write to 1 to clear CH9 interrupt flag 8 CH8 0 W1 Write to 1 to clear CH8 interrupt flag 7 CH7 0 W1 Write to 1 to clear CH7 interrupt flag		Write to 1 to clear CH	I10 interrupt flag	
8 CH8 0 W1 Write to 1 to clear CH8 interrupt flag 7 CH7 0 W1 Write to 1 to clear CH7 interrupt flag	9	CH9	0	W1
Write to 1 to clear CH8 interrupt flag 7 CH7 0 W1 Write to 1 to clear CH7 interrupt flag		Write to 1 to clear CH	19 interrupt flag	
7 CH7 0 W1 Write to 1 to clear CH7 interrupt flag	8	CH8	0	W1
Write to 1 to clear CH7 interrupt flag		Write to 1 to clear CH	8 interrupt flag	
<u> </u>	7	CH7	0	W1
6 CH6 0 W1		Write to 1 to clear CH	7 interrupt flag	
	6	CH6	0	W1

Downloaded from Heads.com 2010-12-21 - d0034_Rev0.90 351 www.energymicro.com

Bit	Name	Reset	Access	Description
	Write to 1 to clear	CH6 interrupt flag		
5	CH5	0	W1	
	Write to 1 to clear	CH5 interrupt flag		
4	CH4	0	W1	
	Write to 1 to clear	CH4 interrupt flag		
3	CH3	0	W1	
	Write to 1 to clear	CH3 interrupt flag		
2	CH2	0	W1	
	Write to 1 to clear	CH2 interrupt flag		
1	CH1	0	W1	
	Write to 1 to clear	CH1 interrupt flag		
0	CH0	0	W1	
	Write to 1 to clear	CH0 interrupt flag		

21.5.19 LESENSE_IFS - Interrupt Flag Set Register

Offset															Bi	t Pc	siti	on														
0x048	33	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	41	13	12	7	10	თ	∞	7	9	2	4	က	7	-	0
Reset			•					•	•	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access									_	W1	W	W1	W1	W1	W	N V	W V	W	W.	N V	W	W	ž	W 1	N V	W1	ž	W	W V	×	W V	N N
Name										CNTOF	BUFOF	BUFLEVEL	BUFDATAV	DECERR	DEC	SCANCOMPLETE	CH15	CH14	CH13	CH12	CH11	CH10	СНЭ	СН8	CH7	CH6	CH5	CH4	СНЗ	CH2	CH1	СНО

Bit	Name	Reset	Access	Description
31:23	Reserved	To ensure co	mpatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
22	CNTOF	0	W1	
	Write to 1 to set the CN	TOF interrupt flag		
21	BUFOF	0	W1	
	Write to 1 to set the BUI	FOF interrupt flag		
20	BUFLEVEL	0	W1	
	Write to 1 to set the BUI	FLEVEL interrupt f	lag	
19	BUFDATAV	0	W1	
	Write to 1 to set the BUI	FDATAV interrupt	flag	
18	DECERR	0	W1	
	Write to 1 to set the DEC	CERR interrupt fla	g	
17	DEC	0	W1	
	Write to 1 to set the DEC	C interrupt flag		
16	SCANCOMPLETE	0	W1	
	Write to 1 to set the SC	ANCOMPLETE int	errupt flag	
15	CH15	0	W1	
	Write to 1 to set the CH	15 interrupt flag		
14	CH14	0	W1	

Downloaded from Hoods, com 2010-12-21 - d0034_Rev0.90 352 www.energymicro.com

Bit	Name	Reset	Access	Description
	Write to 1 to set th	ne CH14 interrupt flag		
13	CH13	0	W1	
	Write to 1 to set th	ne CH13 interrupt flag		
12	CH12	0	W1	
	Write to 1 to set th	ne CH12 interrupt flag		
11	CH11	0	W1	
	Write to 1 to set th	ne CH11 interrupt flag		
10	CH10	0	W1	
	Write to 1 to set th	ne CH10 interrupt flag		
9	CH9	0	W1	
	Write to 1 to set th	ne CH9 interrupt flag		
8	CH8	0	W1	
	Write to 1 to set th	ne CH8 interrupt flag		
7	CH7	0	W1	
	Write to 1 to set th	ne CH7 interrupt flag		
6	CH6	0	W1	
	Write to 1 to set th	ne CH6 interrupt flag		
5	CH5	0	W1	
	Write to 1 to set th	ne CH5 interrupt flag		
4	CH4	0	W1	
	Write to 1 to set th	ne CH4 interrupt flag		
3	CH3	0	W1	
	Write to 1 to set th	ne CH3 interrupt flag		
2	CH2	0	W1	
	Write to 1 to set th	ne CH2 interrupt flag		
1	CH1	0	W1	
	Write to 1 to set th	ne CH1 interrupt flag		
0	CH0	0	W1	
	Write to 1 to set th	ne CH0 interrupt flag		

21.5.20 LESENSE_IEN - Interrupt Enable Register

Offset															Bi	it Po	siti	on														
0x04C	33	30	29	78	27	56	52	24	23	22	21	20	19	18	17	16	15	4	13	12	1	10	6	æ	7	9	2	4	က	2	~	0
Reset				•				•		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access										W.	₩ W	₩.	RW	R M	₩ M	₩ W	RW	₩ M	₩ M	W.	W.	₩ M	₩ M	₩ M	₩ M	₩ M	R M	₩ M	₩ M	% M	W.	RW W
Name										CNTOF	BUFOF	BUFLEVEL	BUFDATAV	DECERR	DEC	SCANCOMPLETE	CH15	CH14	CH13	CH12	CH11	CH10	СНЭ	CH8	CH7	CH6	CH5	CH4	СНЗ	CH2	CH1	CH0

Bit	Name	Reset	Access	Description
31:23	Reserved	To ensure compa	atibility with futo	ure devices, always write bits to 0. More information in Section 2.1 (p. 3)
22	CNTOF	0	RW	

Downloaded from I 2010-12-21 - d0034_Rev0.90 353 www.energymicro.com

Bit	Name	Reset	Access	Description
	Set to enable interrupt or	the CNTOF interr	upt flag	
21	BUFOF	0	RW	
	Set to enable interrupt or	the BUFOF interr	upt flag	
20	BUFLEVEL	0	RW	
	Set to enable interrupt or	the BUFLEVEL in	terrupt flag	
19	BUFDATAV	0	RW	
	Set to enable interrupt or	the BUFDATAV in	nterrupt flag	
18	DECERR	0	RW	
	Set to enable interrupt or	the DECERR inte	rrupt flag	
17	DEC	0	RW	
	Set to enable interrupt or	the DEC interrupt	flag	
16	SCANCOMPLETE	0	RW	
	Set to enable interrupt or	the SCANCOMPL	_ETE interrupt fl	ilag
15	CH15	0	RW	
	Set to enable interrupt or	the CH15 interrup	ot flag	
14	CH14	0	RW	
	Set to enable interrupt or	the CH14 interrup	ot flag	
13	CH13	0	RW	
	Set to enable interrupt or	the CH13 interrup	ot flag	
12	CH12	0	RW	
	Set to enable interrupt or	-	-	
11	CH11	0	RW	
	Set to enable interrupt or			
10	CH10	0	RW	
	Set to enable interrupt or	-	-	
9	CH9	0	RW	
	Set to enable interrupt or			
8	CH8	0	RW	
	Set to enable interrupt or			
7	CH7	0	RW	
	Set to enable interrupt or			
6	CH6	O	RW	
	Set to enable interrupt or			
5	CH5	0 the CUE interrupt	RW	
	Set to enable interrupt or			
4	CH4	0 the CH4 interrupt	RW	
	Set to enable interrupt or			
3	CH3	0 the CH3 interrupt	RW	
2	Set to enable interrupt or		RW	
2	CH2	0 the CH2 interrupt		
1	Set to enable interrupt or			
1	CH1	0	RW	
	Set to enable interrupt or			
0	CH0	0 the CHO interrupt	RW	
	Set to enable interrupt or	i the CH0 interrupt	ııag	

Downloaded from Leodis com 2010-12-21 - d0034_Rev0.90 354 www.energymicro.com

21.5.21 LESENSE_SYNCBUSY - Synchronization Busy Register

Offset															Bi	t Po	siti	on														
0x050	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	=	10	6	∞	7	9	2	4	က	7	-	0
Reset						0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access						2	œ	œ	22	œ	œ	22	2	~	œ	~	22	22	2	22	~	22	~	22	~	~	œ	œ	œ	~	2	~
Name						EVAL	INTERACT	TIMING	DATA	TCONFB	TCONFA	RIPCNT	TESTCTRL	FEATURECONF	POWERDOWN	ROUTE	ALTEXCONF	IDLECONF	SENSORSTATE	DECSTATE	CURCH	BUFDATA	PTR	STATUS	SCANRES	CHEN	CMD	BIASCTRL	DECCTRL	PERCTRL	TIMCTRL	CTRL

				- 2	TES	POW	ALTE	IDLE	SENSC	0	BU	ν.	၁၄		ā	BIA	PE	
Bit	Name	Res	et	Α	cces	5	Descr	iptic	on									
31:27	Reserved	To er	nsure cor	npatibi	ility witi	h futu	ıre devic	es, a	lways v	vrite i	bits to 0.	Mor	e infor	m	ation i	in Sec	tion 2	2.1 (p. 3)
26	EVAL	0		R			LESEN	SE_	CHx_E	VAL	Registe	er Bu	ısy					
	Set when the value	written to LES	ENSE_C	Hx_E\	/AL is I	peing	synchro	nize	d.									
25	INTERACT	0		R			LESEN	SE_	CHx_IN	NTEF	RACT R	egist	ter Bu	ısy	,			
	Set when the value	written to LES	ENSE_C	Hx_IN	TERAC	CT is	being sy	nchr	onized.	•								
24	TIMING	0		R			LESEN	SE_	CHx_T	IMIN	G Regis	ster	Busy					
	Set when the value	written to LES	ENSE_C	Hx_TII	MING i	s bei	ng synch	roniz	zed.									
23	DATA	0		R			LESEN	SE_	BUFx_	DAT	A Regis	ter I	Busy					
	Set when the value	written to LES	ENSE_B	UFx_D	ATA is	s beir	ng synch	roniz	ed.									
22	TCONFB	0		R			LESEN	SE_	STx_T	CON	FB Reg	ister	Busy	,				
	Set when the value	written to LES	ENSE_S	Tx_TC	ONFB	is be	eing synd	hron	ized.									
21	TCONFA	0		R			LESEN	SE_	STx_T	CON	FA Reg	ister	Busy	,				
	Set when the value	written to LES	ENSE_S	Tx_TC	ONFA	is be	eing synd	hron	ized.									
20	RIPCNT	0		R			LESEN	SE_	RIPCN	T Re	gister E	Busy						
	Set when the value	written to LES	ENSE_R	IPCNT	is bei	ng sy	nchroniz	ed.										
19	TESTCTRL	0		R			LESEN	SE_	TESTC	TRL	Regist	er Bu	ısy					
	Set when the value	written to LES	ENSE_T	ESTC	ΓRL is	being	g synchro	onize	ed.									
18	FEATURECONF	0		R			LESEN	SE_	FEATU	IREC	ONF R	egist	er Bu	sy	,			
	Set when the value	written to LES	ENSE_F	EATU	RECO	NF is	being sy	nchr	onized.									
17	POWERDOWN	0		R			LESEN	SE_	POWE	RDO	WN Re	giste	r Bus	у				
	Set when the value	written to LES	ENSE_P	OWER	NOOR	N is b	eing syr	chro	nized.									
16	ROUTE	0		R			LESEN	SE_	ROUTE	E Re	gister B	usy						
	Set when the value	written to LES	ENSE_R	OUTE	is beir	ıg sy	nchroniz	ed.										
15	ALTEXCONF	0		R			LESEN	SE_	ALTEX	CON	NF Regi	ster	Busy					
	Set when the value	written to LES	ENSE_A	LTEXO	CONF i	s bei	ng synch	roniz	zed.									
14	IDLECONF	0		R			LESEN	SE_	IDLEC	ONF	Registe	er Bu	ısy					
	Set when the value	written to LES	ENSE_I	LECC	NF is I	peing	synchro	nize	d.									
13	SENSORSTATE	0		R			LESEN	SE_	SENSC	DRS	TATE R	gist	er Bu	sy	,			
	Set when the value	written to LES	ENSE_S	ENSO	RSTAT	E is	being sy	nchr	onized.									
12	DECSTATE	0		R			LESEN	SE_	DECST	ATE	Regist	er B	usy					
	Set when the value	written to LES	ENSE_D	ECST	ATE is	bein	g synchr	onize	ed.									
11	CURCH	0		R			LESEN	SE_	CURCI	H Re	gister B	usy						
	Set when the value	written to LES	ENSE_C	URCH	is beir	ng sy	nchroniz	ed.										
10	BUFDATA	0		R			LESEN	SE_	BUFDA	ATA	Registe	r Bu	sy					
	Set when the value	written to LES	ENSE_B	UFDA ⁻	TA is b	eing	synchro	nized	i.									

Downloaded from Houles com 2010-12-21 - d0034_Rev0.90 355 www.energymicro.com

Bit	Name	Reset	Access	Description
9	PTR	0	R	LESENSE_PTR Register Busy
	Set when the value wri	tten to LESENSE_P	TR is being sync	chronized.
8	STATUS	0	R	LESENSE_STATUS Register Busy
	Set when the value wri	tten to LESENSE_S	TATUS is being	synchronized.
7	SCANRES	0	R	LESENSE_SCANRES Register Busy
	Set when the value wri	tten to LESENSE_S	CANRES is bein	g synchronized.
6	CHEN	0	R	LESENSE_CHEN Register Busy
	Set when the value wri	tten to LESENSE_C	HEN is being sy	nchronized.
5	CMD	0	R	LESENSE_CMD Register Busy
	Set when the value wri	tten to LESENSE_C	MD is being syn	chronized.
4	BIASCTRL	0	R	LESENSE_BIASCTRL Register Busy
	Set when the value wri	tten to LESENSE_B	IASCTRL is bein	g synchronized.
3	DECCTRL	0	R	LESENSE_DECCTRL Register Busy
	Set when the value wri	tten to LESENSE_D	ECCTRL is bein	g synchronized.
2	PERCTRL	0	R	LESENSE_PERCTRL Register Busy
	Set when the value wri	tten to LESENSE_P	ERCTRL is being	g synchronized.
1	TIMCTRL	0	R	LESENSE_TIMCTRL Register Busy
	Set when the value wri	tten to LESENSE_T	IMCTRL is being	synchronized.
0	CTRL	0	R	LESENSE_CTRL Register Busy
	Set when the value wri	tten to LESENSE_C	TRL is being syr	nchronized.

21.5.22 LESENSE_ROUTE - I/O Routing Register (Async Reg)

For more information about Asynchronous Registers please see Section 5.3 (p. 18).

Offset															Bi	t Pc	siti	on														
0x054	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	41	13	12	1	10	6	æ	7	9	2	4	3	2	-	0
Reset								,	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Access								-	S.	W.	₩ M	W.	RW	RW	S.	M	W.	M	RW	S.	₩ M	S.	M	S.	M	W.	W.	S.	W.	M	W.	W.
Name									ALTEX7PEN	ALTEX6PEN	ALTEX5PEN	ALTEX4PEN	ALTEX3PEN	ALTEX2PEN	ALTEX1PEN	ALTEXOPEN	CH15PEN	CH14PEN	CH13PEN	CH12PEN	CH11PEN	CH10PEN	CH9PEN	CH8PEN	CH7PEN	CH6PEN	CH5PEN	CH4PEN	CH3PEN	CH2PEN	CH1PEN	CHOPEN

Bit	Name	Reset	Access	Description
31:24	Reserved	To ensure compa	atibility with fut	ure devices, always write bits to 0. More information in Section 2.1 (p. 3)
23	ALTEX7PEN	0	RW	ALTEX7 Pin Enable
22	ALTEX6PEN	0	RW	ALTEX6 Pin Enable
21	ALTEX5PEN	0	RW	ALTEX5 Pin Enable
		•		
20	ALTEX4PEN	0	RW	ALTEX4 Pin Enable
19	ALTEX3PEN	0	RW	ALTEX3 Pin Enable

Downloaded from Houlescom 2010-12-21 - d0034_Rev0.90 356 www.energymicro.com

Bit	Name	Reset	Access	Description
18	ALTEX2PEN	0	RW	ALTEX2 Pin Enable
17	ALTEX1PEN	0	RW	ALTEX1 Pin Enable
16	ALTEX0PEN	0	RW	ALTEX0 Pin Enable
15	CH15PEN	0	RW	CH15 Pin Enable
14	CH14PEN	0	RW	CH14 Pin Enable
13	CH13PEN	0	RW	CH13 Pin Enable
12	CH12PEN	0	RW	CH12 Pin Enable
11	CH11PEN	0	RW	CH11 Pin Enable
10	CH10PEN	0	RW	CH10 Pin Enable
9	CH9PEN	0	RW	CH9 Pin Enable
8	CH8PEN	0	RW	CH8 Pin Enable
7	CH7PEN	0	RW	CH7 Pin Enable
6	CH6PEN	0	RW	CH6 Pin Enable
5	CH5PEN	0	RW	CH5 Pin Enable
4	CH4PEN	0	RW	CH4 Pin Enable
3	CH3PEN	0	RW	CH3 Pin Enable
2	CH2PEN	0	RW	CH2 Pin Enable
1	CH1PEN	0	RW	CH0 Pin Enable
0	CH0PEN	0	RW	CH0 Pin Enable

21.5.23 LESENSE_POWERDOWN - LESENSE RAM power-down resgister (Async Reg)

For more information about Asynchronous Registers please see Section 5.3 (p. 18) .

Downloaded from Headlescom 357 www.energymicro.com

Offset															Bit F	osit	ioi	n														
0x058	31	30	29	28	27	56	25	24	23	22	21	20	6 8	j <u>c</u>	7 7	15	7	4 5	5 3	12	7	10	6	8	_	. 9	2	4	က	2	-	0
Reset																																0
Access																																N.
Name																																RAM
Bit	Na	me						Re	set			A	cces	SS	D	esc	rip	tio	n													
31:1	Res	serve	ed					То	ensı	ıre c	отр	atibil	ity w	ith f	uture	devic	ces,	, alv	vays	S W	rite l	bits t	to 0.	Mor	e in	nform	atio	n in S	Sect	ion 2	.1 (p	o. 3)
0	RA	М						0				RV	٧		L	ESEN	NSI	E R	ΑМ	ро	wer	-dov	νn									
	Shu	ıt off	pow	er to	the	E LE	SEN	NSE	RAN	Л. Oı	nce i	t is p	ower	red (down	, it ca	ann	ot b	e p	owe	ered	up	agai	n								

21.5.24 LESENSE_STx_TCONFA - State transition configuration A (Async Reg)

For more information about Asynchronous Registers please see Section 5.3 (p. 18).

Offset															Bi	t Po	siti	on														
0x200	31	30	29	28	27	56	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	თ	∞	7	9	2	4	က	2	-	0
Reset														×		×			XXO			>	<u> </u>	,		>	X Š			XX	<u> </u>	
Access														RW		RW			RW			/// 0	2			74	 } Y			W _W		
Name														CHAIN		SETIF			PRSACT			NEXTOTATE	NES 0 7 1			3	MASK			aWO:		

Bit	Name	Reset	Access	Description
31:19	Reserved	To ensure c	ompatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
18	CHAIN	Х	RW	Enable state descriptor chaining
	When set, descripte	or in the next location	will also be evalua	ated
17	Reserved	To ensure c	ompatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
16	SETIF	X	RW	Set interrupt flag enable
	Set interrupt flag w	hen sensor state equa	Is COMP	
15	Reserved	To ensure c	ompatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
14:12	PRSACT	0xX	RW	Configure transition action
	Configure which ac	tion to perform when s	sensor state equal	s COMP

PRSCNT = 0		
Mode	Value	Description
NONE	0	No PRS pulses generated
PRS0	1	Generate pulse on LESPRS0
PRS1	2	Generate pulse on LESPRS1
PRS01	3	Generate pulse on LESPRS0 and LESPRS1
PRS2	4	Generate pulse on LESPRS2
PRS02	5	Generate pulse on LESPRS0 and LESPRS2
PRS12	6	Generate pulse on LESPRS1 and LESPRS2
PRS012	7	Generate pulse on LESPRS0, LESPRS1 and LESPRS2
PRSCNT = 1		

2010-12-21 - d0034_Rev0.90 www.energymicro.com

Bit	Name	Reset	Access	Description	
	PRSCNT = 0				
	NONE	0			Do not count
	UP	1			Count up
	DOWN	2			Count down
	PRS2	4			Generate pulse on LESPRS2
	UPANDPRS2	5			Count up and generate pulse on LESPRS2.
	DOWNANDPRS2	6			Count down and generate pulse on LESPRS2.
11:8	NEXTSTATE	0xX	RW	Next state inc	dex
	Index of next state to I	oe entered if the	sensor state equals	s COMP	
7:4	MASK	0xX	RW	Sensor mask	
	Set bit X to exclude se	ensor X from eval	uation.		
3:0	COMP	0xX	RW	Sensor comp	are value
	State transition is trigg	ered when senso	or state equals COI	MP	

21.5.25 LESENSE_STx_TCONFB - State transition configuration B (Async Reg)

For more information about Asynchronous Registers please see Section 5.3 (p. 18).

Offset										,					Bi	t Po	ositi	on														
0x204	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	41	13	12	11	10	6	8	7	9	2	4	8	2	-	0
Reset		•	•							•						×			XXO			XX	<u> </u>			>	<u> </u>			XX		
Access																₩			ĕ			×8					Ž			8		
Name																SETIF			PRSACT			NEXTSTATE	5			N N	40 CM			aWCC		

Bit	Name	Reset	Access	Description
31:17	Reserved	To ensure co	ompatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
16	SETIF	X	RW	Set interrupt flag
	Set interrupt flag when	sensor state equa	ls COMP	
15	Reserved	To ensure co	ompatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
14:12	PRSACT	0xX	RW	Configure transition action

Configure which action to perform when sensor state equals COMP

PRSCNT = 0		
Mode	Value	Description
NONE	0	No PRS pulses generated
PRS0	1	Generate pulse on PRS0
PRS1	2	Generate pulse on PRS1
PRS01	3	Generate pulse on PRS0 and PRS1
PRS2	4	Generate pulse on PRS2
PRS02	5	Generate pulse on PRS0 and PRS2
PRS12	6	Generate pulse on PRS1 and PRS2
PRS012	7	Generate pulse on PRS0, PRS1 and PRS2
PRSCNT = 1		
NONE	0	Do not count
UP	1	Count up
DOWN	2	Count down
PRS2	4	Generate pulse on PRS2

Downloaded from Houlescom 2010-12-21 - d0034_Rev0.90 359 www.energymicro.com

Bit	Name	Reset	Access	Description									
	PRSCNT = 0												
	UPANDPRS2	5		Count up and generate pulse on PRS2.									
	DOWNANDPRS2	6		Count down and generate pulse on PRS2.									
11:8	NEXTSTATE	0xX	RW	Next state index									
	Index of next state to	be entered if the sen	sor state equals	COMP									
7:4	MASK	0xX	RW	Sensor mask									
	Set bit X to exclude sensor X from evaluation.												
3:0	COMP	0xX	RW	Sensor compare value									
	State transition is trigg	ered when sensor s	tate equals COM	P									

21.5.26 LESENSE_BUFx_DATA - Scan results (Async Reg)

For more information about Asynchronous Registers please see Section 5.3 (p. 18).

Offset	Bit Po												osition																			
0x280	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	7	10	6	80	7	9	2	4	က	2	-	0
Reset																								>>	OXXXXX							
Access												» ≫																				
Name																								F C	DAIA							

Bit	Name	Reset	Access	Description
31:16	Reserved	To ensure com	patibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
15:0	DATA	0xXXXX	RW	Scan result buffer

21.5.27 LESENSE_CHx_TIMING - Scan configuration (Async Reg)

For more information about Asynchronous Registers please see Section 5.3 (p. 18).

Offset		Bit Position																														
0x2C0	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	9	2	4	3	2	-	0
Reset																0xxx							0xxx						?	OXXX		
Access									RW							RW							RW									
Name																MEASUREDLY							SAMPLEDLY							EXIME		

Bit	Name	Reset	Access	Description
31:20	Reserved	To ensure co	ompatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
19:13	MEASUREDLY	0xXX	RW	Set measure delay
	Configure measure de	elay. Sensor measu	ring is delayed for	MEASUREDLY+1 EXCLK cycles.

Bit	Name	Reset	Access	Description
12:6	SAMPLEDLY	0xXX	RW	Set sample delay
	Configure sample delay. S	ampling will occur	after SAMPLE	DLY+1 SAMPLECLK cycles.
5:0	EXTIME	0xXX	RW	Set excitation time
	Configure excitation time.	Excitation will last E	EXTIME+1 EX	CLK cycles.

21.5.28 LESENSE_CHx_INTERACT - Scan configuration (Async Reg)

For more information about Asynchronous Registers please see Section 5.3 (p. 18).

Offset						Bit Po	sitio	on														
0x2C4	30 29 28	22 23 24 25 25 25 25 25 25 25 25 25 25 25 25 25	20	61	7 9	- 16	15	4 ξ 5	12	11	10	ი	∞	_	9	2	-	1	က	7	-	- c
Reset			' '	×	× >	, >	Y X	XXO	×							XXXX		ļ		-		
Access				₩ 8	₩ 0		<u>}</u>	N.	R ⊗							Α						
Name				ALTEX	SAMPLECLK		E XIMOD	SETIF	SAMPLE							ACMPTHRES						
Bit	Name	Reset	A	\cce	SS	De	scri	ption														
31:20	Reserved	To ensure o	compatib	ility v	vith fu	ıture d	evice	s, alwa	ays u	rite l	bits i	o 0.	Mor	e inf	orn	natio	n i	n S	ect	ion	2.1	(p. 3
19	ALTEX	Х	R	W		Us	e alte	rnativ	e ex	cite	pin											
	If set, alternative	e excite pin will be used f	or excita	tion																		
18	SAMPLECLK	Х	R	W		Sel	ect o	lock u	sed	for t	imiı	ng o	f sa	mpl	e de	elay	,					
	Value	Mode			Des	cription	1															
	0	LFACLK			_			used for		-												
	1	AUXHFRCO			AU)	KHFRC	O will	be use	d for	iming	9											
17	EXCLK	X	R	W		Sel	ect o	lock u	sed	for e	exci	tatic	n ti	min	g							
	Value	Mode			Des	cription	1															
	0	LFACLK			LFA	CLK w	ill be ı	used for	timir	g												
	1	AUXHFRCO			AUX	KHFRC	O will	be use	d for	iming	9											
16:15	EXMODE GPIO mode for tand 15.	0xX the excitation phase of t		.W sequ	ence			O mod		onl	y av	ailab	ole o	n ch	anr	nels	0,	1, 2	2, 3	3, 1:	2, 1	3, 14
	Value	Mode			Des	cription	1															
	0	DISABLE				abled																
	1	HIGH						is drive														
	2	LOW			_			is drive	n low													
	3	DACOUT			DAG	C outpu	t															
14:13	SETIF Select interrupt of	0xX generation mode for CH		W ot flac	1.	En	able	interru	ıpt g	enei	ratio	n										
	Value	Mode				cription	1															
					+																	
	0	NONE			No	interrup	t is ge	enerated	t													
	1	NONE LEVEL			_			if the s		trigg	jers.											
					Set	interru	ot flag		ensoi			ie se	nsor	state	<u> </u>							

Downloaded from Hoods, com 2010-12-21 - d0034_Rev0.90 361 www.energymicro.com

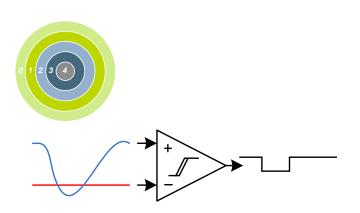
Set interrupt flag on negative edge on the sensor state

NEGEDGE

Set counter threshold

Bit	Name	Reset	Access	Description
12	SAMPLE	X	RW	Select sample mode
	Select if ACMP o	utput or counter output sh	ould be used	in comparison
	Value	Mode	1	Description
	0	COUNTER	(Counter output will be used in comparison
	1	ACMP	,	ACMP output will be used in comparison
11:0	ACMPTHRES	0xXXX	RW	Set ACMP threshold
	Select ACMP three	eshold.		

21.5.29 LESENSE_CHx_EVAL - Scan configuration (Async Reg)


For more information about Asynchronous Registers please see Section 5.3 (p. 18).

1 01 1	11016 11				011	<u>и</u> .				<u> </u>												,,,,			(1	•		<i>,</i> .						
Offset															Ві	it Po	siti	on																
0x2C8	31	29	ì	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	7	10		ກ	∞	7	- (ن ن	ဂ	4	က	2		- 0
Reset													×	×	×	×										0xxxxx								
Access													RW	₩	₩ W	₩ N									i	¥ ≷								
Name													SCANRESINV	STRSAMPLE	DECODE	COMP									i i	COMPTHRES								
Bit	Nam											F	\cc	ess	;	De	scr	iptic	on															
31:20	Rese	ved											ility	with	n futu	ıre d	evice	es, a	lwa	iys I	vrite	bits	s to	0. 1	Лor	e ir	nfor	ma	tion	in i	Sec	tion	2.1	(p. 3)
19	SCAN	IRES	SIN	V				Χ				R	W			En	able	inv	ers	ion	of r	esu	lt											
	If set,	the I	oit s	store	ed i	n S	CAI	NRE	S wil	l be	inve	rted	•																					
18	STRS	AMF	LE					Χ				R	W			Sel	ect	if co	un	ter	resu	lt s	hou	uld	be	sto	ored	d						
	If set,	the o	cou	ntei	r va	llue	will	be s	tore	d an	d av	ailat	ole i	n th	e res	sult b	uffe	r																
17	DEC	DE						Χ				R	W			Sei	nd re	esul	t to	de	cod	er												
	If set,	the i	es	ult fi	rom	thi	s ch	nann	el wi	ll be	shift	ted i	nto	the	decc	der	regis	ster.																
16	COM	>						Χ				R	W			Sel	ect	mod	le f	or c	oun	ter	COI	mpa	aris	son	1							
	Set co	mpa	are	mod																														
	Value				N	lode)							[Descr	iptior	1																	
	0				L	ESS	3								Set in	terrup	ot flag	if co	ount	er va	alue i	s les	s th	an (CTR	RTH	RES	SHC	DLD	, or	if the	ACI	MP	output
	1				G	iΕ										terru _l CMP				ter v	/alue	is g	reat	ter t	han	, or	equ	ual 1	to C	TRT	THR	ESH	OLI	O, or if
15:0	COM	PTHE	RES	3				0x)	(XXX	K		R	W			De	cisic	n th	re	sho	ld fo	r c	our	iter										

Downloaded from Headles com 2010-12-21 - d0034_Rev0.90 362 www.energymicro.com

22 ACMP - Analog Comparator

Quick Facts

What?

The ACMP (Analog Comparator) compares two analog signals and returns a digital value telling which is greater.

Why?

Applications often do not need to know the exact value of an analog signal, only if it has passed a certain threshold. Often the voltage must be monitored continuously, which requires extremely low power consumption.

How?

Available down to Energy Mode 3 and using as little as 100 nA, the ACMP can wake up the system when input signals pass the threshold. The analog comparator can compare two analog signals or one analog signal and a highly configurable internal reference.

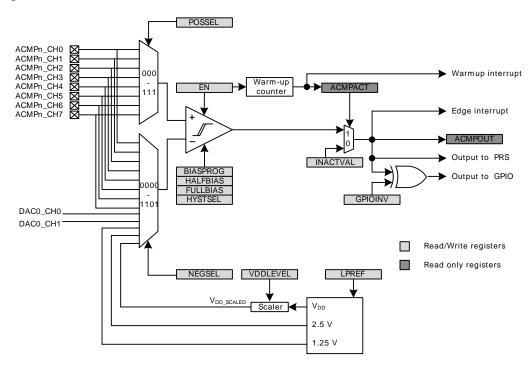
22.1 Introduction

The Analog Comparator is used to compare the voltage of two analog inputs, with a digital output indicating which input voltage is higher. Inputs can either be one of the selectable internal references or from external pins. Response time and thereby also the current consumption can be configured by altering the current supply to the comparator.

22.2 Features

- 8 selectable external positive inputs
- 8 selectable external negative inputs
- 5 selectable internal negative inputs
 - Internal 1.25 V bandgap
 - Internal 2.5 V bandgap
 - V_{DD} scaled by 64 selectable factors
 - DAC channel 0 and 1
- Low power mode for internal V_{DD} and bandgap references
- · Selectable hysteresis
 - 8 levels between 0 and ±70 mV
- Selectable response time
- · Asynchronous interrupt generation on selectable edges
 - · Rising edge
 - Falling edge
 - Both edges
- Operational in EM0-EM3
- Dedicated capacitive sense mode with up to 8 inputs
 - Adjustable internal resistor
- Configurable inversion of comparator output

Downloaded from H couls com 363 www.energymicro.com



- · Configurable output when inactive
- · Comparator output direct on PRS
- · Comparator output on GPIO through alternate functionality
 - · Output inversion available

22.3 Functional Description

An overview of the ACMP is shown in Figure 22.1 (p. 364).

Figure 22.1. ACMP Overview

The comparator has two analog inputs, one positive and one negative. When the comparator is active, the output indicates which of the two input voltages is higher. When the voltage on the positive input is higher than the voltage on the negative input, the digital output is high and vice versa.

The output of the comparator can be read in the ACMPOUT bit in ACMPn_STATUS. It is possible to switch inputs while the comparator is enabled, but all other configuration should only be changed while the comparator is disabled.

22.3.1 Warm-up Time

The analog comparator is enabled by setting the EN bit in ACMPn_CTRL. When this bit is set, the comparator must stabilize before becoming active and the outputs can be used. This time period is called the warm-up time. The warm-up time is a configurable number of peripheral clock (HFPERCLK) cycles, set in WARMTIME, which should be set to at least 10 µs. When the comparator is enabled and warmed up, the ACMPACT bit in ACMPn_STATUS will indicate that the comparator is active. The output value when the comparator is inactive is set to the value in INACTVAL in ACMPn_CTRL (see Figure 22.1 (p. 364)).

An edge interrupt will be generated after the warm-up time if edge interrupt is enabled and the value set in INACTVAL is different from ACMPOUT after warm-up.

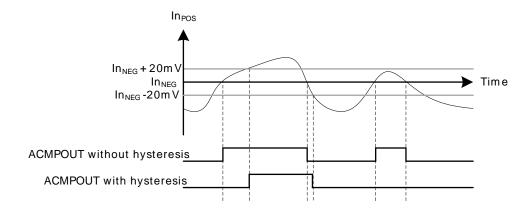
One should wait until the warm-up period is over before entering EM2 or EM3, otherwise no comparator interrupts will be detected. EM1 can still be entered during warm-up. After the warm-up period is completed, interrupts will be detected in EM2 and EM3.

22.3.2 Response Time

There is a delay from when the actual input voltage changes polarity, to when the output toggles. This period is called the response time and can be altered by increasing or decreasing the bias current to the comparator through the BIASPROG, FULLBIASPROG and HALFBIAS fields in the ACMPn_CTRL register, as described in Table 22.1 (p. 365). Setting the HALFBIAS bit in ACMPn_CTRL effectively halves the current as observed in Table 22.1 (p. 365). Setting a lower bias current will result in lower power consumption, but a longer response time.

If the FULLBIAS bit is set, the highest hysteresis level should be used to avoid glitches on the output.

Table 22.1. Bias Configuration


BIASPROG		Bias Cur	rent (μA)	
	FULLBIAS=0, HALFBIAS=1	FULLBIAS=0, HALFBIAS=0	FULLBIAS=1, HALFBIAS=1	FULLBIAS=1, HALFBIAS=0
0b0000	0.05	0.1	3.3	6.5
0b0001	0.1	0.2	6.5	13
0b0010	0.2	0.4	13	26
0b0011	0.3	0.6	20	39
0b0100	0.4	0.8	26	52
0b0101	0.5	1.0	33	65
0b0110	0.6	1.2	39	78
0b0111	0.7	1.4	46	91
0b1000	1.0	2.0	65	130
0b1001	1.1	2.2	72	143
0b1010	1.2	2.4	78	156
0b1011	1.3	2.6	85	169
0b1100	1.4	2.8	91	182
0b1101	1.5	3.0	98	195
0b1110	1.6	3.2	104	208
0b1111	1.7	3.4	111	221

22.3.3 Hysteresis

In the analog comparator, hysteresis can be configured to 8 different levels, including off which is level 0, through the HYSTSEL field in ACMPn_CTRL. When the hysteresis level is set above 0, the digital output will not toggle until the positive input voltage is at a voltage equal to the hysteresis level above or below the negative input voltage (see Figure 22.2 (p. 366)). This feature can be used to filter out uninteresting input fluctuations around zero and only show changes that are big enough to breach the hysteresis threshold.

Figure 22.2. 20 mV Hysteresis Selected

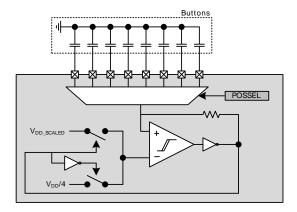
22.3.4 Input Selection

The POSSEL and NEGSEL fields in ACMPn_INPUTSEL controls which signals are connected to the two inputs of the comparator. 8 external pins are available for both the negative and positive input. For the negative input, 5 additional internal reference sources are available; 1.25 V bandgap, 2.5V bandgap, DAC channel 0, DAC channel 1, and V_{DD} . The V_{DD} reference can be scaled by a configurable factor, which is set in VDDLEVEL (in ACMPn_INPUTSEL) according to the following formula:

$$V_{DD}$$
 Scaled
$$V_{DD_SCALED} = V_{DD} \times VDDLEVEL/63 \tag{22.1}$$

A low power reference mode can be enabled by setting the LPREF bit in ACMPn_INPUTSEL. In this mode, the power consumption in the reference buffer (V_{DD} and bandgap) is lowered at the cost of accuracy. Low power mode will only save power if V_{DD} with VDDLEVEL higher than 0 or a bandgap reference is selected.

Normally the analog comparator input mux is disabled when the EN (in ACMPn CTRL) bit is set low. However if the MUXEN bit in ACMPn_CTRL is set, the mux is enabled regardless of the EN bit. This will minimize kickback noise on the mux inputs when the EN bit is toggled.


22.3.5 Capacitive Sense Mode

The analog comparator includes specialized hardware for capacitive sensing of passive push buttons. Such buttons are traces on PCB laid out in a way that creates a parasitic capacitor between the button and the ground node. Because a human finger will have a small intrinsic capacitance to ground, the capacitance of the button will increase when the button is touched. The capacitance is measured by including the capacitor in a free-running RC oscillator (see Figure 22.3 (p. 367)). The frequency produced will decrease when the button is touched compared to when it is not touched. By measuring the output frequency with a timer (e.g. through PRS), the change in capacitance can be calculated.

The analog comparator contains a complete feedback loop including an optional internal resistor. This resistor is enabled by setting the CSRESEN bit in ACMPn_INPUTSEL. The resistance can be set to one of four values by configuring the CSRESSEL bits in ACMPn INPUTSEL. If the internal resistor is not enabled, the circuit will be open. The capacitive sense mode is enabled by setting the NEGSEL field in ACMPn_INPUTSEL to 1011. The input pin is selected through the POSSEL bits in ACMPn_INPUTSEL. The scaled V_{DD} in Figure 22.3 (p. 367) can be altered by configuring the VDDLEVEL in ACMPn INPUTSEL. It is recommended to set the hysteresis (HYSTSEL in ACMPn_CTRL) higher than the lowest level when using the analog comparator in capacitive sense mode.

Figure 22.3. Capacitive Sensing Set-up

22.3.6 Interrupts and PRS Output

The analog comparator includes an edge triggered interrupt flag (EDGE in ACMPn_IF). If either IRISE and/or IFALL in ACMPn_CTRL is set, the EDGE interrupt flag will be set on rising and/or falling edge of the comparator output respectively. An interrupt request will be sent if the EDGE interrupt flag in ACMPn_IF is set and enabled through the EDGE bit in ACMPn_IEN. The edge interrupt can also be used to wake up the device from EM3-EM1.

The analog comparator also includes an interrupt flag, WARMUP in ACMPn_IF, which is set when a warm-up sequence has finished. An interrupt request will be sent if the WARMUP interrupt flag in ACMPn_IF is set and enabled through the WARMUP bit in ACMPn_IEN.

The synchronized comparator outputs are also available as a PRS output signals.

22.3.7 Output to GPIO

The output from the comparator and the capacitive sense output are available as alternate functions to the GPIO pins. Set the ACMPPEN bit in ACMPn_ROUTE to enable output to pin, and the LOCATION bits to select output location. The GPIO-pin must also be set as output. The output to the GPIO can be inverted by setting the GPIOINV bit in ACMPn_CTRL.

Downloaded from H couls com 2010-12-21 - d0034_Rev0.90 367 www.energymicro.com

22.4 Register Map

The offset register address is relative to the registers base address.

Offset	Name	Туре	Description
0x000	ACMPn_CTRL	RW	Control Register
0x004	ACMPn_INPUTSEL	RW	Input Selection Register
0x008	ACMPn_STATUS	R	Status Register
0x00C	ACMPn_IEN	RW	Interrupt Enable Register
0x010	ACMPn_IF	R	Interrupt Flag Register
0x014	ACMPn_IFS	W1	Interrupt Flag Set Register
0x018	ACMPn_IFC	W1	Interrupt Flag Clear Register
0x01C	ACMPn_ROUTE	RW	I/O Routing Register

22.5 Register Description

Set analog comparator warm-up time.

22.5.1 ACMPn_CTRL - Control Register

Offset															Bi	t Po	siti	on														
0x000	33	30	29	28	27	26	22	24	23	22	21	20	19	18	17	16	15	14	13	12	1	10	6	8	7	9	2	4	က	2	-	0
Reset	0	-				0x7	3							•	0	0							000				0x0	,	0	0	0	0
Access	₩ W	N N				× ×									§ S	N.					-						₹		S.	§ N	RW	N N
Name	FULLBIAS	HALFBIAS				BIASPROG									IFALL	IRISE							WARMTIME				HYSTSEL		GPIOINV	INACTVAL	MUXEN	E
Bit	Na	me						Re	set			-	Acc	ess	S	De	scr	ipti	on													
31	FU	LLBI	AS					0				F	RW			Ful	II Bia	as C	urr	ent												
	Set	this	bit t	o 1 fo	or fu	ll bia	as c	urre	nt in	ac	corda	ance	wit	h. T	able	22.1	(p.	365) .													
30	НА	LFBI	IAS					1				F	RW			На	lf Bi	as C	urr	ent												
	Set	this	bit t	o 1 to	o ha	lve t	the I	bias	curr	ent	in a	ccor	dano	се и	vith. T	Table	e 22.	1 (p	. 36	65) .												
29:28	Re	serve	ed			To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)												o. 3)														
27:24	BIA	SPF	ROG					0x7	,			F	RW			Bia	ıs C	onfi	gura	atio	n											
	The	ese b	oits c	ontro	ol the	e bia	as c	urre	nt le	vel	in ac	cord	danc	e w	ith. T	able	22.	1 (p	. 36	5) .												
23:18	Re	serve	ed					То	ensi	ure	com	patik	oility	with	h futu	ire d	evice	es, a	alwa	ys v	vrite	bits	to 0.	Mor	e inf	orma	atio	n in S	Sect	ion 2	.1 (p	o. 3)
17	IFA	LL						0				F	RW			Fal	ling	Edg	ge lı	nter	rupt	Ser	se									
	Set	this	bit t	o 1 to	se	the	EC	OGE	inte	rrup	t flaç	g on	falli	ng e	edges	s of o	com	oara	tor	outp	ut.											
	Va	lue			М	ode								1	Descr	iptior	1															
	0				DI	SAB	BLED)						I	nterru	ıpt fla	ag is	not s	et o	n fall	ing e	dges										
	1				EI	NABI	LED)						I	nterru	ıpt fla	ag is	set o	n fal	lling	edge	s										
16	IRI	SE						0				F	RW			Ris	ing	Edg	je Ir	nteri	rupt	Sen	se									
	Set	this	bit t	o 1 to	se se	the	EC	OGE	inte	rrup	t flaç	g on	risir	ng e	dges	of c	omp	arat	tor c	outp	ut.											
	Va	lue			М	ode								ſ	Descr	iptior	1															
	0				_	SAB								_	nterru	•	_					_										_
	1				EI	NABI	LED							I	nterru	ıpt fla	ag is	set o	n ris	sing 6	edges	3										
15:11	Re	serve	ed					То	ensi	ure	com	patik	oility	with	h futu	ire d	evice	es, a	ilwa	ys v	vrite	bits	to 0.	Mor	e inf	orma	atio	n in S	Sect	ion 2	.1 (p	o. 3)
10:8	WA	RM	TIME					0x0)			F	RW			Wa	rm-	up T	ime	•												

Downloaded from Heads Company 2010-12-21 - d0034_Rev0.90 368 www.energymicro.com

31:30

Reserved

Bit	Name	Reset	Acce	ss Description
	Value	Mode		Description
	0	4CYCLES		4 HFPERCLK cycles
	1	8CYCLES		8 HFPERCLK cycles
	2	16CYCLES		16 HFPERCLK cycles
	3	32CYCLES		32 HFPERCLK cycles
	4	64CYCLES		64 HFPERCLK cycles
	5	128CYCLES		128 HFPERCLK cycles
	6	256CYCLES		256 HFPERCLK cycles
	7	512CYCLES		512 HFPERCLK cycles
7	Reserved	To ensure	compatibility w	vith future devices, always write bits to 0. More information in Section 2.1 (p. 3)
6:4	HYSTSEL	0x0	RW	Hysteresis Select
	Select hystere	sis level. The hysteresis le	evels can vary	, please see the electrical characteristics for the device for more information.
	Value	Mode		Description
	0	HYST0		No hysteresis
	1	HYST1		~15 mV hysteresis
	2	HYST2		~22 mV hysteresis
	3	HYST3		~29 mV hysteresis
	4	HYST4		~36 mV hysteresis
	5	HYST5		~43 mV hysteresis
	6	HYST6		~50 mV hysteresis
	7	HYST7		~57 mV hysteresis
3	GPIOINV	0	RW	Comparator GPIO Output Invert
	Set this bit to 1	to invert the comparator	alternate func	tion output to GPIO.
	Value	Mode		Description
	0	NOTINV		The comparator output to GPIO is not inverted
	1	INV		The comparator output to GPIO is inverted
2	INACTVAL	0	RW	Inactive Value
	The value of the	nis bit is used as the comp	parator output	when the comparator is inactive.
	Value	Mode		Description
	0	LOW		The inactive value is 0
	1	HIGH		The inactive state is 1
1	MUXEN	0	RW	Input Mux Enable
	Enable Input N	Mux. Setting the EN bit will	l also enable ti	he input mux.
0	EN	0	RW	Analog Comparator Enable
	Enable/disable	analog comparator.		

22.5.2 ACMPn_INPUTSEL - Input Selection Register

Offset															Bi	t Po	siti	on														
0x004	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	9	2	4	3	2	-	0
Reset			020	OX O				0								-						0x0				ć	8XO				0x0	
Access			2	<u>}</u>				S.								₩ M						₩ }				2	<u>}</u>					
Name			000	COREODEL				CSRESEN								LPREF						VDDLEVEL				I C L	NEGOEL				POSSEL	

 $To \ ensure \ compatibility \ with \ future \ devices, \ always \ write \ bits \ to \ 0. \ More \ information \ in \ Section \ 2.1 \ (p. \ 3)$

Description

Bit	Name	Reset	Acces	ss Description
29:28	CSRESSEL	0x0	RW	Capacitive Sense Mode Internal Resistor Select
	These bits sele device datashe		the internal	capacitive sense resistor. Resulting actual resistor values are given in the
	Value	Mode		Description
	0	RES0		Internal capacitive sense resistor value 0
	1	RES1		Internal capacitive sense resistor value 1
	2	RES2		Internal capacitive sense resistor value 2
	3	RES3		Internal capacitive sense resistor value 3
27:25	Reserved	To ensure co	mpatibility w	ith future devices, always write bits to 0. More information in Section 2.1 (p. 3)
24	CSRESEN Enable/disable	0 the internal capacitive sens	RW se resistor.	Capacitive Sense Mode Internal Resistor Enable
23:17	Reserved	To ensure co	mpatibility w	ith future devices, always write bits to 0. More information in Section 2.1 (p. 3)
16	LPREF	1	RW	Low Power Reference Mode
	Enable low pow	er mode for VDD and band	dgap referen	ces.
	Value	Description		
	0	Low power mode	disabled	
	1	Low power mode	enabled	
15:14	Reserved	To ensure co	mpatibility w	rith future devices, always write bits to 0. More information in Section 2.1 (p. 3)
13:8	VDDLEVEL	0x00	RW	VDD Reference Level
	Select scaling f	actor for VDD reference lev	vel.V _{DD_SCAL}	$ED = V_{DD} \times VDDLE VEL \times 50 \text{mV}/3.8 \text{V}$
7:4	NEGSEL	0x8	RW	Negative Input Select
	Select negative	input.		
	Value	Mode		Description
	0	CH0		Channel 0 as negative input
	1	CH1		Channel 1 as negative input
	2	CH2		Channel 2 as negative input
	3	CH3		Channel 3 as negative input
	4	CH4		Channel 4 as negative input
	5	CH5		Channel 5 as negative input
	6	CH6		Channel 6 as negative input
	7	CH7		Channel 7 as negative input
	8	1V25		1.25 V as negative input
	9	2V5		2.5 V as negative input
	10	VDD		Scaled VDD as negative input
	11	CAPSENSE		Capacitive sense mode
	12	DAC0CH0		DAC0 channel 0
	13	DAC0CH1		DAC0 channel 1
3	Reserved	To ensure co	mpatibility w	ith future devices, always write bits to 0. More information in Section 2.1 (p. 3)
2:0	POSSEL	0x0	RW	Positive Input Select
	Select positive	input.		
	Value	Mode		Description
	0	CH0		Channel 0 as positive input
	1	CH1		Channel 1 as positive input
	2	CH2		Channel 2 as positive input
	3	CH3		Channel 3 as positive input
	4	CH4		Channel 4 as positive input
	5	CH5		Channel 5 as positive input
	6	CH6		Channel 6 as positive input
	7	CH7		Channel 7 as positive input

Downloaded from Elecules com

22.5.3 ACMPn_STATUS - Status Register

Offset															Bi	t Po	siti	on														
0x008	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	41	13	12	1	10	6	80	7	9	2	4	က	2	-	0
Reset			•		•							•					•									•			•		0	0
Access																															œ	~
Name																															ACMPOUT	ACMPACT

Bit	Name	Reset	Access	Description
31:2	Reserved	To ensure c	ompatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
1	ACMPOUT	0	R	Analog Comparator Output
	Analog comparator	output value.		
0	ACMPACT	0	R	Analog Comparator Active
	Analog comparator	active status.		

22.5.4 ACMPn_IEN - Interrupt Enable Register

Offset													•		Bi	t Po	siti	on														
0x00C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	11	10	6	ω	7	9	2	4	8	7	-	0
Reset			•	•				•			•					•			•											,	0	0
Access																															R ≪	N N
Name																															WARMUP	EDGE

Bit	Name	Reset	Access	Description
31:2	Reserved	To ensure cor	mpatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
1	WARMUP	0	RW	Warm-up Interrupt Enable
	Enable/disable interrupt	on finished warm-u	ıp.	
0	EDGE	0	RW	Edge Trigger Interrupt Enable
	Enable/disable edge trig	gered interrupt.		

22.5.5 ACMPn_IF - Interrupt Flag Register

Offset															Bi	t Po	siti	on														
0x010	31	30	29	28	27	26	22	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	2	4	ო	2	-	0
Reset																															0	0
Access																															ď	~
Name																															WARMUP	EDGE

Downloaded from I 2010-12-21 - d0034_Rev0.90 371 www.energymicro.com

Bit	Name	Reset	Access	Description
31:2	Reserved	To ensure co	mpatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
1	WARMUP	0	R	Warm-up Interrupt Flag
	Indicates that the a	nalog comparator warn	n-up period is finis	shed.
0	EDGE	0	R	Edge Triggered Interrupt Flag
	Indicates that there	has been a rising or fa	alling edge on the	analog comparator output.

22.5.6 ACMPn_IFS - Interrupt Flag Set Register

Offset															Bi	t Pc	siti	on														
0x014	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	1	10	6	8	7	9	2	4	က	7	-	0
Reset																			·			•									0	0
Access																															W	W
Name																															WARMUP	EDGE

Bit	Name	Reset	Access	Description
31:2	Reserved	To ensure co	mpatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
1	WARMUP	0	W1	Warm-up Interrupt Flag Set
	Write to 1 to set wa	rm-up finished interrup	t flag.	
0	EDGE	0	W1	Edge Triggered Interrupt Flag Set
	Write to 1 to set ed	ge triggered interrupt fla	ag.	

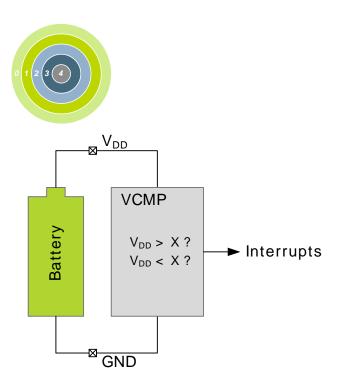
22.5.7 ACMPn_IFC - Interrupt Flag Clear Register

Offset															Bi	t Pc	siti	on														
0x018	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	∞	7	9	2	4	က	7	-	0
Reset				•											•			•													0	0
Access																															W1	W1
Name																															WARMUP	EDGE

Bit	Name	Reset	Access	Description
31:2	Reserved	To ensure co	ompatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
1	WARMUP	0	W1	Warm-up Interrupt Flag Clear
	Write to 1 to clear v	varm-up finished interr	upt flag.	
0	EDGE	0	W1	Edge Triggered Interrupt Flag Clear
	Write to 1 to clear e	edge triggered interrup	t flag.	

2010-12-21 - d0034_Rev0.90 www.energymicro.com

22.5.8 ACMPn_ROUTE - I/O Routing Register


Offset															Bi	t Pc	siti	on														
0x01C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	41	13	12	1	10	6	8	7	9	2	4	က	2	-	0
Reset							•			•							•				•		0x0								•	0
Access																							R™									R W
Name																							LOCATION									ACMPPEN

Bit	Name	Reset	Acces	ss Description
31:11	Reserved	To ensure	compatibility wi	ith future devices, always write bits to 0. More information in Section 2.1 (p. 3)
10:8	LOCATION	0x0	RW	I/O Location
	Decides the loc	cation of the ACMP I/O pi	n.	
	Value	Mode		Description
	0	LOC0		Location 0
	1	LOC1		Location 1
	2	LOC2		Location 2
	3	LOC3		Location 3
7:1	Reserved	To ensure	compatibility wi	ith future devices, always write bits to 0. More information in Section 2.1 (p. 3)
0	ACMPPEN	0	RW	ACMP Output Pin Enable
	Enable/disable	analog comparator outpo	ut to pin.	

Downloaded from Elecules com

23 VCMP - Voltage Comparator

Quick Facts

What?

The Voltage Supply Comparator (VCMP) monitors the input voltage supply and generates software interrupts on events using as little as 100 nA.

Why?

The VCMP can be used for simple power supply monitoring, e.g. for a battery level indicator.

How?

The scaled power supply is compared to a programmable reference voltage, and an interrupt can be generated when the supply is higher or lower than the reference. The VCMP can also be duty-cycled by software to further reduce the energy consumption.

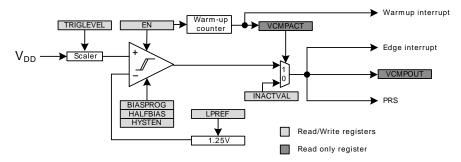
23.1 Introduction

The Voltage Supply Comparator is used to monitor the supply voltage from software. An interrupt can be generated when the supply falls below or rises above a programmable threshold.

Note

Note that VCMP comes in addition to the Power-on Reset and Brown-out Detector peripherals, that both generate reset signals when the voltage supply is insufficient for reliable operation. VCMP does not generate reset, only interrupt. Also note that the ADC is capable of sampling the input voltage supply.

23.2 Features


- Voltage supply monitoring
- Scalable V_{DD} in 64 steps selectable as positive comparator input
- Internal 1.25 V bandgap reference
- Low power mode for internal V_{DD} and bandgap references
- · Selectable hysteresis
 - 0 or ±20 mV
- · Selectable response time
- · Asynchronous interrupt generation on selectable edges
 - · Rising edge
 - · Falling edge
 - · Rising and Falling edges
- · Operational in EM0-EM3
- Comparator output direct on PRS
- · Configurable output when inactive to avoid unwanted interrupts

23.3 Functional Description

An overview of the VCMP is shown in Figure 23.1 (p. 375).

Figure 23.1. VCMP Overview

The comparator has two analog inputs, one positive and one negative. When the comparator is active, the output indicates which of the two input voltages is higher. When the voltage on the positive input is higher than the negative input voltage, the digital output is high and vice versa.

The output of the comparator can be read in the VCMPOUT bit in VCMP_STATUS. Configuration registers should only be changed while the comparator is disabled.

23.3.1 Warm-up Time

VCMP is enabled by setting the EN bit in VCMP_CTRL. When this bit is set, the comparator must stabilize before becoming active and the outputs can be used. This time period is called the warm-up time. The warm-up time is a configurable number of HFPERCLK cycles, set in WARMTIME, which should be set to at least 10 µs. When the comparator is enabled and warmed up, the VCMPACT bit in VCMP_STATUS will be set to indicate that the comparator is active.

As long as the comparator is not enabled or not warmed up, VCMPACT will be cleared and the comparator output value is set to the value in INACTVAL in VCMP_CTRL.

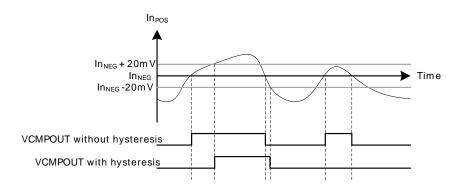
One should wait until the warm-up period is over before entering EM2 or EM3, otherwise no comparator interrupts will be detected. EM1 can still be entered during warm-up. After the warm-up period is completed, interrupts will be detected in EM2 and EM3.

23.3.2 Response Time

There is a delay from when the actual input voltage changes polarity, to when the output toggles. This period is called the response time and can be altered by increasing or decreasing the bias current to the comparator through the BIAS and HALFBIAS fields in VCMP_CTRL as shown in Table 23.1 (p. 375). Setting a lower bias current will result in lower power consumption, but a longer response time.

Table 23.1. Bias Configuration

BIAS	Bias Cu	rrent (µA)
	HALFBIAS=0	HALFBIAS=1
0b0000	0.1	0.05
0b0001	0.2	0.1
0b0010	0.4	0.2
0b0011	0.6	0.3
0b0100	0.8	0.4
0b0101	1.0	0.5



BIAS	Bias Cu	rrent (μA)
	HALFBIAS=0	HALFBIAS=1
0b0110	1.2	0.6
0b0111	1.4	0.7
0b1000	2.0	1.0
0b1001	2.2	1.1
0b1010	2.4	1.2
0b1011	2.6	1.3
0b1100	2.8	1.4
0b1101	3.0	1.5
0b1110	3.2	1.6
0b1111	3.4	1.7

23.3.3 Hysteresis

In the voltage supply comparator, hysteresis can be enabled by setting HYSTEN in VCMP_CTRL. When HYSTEN is set, the digital output will not toggle until the positive input voltage is at least 20mV above or below the negative input voltage. This feature can be used to filter out uninteresting input fluctuations around zero and only show changes that are big enough to breach the hysteresis threshold.

Figure 23.2. VCMP 20 mV Hysteresis Enabled

23.3.4 Input Selection

The positive comparator input is always connected to the scaled power supply input. The negative comparator input is connected to the internal 1.25 V bandgap reference. The V_{DD} trigger level can be configured by setting the TRIGLEVEL field in VCMP_CTRL according to the following formula:

VCMP
$$V_{DD}$$
 Trigger Level
$$V_{DD \text{ Trigger Level}} = 1.667 \text{V} + 0.034 \text{V} \times \text{TRIGLEVEL}$$
 (23.1)

A low power reference mode can be enabled by setting the LPREF bit in VCMP_INPUTSEL. In this mode, the power consumption in the reference buffer (V_{DD} and bandgap) is lowered at the cost of accuracy.

23.3.5 Interrupts and PRS Output

The VCMP includes an edge triggered interrupt flag (EDGE in VCMP_IF). If either IRISE and/or IFALL in VCMPn_CTRL is set, the EDGE interrupt flag will be set on rising and/or falling edge of the comparator

output respectively. An interrupt request will be sent if the EDGE interrupt flag in VCMP_IF is set and enabled through the EDGE bit in VCMPn_IEN. The edge interrupt can also be used to wake up the device from EM3-EM1. VCMP also includes an interrupt flag, WARMUP in VCMP_IF, which is set when a warm-up sequence has finished. An interrupt request will be sent if the WARMUP interrupt flag in VCMP_IF is set and enabled through the WARMUP bit in VCMPn_IEN. The synchronized comparator output is also available as a PRS output signal.

Downloaded from H couls com 377 www.energymicro.com

23.4 Register Map

The offset register address is relative to the registers base address.

Offset	Name	Туре	Description
0x000	VCMP_CTRL	RW	Control Register
0x004	VCMP_INPUTSEL	RW	Input Selection Register
0x008	VCMP_STATUS	R	Status Register
0x00C	VCMP_IEN	RW	Interrupt Enable Register
0x010	VCMP_IF	R	Interrupt Flag Register
0x014	VCMP_IFS	W1	Interrupt Flag Set Register
0x018	VCMP_IFC	W1	Interrupt Flag Clear Register

23.5 Register Description

23.5.1 VCMP_CTRL - Control Register

8CYCLES

16CYCLES

32CYCLES

64CYCLES

128CYCLES

256CYCLES

3

5

6

Offset															Bi	t Po	siti	on														
0x000	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	41	13	12	7	10	6	80	7	9	2	4	က	2	-	0
Reset		-					0x2								0	0							0x0					0		0		0
Access		₩					R ≷								ΑW	₩							RW					W.		RW		₩
Name		HALFBIAS					BIASPROG								IFALL	IRISE							WARMTIME					HYSTEN		INACTVAL		EN

	II	ā		3 2						
Bit	Name	Reset	Access	Description						
31	Reserved	To ensure	compatibility with	future devices, always write bits to 0. More information in Section 2.1 (p. 3)						
30	HALFBIAS	1	RW	Half Bias Current						
	Set this bit to 1	to halve the bias current.	Table 23.1 (p. 37	75) .						
29:28	Reserved	To ensure	compatibility with	future devices, always write bits to 0. More information in Section 2.1 (p. 3)						
27:24	BIASPROG	0x7	RW	VCMP Bias Programming Value						
	These bits cont	rol the bias current level.	Table 23.1 (p. 37	5) .						
23:18	Reserved	To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1								
17	IFALL	0	RW	Falling Edge Interrupt Sense						
	Set this bit to 1	to set the EDGE interrup	t flag on falling ed	lges of comparator output.						
16	IRISE	0	RW	Rising Edge Interrupt Sense						
	Set this bit to 1	to set the EDGE interrup	t flag on rising ed	ges of comparator output.						
15:11	Reserved	To ensure	compatibility with	future devices, always write bits to 0. More information in Section 2.1 (p. 3)						
10:8	WARMTIME	0x0	RW	Warm-Up Time						
	Set warm-up tin	ne								
	Value	Mode	De	escription						
	0	4CYCLES	41	HFPERCLK cycles						

8 HFPERCLK cycles

16 HFPERCLK cycles

32 HFPERCLK cycles

64 HFPERCLK cycles

128 HFPERCLK cycles

256 HFPERCLK cycles

Bit	Name	Res	et Access	Description								
	Value	Mode	D	escription								
	7	512CYCLES	5	12 HFPERCLK cycles								
7:5	Reserved	То ег	nsure compatibility with	future devices, always write bits to 0. More information in Section 2.1 (p. 3)								
4	HYSTEN	0	RW	Hysteresis Enable								
	Enable hystere	esis.										
	Value	alue Description										
	0	No hyste	resis									
	1	+-20 mV	hysteresis									
3	Reserved	To er	nsure compatibility with	future devices, always write bits to 0. More information in Section 2.1 (p. 3)								
2	INACTVAL	0	RW	Inactive Value								
	Configure the o	output value when the	ne comparator is inactiv	ve.								
1	Reserved	То ег	sure compatibility with	future devices, always write bits to 0. More information in Section 2.1 (p. 3)								
0	EN	0	RW	Voltage Supply Comparator Enable								
	Enable/disable	voltage supply con	iparator.									

23.5.2 VCMP_INPUTSEL - Input Selection Register

Offset															Bi	t Pc	siti	on														
0x004	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	თ	∞	7	9	2	4	က	2	-	0
Reset																								0					ç	0000		
Access																								W.					Š	À Y		
Name																								LPREF						>		

Bit	Name	Reset	Access	Description
31:9	Reserved	To ensure co	ompatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
8	LPREF	0	RW	Low Power Reference
		ower mode for VDD a when the warm-up is o		rence. When using this bit, always leave it as 0 during warm-up and then
7:6	Reserved	To ensure co	ompatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
5:0	TRIGLEVEL	0x00	RW	Trigger Level
	Select VDD trigger le	evel. V _{trig} = 1.667V+0.	.034V×TRIGLEVE	EL.

23.5.3 VCMP_STATUS - Status Register

Offset															Bi	t Pc	siti	on														
0x008	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	41	13	12	1	10	6	8	7	9	2	4	8	7	-	0
Reset																															0	0
Access																															ď	~
Name																															VCMPOUT	VCMPACT

Downloaded from Houlescom 2010-12-21 - d0034_Rev0.90 379 www.energymicro.com

Bit	Name	Reset	Access	Description									
31:2	Reserved	To ensure co	mpatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)									
1	VCMPOUT	0	R	Voltage Supply Comparator Output									
	Voltage supply comp	parator output value											
0	VCMPACT	0	R	Voltage Supply Comparator Active									
	Voltage supply comp	tage supply comparator active status.											

23.5.4 VCMP_IEN - Interrupt Enable Register

Offset															Bi	t Po	siti	on														
0x00C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	ი	∞	7	9	2	4	က	2	-	0
Reset																															0	0
Access																															RW W	NX N
Name																															WARMUP	EDGE

Bit	Name	Reset	Access	Description							
31:2	Reserved	To ensure compa	atibility with fut	ure devices, always write bits to 0. More information in Section 2.1 (p. 3)							
1	WARMUP	0	RW	Warm-up Interrupt Enable							
	Enable/disable interrupt on	finished warm-up.									
0	EDGE	0	RW	Edge Trigger Interrupt Enable							
	Enable/disable edge trigge	triggered interrupt.									

23.5.5 VCMP_IF - Interrupt Flag Register

Offset															Bi	it Po	siti	on														
0x010	31	30	29	28	27	56	25	24	23	22	21	20	19	18	17	16	15	4	13	12	=	10	6	8	^	9	2	4	က	7	~	0
Reset											•							•													0	0
Access																															œ	~
Name																															WARMUP	EDGE

Bit	Name	Reset	Access	Description
31:2	Reserved	To ensure co	mpatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
1	WARMUP	0	R	Warm-up Interrupt Flag
	Indicates that warm	n-up has finished.		
0	EDGE	0	R	Edge Triggered Interrupt Flag
	Indicates that there	has been a rising and/	or falling edge on	the VCMP output.

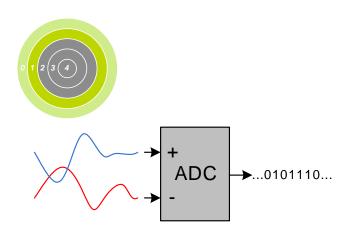
www.energymicro.com 2010-12-21 - d0034_Rev0.90

23.5.6 VCMP_IFS - Interrupt Flag Set Register

Offset															Bi	t Pc	siti	on	İ													
0x014	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	41	13	12	7	10	6	80	7	9	2	4	က	2	-	0
Reset					•							•					•									•		•	•		0	0
Access																															W	W
Name																															WARMUP	EDGE

Bit	Name	Reset	Access	Description
31:2	Reserved	To ensure co	mpatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
1	WARMUP	0	W1	Warm-up Interrupt Flag Set
	Write to 1 to set wa	arm-up finished interrup	t flag	
0	EDGE	0	W1	Edge Triggered Interrupt Flag Set
	Write to 1 to set ed	lge triggered interrupt fl	ag	

23.5.7 VCMP_IFC - Interrupt Flag Clear Register


Offset															Bi	t Pc	siti	on														
0x018	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	41	13	12	7	10	6	œ	7	9	2	4	က	2	_	0
Reset			•		•					•		•																	•		0	0
Access																															M	M
Name																															WARMUP	EDGE

Bit	Name	Reset	Access	Description
31:2	Reserved	To ensure co	ompatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
1	WARMUP	0	W1	Warm-up Interrupt Flag Clear
	Write to 1 to clear wa	arm-up finished interro	upt flag	
0	EDGE	0	W1	Edge Triggered Interrupt Flag Clear
	Write to 1 to clear ed	lge triggered interrupt	flag	

Downloaded from House Company 2010-12-21 - d0034_Rev0.90 381 www.energymicro.com

24 ADC - Analog to Digital Converter

Quick Facts

What?

The ADC is used to convert analog signals into a digital representation and features 8 external input channels

Why?

In many applications there is a need to measure analog signals and record them in a digital representation, without exhausting your energy source.

How?

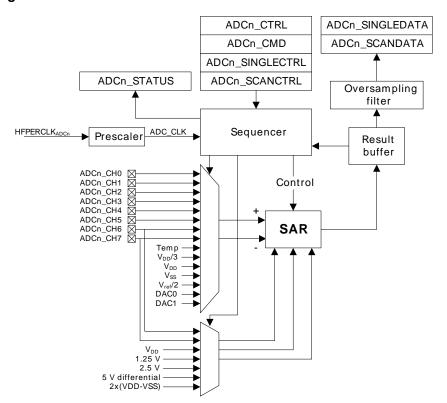
A low power Successive Approximation Register ADC samples up to 8 input channels in a programmable sequence. With the help of PRS and DMA, the ADC can operate without CPU intervention, minimizing the number of powered up resources. The ADC can further be duty-cycled to reduce the energy consumption.

24.1 Introduction

The ADC is a Successive Approximation Register (SAR) architecture, with a resolution of up to 12 bits at up to one million samples per second. The integrated input mux can select inputs from 8 external pins and 6 internal signals.

24.2 Features

- Programmable resolution (6/8/12-bit)
 - 13 prescaled clock (ADC_CLK) cycles per conversion
 - Maximum 1 MSPS @ 12-bit
 - Maximum 1.86 MSPS @ 6-bit
- · Configurable acquisition time
- Integrated prescaler
 - Selectable clock division factor from 1 to 128
- 13 MHz to 32 kHz allowed for ADC_CLK
- 18 input channels
 - 8 external single ended channels
 - 6 internal single ended channels
 - · Including temperature sensor
 - · 4 external differential channels
- Integrated input filter
 - Low pass RC filter
 - Decoupling capacitor
- · Left or right adjusted results
 - Results in 2's complement representation
 - · Differential results sign extended to 32-bit results


- Programmable scan sequence
 - Up to 8 configurable samples in scan sequence
 - Mask to select which pins are included in the sequence
 - Triggered by software or PRS input
 - · One shot or repetitive mode
 - Oversampling available
 - Overflow interrupt flag set when overwriting unread results
 - Conversion tailgating support for predictable periodic scans
- Programmable single conversion
 - · Triggered by software or PRS input
 - Can be interleaved between two scan sequences
 - · One shot or repetitive mode
 - · Oversampling available
 - · Overflow interrupt flag set when overwriting unread results
- Hardware oversampling support
 - 1st order accumulate and dump filter
 - From 2 to 4096 oversampling ratio (OSR)
 - Results in 16-bit representation
 - Enabled individually for scan sequence and single sample mode
 - Common OSR select
- Individually selectable voltage reference for scan and single mode
 - Internal 1.25V reference
 - Internal 2.5V reference
 - V_{DD}
 - Internal 5 V differential reference
 - Single ended external reference
 - Differential external reference
 - Unbuffered 2xV_{DD}
- Support for offset and gain calibration
- Interrupt generation and/or DMA request
 - Finished single conversion
 - Finished scan conversion
 - · Single conversion results overflow
 - Scan sequence results overflow
- Loopback configuration with DAC output measurement

24.3 Functional Description

An overview of the ADC is shown in Figure 24.1 (p. 384).

Figure 24.1. ADC Overview

24.3.1 Clock Selection

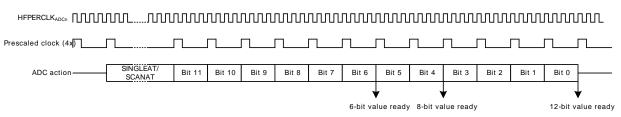
The ADC has an internal prescaler (PRESC bits in ADCn_CTRL) which can divide the peripheral clock (HFPERCLK) by any factor between 1 and 128. Note that the resulting ADC_CLK should not be set to a higher frequency than 13 MHz and not lower than 32 kHz.

24.3.2 Conversions

A conversion consists of two phases. The input is sampled in the acquisition phase before it is converted to digital representation during the approximation phase. The acquisition time can be configured independently for scan and single conversions (see Section 24.3.7 (p. 387)) by setting AT in ADCn_SINGLECTRL/ADCn_SCANCTRL. The acquisition times can be set to any integer power of 2 from 1 to 256 ADC_CLK cycles.

Note

For high impedance sources the acquisition time should be adjusted to allow enough time for the internal sample capacitor to fully charge. The minimum acquisition time for the internal temperature sensor and $V_{dd}/3$ is given in the electrical characteristics for the device.


The analog to digital converter core uses one clock cycle per output bit in the approximation phase.

ADC Total Conversion Time (in ADC_CLK cycles) Per Output
$$T_{conv} = (T_A + N) \times OSR \tag{24.1}$$

T_A equals the number of acquisition cycles and N is the resolution. OSR is the oversampling ratio (see Section 24.3.7.7 (p. 389)). The minimum conversion time is 7 ADC_CYCLES with 6 bit resolution and 13 ADC_CYCLES with 12 bit resolution. The maximum conversion time is 1097728 ADC_CYCLES with the longest acquisition time, 12 bit resolution and highest oversampling rate.

Figure 24.2. ADC Conversion Timing

24.3.3 Warm-up Time

The ADC needs to be warmed up some time before a conversion can take place. This time period is called the warm-up time. When enabling the ADC or changing references between samples, the ADC is automatically warmed up for 1µs and an additional 5 µs if the bandgap is selected as reference.

Normally, the ADC will be warmed up only when samples are requested and is shut off when there are no more samples waiting. However, if lower latency is needed, configuring the WARMUPMODE field in ADCn_CTRL allows the ADC and/or reference to stay warm between samples, eliminating the need for warm-up.

Only the bandgap reference selected for scan mode can be kept warm. If a different bandgap reference is selected for single mode, the warm-up time still applies.

- NORMAL: ADC and references are shut off when there are no samples waiting
- FASTBG: Bandgap warm-up is eliminated, but with reduced reference accuracy
- KEEPSCANREFWARM: The reference selected for scan mode is kept warm. The ADC will still need to be warmed up before conversion.
- KEEPADCWARM: The ADC and the reference selected for scan mode is kept warm

The minimum warm-up times are given in µs. The timing is done automatically by the ADC, given that a proper time base is given in the TIMEBASE bits in ADCn_CTRL. The TIMEBASE must be set to the number of HFPERCLK which corresponds to at least 1 µs. The TIMEBASE only affects the timing of the warm-up sequence and not the ADC_CLK.

When entering Energy Modes 2 or 3, the ADC must be stopped and WARMUPMODE in ADCn_CTRL written to 0.

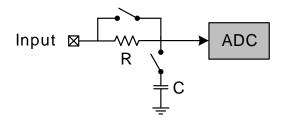
24.3.4 Input Selection

The ADC is connected to 8 external input pins, which can be selected as 8 different single ended inputs or 4 differential inputs. In addition, 6 single ended internal inputs can be selected. The available selections are given in the register description for ADCn_SINGLECTRL and ADCn_SCANCTRL.

For offset calibration purposes it is possible to internally short the differential ADC inputs and thereby measure a 0 V differential. Differential 0 V is selected by writing the DIFF bit to 1 and INPUTSEL to 4 in ADCn_SINGLECTRL. Calibration is described in detail in Section 24.3.10 (p. 390).

Note

When VDD/3 is sampled, the acquisition time should be above a lower limit. The reader is referred to the datasheet for minimum VDD/3 acquisition time.


24.3.4.1 Input Filtering

The selected input signal can be filtered, either through an internal low pass RC filter or an internal decoupling capacitor. The different filter configurations can be enabled through the LPFMODE bits in ADCn_CTRL.

The RC input filter configuration is given in Figure 24.3 (p. 386). The resistance and capacitance values are given in the electrical characteristics for the device, named RADCFILT and CADCFILT respectively.

Figure 24.3. ADC RC Input Filter Configuration

24.3.4.2 Temperature Measurement

The ADC includes an internal temperature sensor. This sensor is characterized during production and the temperature readout from the ADC at production temperature, ADC0_TEMP_0_READ_1V25, is given in the Device Information (DI) page. The production temperature, CAL_TEMP_0, is also given in this page. The temperature gradient, TGRAD ADCTH (mV/degree Celsius), for the sensor is found in the datasheet for the devices. By selecting 1.25 V internal reference and measuring the internal temperature sensor with 12 bit resolution, the temperature can be calculated according to the following formula:

ADC Temperature Measurement

Note

The minimum acquisition time for the temperature reference is found in the electrical characteristics for the device.

24.3.5 Reference Selection

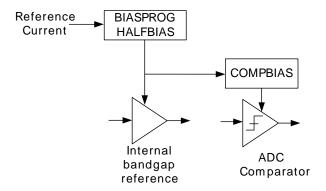
The reference voltage can be selected from these sources:

- 1.25 V internal bandgap
- 2.5 V internal bandgap
- V_{DD}
- 5 V internal differential bandgap
- External single ended input from pin 6
- Differential input, 2x(pin 6 pin 7)
- Unbuffered 2xV_{DD}
- The 2.5 V reference needs a supply voltage higher than 2.5 V.
- The differential 5 V reference needs a supply voltage higher than 2.75 V.

Since the 2xV_{DD} differential reference is unbuffered, it is directly connected to the ADC supply voltage and more susceptible to supply noise. The VDD reference is buffered both in single ended and differential mode.

If a differential reference with a larger range than the supply voltage is combined with single ended measurements, for instance the 5 V internal reference, the full ADC range will not be available because the maximum input voltage is limited by the maximum electrical ratings.

Note



Single ended measurements with the external differential reference are not supported.

24.3.6 Programming of Bias Current

The bias current of the bandgap reference and the ADC comparator can be scaled by the BIASPROG, HALFBIAS and COMPBIAS bit fields of the ADCn_BIASPROG register. The BIASPROG and HALFBIAS bitfields scale the current of ADC bandgap reference, and the COMPBIAS bits provide an additional bias programming for the ADC comparator as illustrated in Figure 24.4 (p. 387).

Figure 24.4. ADC Bias Programming

The minimum value of the BIASPROG and COMPBIAS bitfields of the ADCn_BIASPROG register (i.e. BIASPROG=0b0000, COMPBIAS=0b0000) represent the minimum bias currents. Similarly BIASPROG=0b1111 and COMPBIAS=0b1111 represent the maximum bias currents. Additionally, the bias current defined by the BIASPROG setting can be halved by setting the HALFBIAS bit of the ADCn_BIASPROG register.

The bias current settings should only be changed while the ADC is disabled.

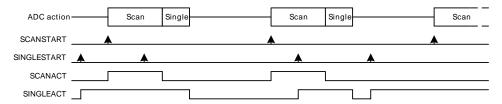
24.3.7 ADC Modes

The ADC contains two separate programmable modes, one single sample mode and one scan mode. Both modes have separate configuration and result registers and can be set up to run only once per trigger or repetitively. The scan mode has priority over the single sample mode. However, if scan sequence is running, a triggered single sample will be interleaved between two scan samples.

24.3.7.1 Single Sample Mode

The single sample mode can be used to convert a single sample either once per trigger or repetitively. The configuration of the single sample mode is done in the ADCn SINGLECTRL register and the results are found in the ADCn_SINGLEDATA register. The SINGLEDV bit in ADCn_STATUS is set high when there is valid data in the result register and is cleared when the data is read. The single mode results can also be read through ADCn_SINGLEDATAP without SINGLEDV being cleared. DIFF in ADCn SINGLECTRL selects whether differential or single ended inputs are used and INPUTSEL selects input pin(s).

24.3.7.2 Scan mode


The scan mode is used to perform sweeps of the inputs. The configuration of the scan sequence is done in the ADCn SCANCTRL register and the results are found in the ADCn SCANDATA register. The SCANDV bit in ADCn_STATUS is set high when there is valid data in the result register and is cleared when the data is read. The scan mode results can also be read through ADCn_SCANDATAP without SCANDV being cleared. The inputs included in the sequence are defined by a the mask in INPUTMASK in ADCn SCANCTRL. When the scan sequence is triggered, the sequence samples all inputs that are included in the mask, starting at the lowest pin number. DIFF in ADCn_SCANCTRL selects whether single ended or differential inputs are used.

24.3.7.3 Conversion Tailgating

The scan sequence has priority over the single sample mode. However, a scan trigger will not interrupt in the middle of a single conversion. If a scan sequence is triggered by a timer on a periodic basis, single sample just before a scan trigger can delay the start of the scan sequence, thus causing jitter in sample rate. To solve this, conversion tailgating can be chosen by setting TAILGATE in ADCn_CTRL. When this bit is set, any triggered single samples will wait for the next scan sequence to finish before activating (see Figure 24.5 (p. 388)). The single sample will then follow immediately after the scan sequence. In this way, the scan sequence will always start immediately when triggered, if the period between the scan triggers is big enough to allow any single samples that might be triggered to finish in between the scan sequences.

Figure 24.5. ADC Conversion Tailgating

24.3.7.4 Conversion Trigger

The conversion modes can be activated by writing a 1 to the SINGLESTART or SCANSTART bit in the ADCn_CMD register. The conversions can be stopped by writing a 1 to the SINGLESTOP or SCANSTOP bit in the ADCn_CMD register. A START command will have priority over a stop command. When the ADC is stopped in the middle of a conversion, the result buffer is cleared. The SINGLEACT and SCANACT bits in ADCn_STATUS are set high when the modes are actively converting or have pending conversions.

It is also possible to trigger conversions from PRS signals. The system requires one HFPERCLK cycle pulses to trigger conversions. Setting PRSEN in ADCn_SINGLECTRL/ADCn_SCANCTRL enables triggering from PRS input. Which PRS channel to listen to is defined by PRSSEL in ADCn_SINGLECTRL/ADCn_SCANCTRL. When PRS trigger is selected, it is still possible to trigger the conversion from software. The reader is referred to the PRS datasheet for more information on how to set up the PRS channels.

Note

The conversion settings should not be changed while the ADC is running as this can lead to unpredictable behavior.

24.3.7.5 Results

The results are presented in 2's complement form and the format for differential and single ended mode is given in Table 24.1 (p. 388) and Table 24.2 (p. 389). If differential mode is selected, the results are sign extended up to 32-bit (shown in Table 24.4 (p. 390)).

Table 24.1. ADC Single Ended Conversion

Input/Reference	Res	sults
inputiterence	Binary	Hex value
1	11111111111	FFF
0.5	011111111111	7FF
1/4096	00000000001	001
0	00000000000	000

Table 24.2. ADC Differential Conversion

Input/Reference	Res	sults
ilipuviveiereilee	Binary	Hex value
0.5	011111111111	7FF
0.25	001111111111	3FF
1/2048	00000000001	001
0	00000000000	000
-1/2048	11111111111	FFF
-0.25	101111111111	BFF
-0.5	10000000000	800

24.3.7.6 Resolution

The ADC gives out 12-bit results, by default. However, if full 12-bit resolution is not needed, it is possible to speed up the conversion by selecting a lower resolution (N = 6 or 8 bits). For more information on the accuracy of the ADC, the reader is referred to the electrical characteristics section for the device.

24.3.7.7 Oversampling

To achieve higher accuracy, hardware oversampling can be enabled individually for each mode (Set RES in ADCn_SINGLECTRL/ADCn_SCANCTRL to 0x3). The oversampling rate (OVSRSEL in ADCn_CTRL) can be set to any integer power of 2 from 2 to 4096 and the configuration is shared between the scan and single sample mode (OVSRSEL field in ADCn_CTRL).

With oversampling, each selected input is sampled a number (given by the OVSR) of times, and the results are filtered by a first order accumulate and dump filter to form the end result. The data presented in the ADCn_SINGLEDATA and ADCn_SCANDATA registers are the direct contents of the accumulation register (sum of samples). However, if the oversampling ratio is set higher than 16x, the accumulated results are shifted to fit the MSB in bit 15 as shown in Table 24.3 (p. 389).

Table 24.3. Oversampling Result Shifting and Resolution

Oversampling setting	# right shifts	Result Resolution # bits
2x	0	13
4x	0	14
8x	0	15
16x	0	16
32x	1	16
64x	2	16
128x	3	16
256x	4	16
512x	5	16
1024x	6	16
2048x	7	16
4096x	8	16

24.3.7.8 Adjustment

By default, all results are right adjusted, with the LSB of the result in bit position 0 (zero). In differential mode the signed bit is extended up to bit 31, but in single ended mode the bits above the result are read as 0. By setting ADJ in ADCn_SINGLECTRL/ADCn_SCANCTRL, the results are left adjusted as shown in Table 24.4 (p. 390). When left adjusted, the MSB is always placed on bit 15 and sign extended to bit 31. All bits below the conversion result are read as 0 (zero).

Table 24.4. ADC Results Representation

nt	_																В	it															
Adjustment	Resolution	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	12	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	10	9	8	7	6	5	4	3	2	1	0
Ħ	8	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	6	5	4	3	2	1	0
Right	6	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	4	3	2	1	0
	ovs	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	12	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	10	9	8	7	6	5	4	3	2	1	0	-	-	-	-
Left	8	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	6	5	4	3	2	1	0	-	-	-	-	-	-	-	-
e	6	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	4	3	2	1	0	-	-	-	-	-	-	-	-	-	-
	ovs	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

24.3.8 Interrupts, PRS Output

The single and scan modes have separate interrupt flags indicating finished conversions. Setting one of these flags will result in an ADC interrupt if the corresponding interrupt enable bit is set in ADCn_IEN.

In addition to the finished conversion flags, there is a scan and single sample result overflow flag which signalizes that a result from a scan sequence or single sample has been overwritten before being read.

A finished conversion will result in a one HFPERCLK cycle pulse which is output to the Peripheral Reflex System (PRS).

24.3.9 DMA Request

The ADC has two DMA request lines, SINGLE and SCAN, which are set when a single or scan conversion has completed. The request are cleared when the corresponding single or scan result register is read.

24.3.10 Calibration

The ADC supports offset and gain calibration to correct errors due to process and temperature variations. This must be done individually for each reference used. The ADC calibration (ADCn_CAL) register contains four register fields for calibrating offset and gain for both single and scan mode. The gain and offset calibration are done in single mode, but the resulting calibration values can be used for both single and scan mode.

Gain and offset for the 1V25, 2V5 and VDD references are calibrated during production and the calibration values for these can be found in the Device Information page. During reset, the gain and offset calibration registers are loaded with the production calibration values for the 1V25 reference.

The SCANGAIN and SINGLEGAIN calibration fields are not used when the unbuffered differential 2xVDD reference is selected.

The effects of changing the calibration register values are given in Table 24.5 (p. 391). Step by step calibration procedures for offset and gain are given in Section 24.3.10.1 (p. 391) and Section 24.3.10.2 (p. 391).

Table 24.5. Calibration Register Effect

Calibration Register	ADC Result	Calibration Binary Value	Calibration Hex Value
Offset	Lowest Output	0111111	3F
Oliset	Highest Output	1000000	40
Gain	Lowest Output	0000000	00
Gaiii	Highest Output	1111111	7F

The offset calibration register expects a signed 2's complement value with negative effect. A high value gives a low ADC reading.

The gain calibration register expects an unsigned value with positive effect. A high value gives a high ADC reading.

24.3.10.1 Offset Calibration

Offset calibration must be performed prior to gain calibration. Follow these steps for the offset calibration in single mode:

- Select wanted reference by setting the REF bitfield of the ADCn_SINGLECTRL register.
- 2. Set the AT bitfield of the ADCn SINGLECTRL register to 16CYCLES.
- 3. Set the INPUTSEL bitfield of the ADCn_SINGLECTRL register to DIFF0, and set the DIFF bitfield to 1 for enabling differential input. Since the input voltage is 0, the expected ADC output is the half of the ADC code range as it is in differential mode.
- 4. A binary search is used to find the offset calibration value. Set the SINGLESTART bit in the ADCn_CTRL register and read the ADCn_SINGLEDATA register. The result of the binary search is written to the SINGLEOFFSET field of the ADCn CAL register.

24.3.10.2 Gain Calibration

Offset calibration must be performed prior to gain calibration. The Gain Calibration is done in the following manner:

- 1. Select an external ADC channel (a differential channel can also be used).
- 2. Apply an external voltage on the selected ADC input channel. This voltage should correspond to the top of the ADC range.
- 3. A binary search is used to find the gain calibration value. Set the SINGLESTART bit in the ADCn_CTRL register and read the ADCn_SINGLEDATA register. The target value is ideally the top of the ADC range, but it is recommended to use a value a couple of LSBs below in order to avoid overshooting. The result of the binary search is written to the SINGLEGAIN field of the ADCn_CAL register.

24.4 Register Map

The offset register address is relative to the registers base address.

Offset	Name	Туре	Description
0x000	ADCn_CTRL	RW	Control Register
0x004	ADCn_CMD	W1	Command Register
0x008	ADCn_STATUS	R	Status Register
0x00C	ADCn_SINGLECTRL	RW	Single Sample Control Register
0x010	ADCn_SCANCTRL	RW	Scan Control Register
0x014	ADCn_IEN	RW	Interrupt Enable Register
0x018	ADCn_IF	R	Interrupt Flag Register
0x01C	ADCn_IFS	W1	Interrupt Flag Set Register
0x020	ADCn_IFC	W1	Interrupt Flag Clear Register
0x024	ADCn_SINGLEDATA	R	Single Conversion Result Data
0x028	ADCn_SCANDATA	R	Scan Conversion Result Data
0x02C	ADCn_SINGLEDATAP	R	Single Conversion Result Data Peek Register
0x030	ADCn_SCANDATAP	R	Scan Sequence Result Data Peek Register
0x034	ADCn_CAL	RW	Calibration Register
0x03C	ADCn_BIASPROG	RW	Bias Programming Register

24.5 Register Description

24.5.1 ADCn_CTRL - Control Register

Offset															Bi	t Po	siti	on														
0x000	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	2	4	ო	2	-	0
Reset						9	OXO							0x1F							00×0						5	2	0		0	0 0 0
Access						2	≩ Y							W.							RW						Š	}	S.		i	 ≱
Name						1000	OVSKSEL							TIMEBASE							PRESC						000		TAILGATE		L C	WARMUPMODE

Bit	Name	Reset	Access	Description
31:28	Reserved	To ensure compa	atibility with futu	ure devices, always write bits to 0. More information in Section 2.1 (p. 3)
27:24	OVSRSEL	0x0	RW	Oversample Rate Select

Select oversampling rate. Oversampling must be enabled for each mode for this setting to take effect.

Value	Mode	Description
0	X2	2 samples for each conversion result
1	X4	4 samples for each conversion result
2	X8	8 samples for each conversion result
3	X16	16 samples for each conversion result
4	X32	32 samples for each conversion result
5	X64	64 samples for each conversion result
6	X128	128 samples for each conversion result
7	X256	256 samples for each conversion result
8	X512	512 samples for each conversion result

Bit	Name	Reset	Acce	ss Description
	Value	Mode		Description
	9	X1024		1024 samples for each conversion result
	10	X2048		2048 samples for each conversion result
	11	X4096		4096 samples for each conversion result
23:21	Reserved	To ensure c	ompatibility v	vith future devices, always write bits to 0. More information in Section 2.1 (p. 3)
20:16	TIMEBASE	0x1F	RW	Time Base
		used for ADC warm up servicles which should be set e		rding to the HFPERCLK frequency. The time base is defined as a number of pher than 1us.
	Value			Description
	TIMEBASE			ADC warm-up is set to TIMEBASE+1 HFPERCLK clock cycles and bandgap warm-up is set to 5x(TIMEBASE+1) HFPERCLK cycles.
15	Reserved	To ensure c	ompatibility v	vith future devices, always write bits to 0. More information in Section 2.1 (p. 3)
14:8	PRESC	0x00	RW	Prescaler Setting
	Select clock div	vision factor.		
	Value			Description
	PRESC			Clock division factor of PRESC+1.
7:6	PRESC Reserved	To ensure c	ompatibility v	Clock division factor of PRESC+1. with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
7:6 5:4		To ensure o	ompatibility v	
	Reserved LPFMODE	0x0	RW	vith future devices, always write bits to 0. More information in Section 2.1 (p. 3)
	Reserved LPFMODE	0x0	RW	vith future devices, always write bits to 0. More information in Section 2.1 (p. 3) Low Pass Filter Mode
	Reserved LPFMODE These bits con	0x0 trol the filtering of the ADC	RW	vith future devices, always write bits to 0. More information in Section 2.1 (p. 3) Low Pass Filter Mode s on the filter characteristics can be found in the device datasheets.
	Reserved LPFMODE These bits con	0x0 trol the filtering of the ADC	RW	with future devices, always write bits to 0. More information in Section 2.1 (p. 3) Low Pass Filter Mode s on the filter characteristics can be found in the device datasheets. Description
	Reserved LPFMODE These bits con Value 0	0x0 trol the filtering of the ADC Mode BYPASS	RW	with future devices, always write bits to 0. More information in Section 2.1 (p. 3) Low Pass Filter Mode s on the filter characteristics can be found in the device datasheets. Description No filter or decoupling capacitor
	Reserved LPFMODE These bits con Value 0 1	0x0 trol the filtering of the ADC Mode BYPASS DECAP	RW	with future devices, always write bits to 0. More information in Section 2.1 (p. 3) Low Pass Filter Mode s on the filter characteristics can be found in the device datasheets. Description No filter or decoupling capacitor On chip decoupling capacitor selected On chip RC filter selected
5:4	Reserved LPFMODE These bits con Value 0 1 2 TAILGATE	0x0 trol the filtering of the ADC Mode BYPASS DECAP RCFILT	RW input. Detail	with future devices, always write bits to 0. More information in Section 2.1 (p. 3) Low Pass Filter Mode s on the filter characteristics can be found in the device datasheets. Description No filter or decoupling capacitor On chip decoupling capacitor selected
5:4	Reserved LPFMODE These bits con Value 0 1 2 TAILGATE	0x0 trol the filtering of the ADC Mode BYPASS DECAP RCFILT 0	RW input. Detail	with future devices, always write bits to 0. More information in Section 2.1 (p. 3) Low Pass Filter Mode s on the filter characteristics can be found in the device datasheets. Description No filter or decoupling capacitor On chip decoupling capacitor selected On chip RC filter selected
5:4	Reserved LPFMODE These bits con Value 0 1 2 TAILGATE Enable/disable	0x0 trol the filtering of the ADC Mode BYPASS DECAP RCFILT 0 conversion tailgating.	RW input. Detail	with future devices, always write bits to 0. More information in Section 2.1 (p. 3) Low Pass Filter Mode s on the filter characteristics can be found in the device datasheets. Description No filter or decoupling capacitor On chip decoupling capacitor selected On chip RC filter selected
5:4	Reserved LPFMODE These bits con Value 0 1 2 TAILGATE Enable/disable Value	0x0 trol the filtering of the ADC Mode BYPASS DECAP RCFILT 0 c conversion tailgating. Description Scan sequence	RW input. Detail	with future devices, always write bits to 0. More information in Section 2.1 (p. 3) Low Pass Filter Mode s on the filter characteristics can be found in the device datasheets. Description No filter or decoupling capacitor On chip decoupling capacitor selected On chip RC filter selected Conversion Tailgating
5:4	Reserved LPFMODE These bits con Value 0 1 2 TAILGATE Enable/disable Value	Ox0 trol the filtering of the ADC Mode BYPASS DECAP RCFILT 0 conversion tailgating. Description Scan sequence Scan sequence	RW input. Detail RW has priority, buthas priority and	Low Pass Filter Mode s on the filter characteristics can be found in the device datasheets. Description No filter or decoupling capacitor On chip decoupling capacitor selected On chip RC filter selected Conversion Tailgating
5:4	Reserved LPFMODE These bits con Value 0 1 2 TAILGATE Enable/disable Value 0 1	Ox0 trol the filtering of the ADC Mode BYPASS DECAP RCFILT 0 conversion tailgating. Description Scan sequence Scan sequence	RW input. Detail RW has priority, buthas priority and	Low Pass Filter Mode s on the filter characteristics can be found in the device datasheets. Description No filter or decoupling capacitor On chip decoupling capacitor selected On chip RC filter selected Conversion Tailgating It can be delayed by ongoing single samples. It can be delayed will only start immediately after scan sequence.
5:4	Reserved LPFMODE These bits con Value 0 1 2 TAILGATE Enable/disable Value 0 1 Reserved WARMUPMOD	Ox0 trol the filtering of the ADC Mode BYPASS DECAP RCFILT 0 conversion tailgating. Description Scan sequence Scan sequence	RW input. Detail RW has priority, but has priority and compatibility v	Low Pass Filter Mode s on the filter characteristics can be found in the device datasheets. Description No filter or decoupling capacitor On chip decoupling capacitor selected On chip RC filter selected Conversion Tailgating It can be delayed by ongoing single samples. It can be delayed by only start immediately after scan sequence. with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
5:4	Reserved LPFMODE These bits con Value 0 1 2 TAILGATE Enable/disable Value 0 1 Reserved WARMUPMOD	Ox0 trol the filtering of the ADC Mode BYPASS DECAP RCFILT 0 conversion tailgating. Description Scan sequence Scan sequence To ensure co	RW input. Detail RW has priority, but has priority and compatibility v	Low Pass Filter Mode s on the filter characteristics can be found in the device datasheets. Description No filter or decoupling capacitor On chip decoupling capacitor selected On chip RC filter selected Conversion Tailgating It can be delayed by ongoing single samples. It can be delayed by only start immediately after scan sequence. with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
5:4	Reserved LPFMODE These bits con Value 0 1 2 TAILGATE Enable/disable Value 0 1 Reserved WARMUPMODE Select Warm-u	Ox0 trol the filtering of the ADC Mode BYPASS DECAP RCFILT 0 conversion tailgating. Description Scan sequence Scan sequence To ensure content of the ADC processor of the ADC To ensure content of the ADC The ADC of the ADC of the ADC	RW input. Detail RW has priority, but has priority and compatibility v	Low Pass Filter Mode s on the filter characteristics can be found in the device datasheets. Description No filter or decoupling capacitor On chip decoupling capacitor selected On chip RC filter selected Conversion Tailgating It can be delayed by ongoing single samples. It single samples will only start immediately after scan sequence. with future devices, always write bits to 0. More information in Section 2.1 (p. 3) Warm-up Mode
5:4	Reserved LPFMODE These bits con Value 0 1 2 TAILGATE Enable/disable Value 0 1 Reserved WARMUPMODE Select Warm-u Value	Ox0 trol the filtering of the ADC Mode BYPASS DECAP RCFILT 0 conversion tailgating. Description Scan sequence Scan sequence To ensure of DE Ox0 Ip Mode Mode	RW input. Detail RW has priority, but has priority and compatibility v	Low Pass Filter Mode s on the filter characteristics can be found in the device datasheets. Description No filter or decoupling capacitor On chip decoupling capacitor selected On chip RC filter selected Conversion Tailgating It can be delayed by ongoing single samples. It single samples will only start immediately after scan sequence. With future devices, always write bits to 0. More information in Section 2.1 (p. 3) Warm-up Mode Description
5:4	Reserved LPFMODE These bits con Value 0 1 2 TAILGATE Enable/disable Value 0 1 Reserved WARMUPMOD Select Warm-u Value 0	Ox0 trol the filtering of the ADC Mode BYPASS DECAP RCFILT 0 conversion tailgating. Description Scan sequence Scan sequence CE OX Mode NORMAL	RW input. Detail RW has priority, but has priority and compatibility v	Low Pass Filter Mode s on the filter characteristics can be found in the device datasheets. Description No filter or decoupling capacitor On chip decoupling capacitor selected On chip RC filter selected Conversion Tailgating It can be delayed by ongoing single samples. It can be delayed swill only start immediately after scan sequence. With future devices, always write bits to 0. More information in Section 2.1 (p. 3) Warm-up Mode Description ADC is shut down after each conversion

24.5.2 ADCn_CMD - Command Register

Offset															Bi	t Po	siti	on														
0x004	31	30	29	28	27	56	22	24	23	22	21	20	19	18	17	16	15	41	13	12	1	10	ი	∞	7	9	2	4	က	7	-	0
Reset																													0	0	0	0
Access																													W	W	W	W1
Name																													SCANSTOP	SCANSTART	SINGLESTOP	SINGLESTART

Bit	Name	Reset	Access	Description
31:4	Reserved	To ensure co	ompatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
3	SCANSTOP	0	W1	Scan Sequence Stop
	Write a 1 to stop scan	sequence.		
2	SCANSTART	0	W1	Scan Sequence Start
	Write a 1 to start scan	sequence.		
1	SINGLESTOP	0	W1	Single Conversion Stop
	Write a 1 to stop singl	e conversion.		
0	SINGLESTART	0	W1	Single Conversion Start
	Write to 1 to start sing	le conversion.		

24.5.3 ADCn_STATUS - Status Register

Offset		Bit Position																														
0x008	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	11	10	6	80	7	9	2	4	က	2	-	0
Reset				•	•		000					•	•	,	0	0		,		0		•	0	0							0	0
Access							~								~	~				~			~	~							~	~
Name							SCANDATASRC								SCANDV	SINGLEDV				WARM			SCANREFWARM	SINGLEREFWARM							SCANACT	SINGLEACT

2	6:24	SCANDATASRC	0x0	R	Scan Data Source
3	1:27	Reserved	To ensure comp	atibility with fut	ure devices, always write bits to 0. More information in Section 2.1 (p. 3)
Е	Bit	Name	Reset	Access	Description

This value indicates from which input channel the results in the ADCn_SCANDATA register originates.

Value	Mode	Description
0	CH0	Single ended mode: SCANDATA result originates from ADCn_CH0. Differential mode: SCANDATA result originates from ADCn_CH0-ADCn_CH1
1	CH1	Single ended mode: SCANDATA result originates from ADCn_CH1. Differential mode: SCANDATA result originates from ADCn_CH2_ADCn_CH3
2	CH2	Single ended mode: SCANDATA result originates from ADCn_CH2. Differential mode: SCANDATA result originates from ADCn_CH4-ADCn_CH5
3	CH3	Single ended mode: SCANDATA result originates from ADCn_CH3. Differential mode: SCANDATA result originates from ADCn_CH6-ADCn_CH7
4	CH4	SCANDATA result originates from ADCn_CH4
5	CH5	SCANDATA result originates from ADCn_CH5
6	CH6	SCANDATA result originates from ADCn_CH6
7	CH7	SCANDATA result originates from ADCn_CH7

	6	CH6		SCANDATA result originates from ADCn_CH6
	7	CH7		SCANDATA result originates from ADCn_CH7
23:18	Reserved	To ensur	e compatibility wit	th future devices, always write bits to 0. More information in Section 2.1 (p. 3)
17	SCANDV	0	R	Scan Data Valid
	Scan conversion	data is valid.		
16	SINGLEDV	0	R	Single Sample Data Valid
	Single conversion	data is valid.		
15:13	Reserved	To ensur	e compatibility wit	th future devices, always write bits to 0. More information in Section 2.1 (p. 3)
12	WARM	0	R	ADC Warmed Up
	ADC is warmed u	p.		
11:10	Reserved	To ensur	e compatibility wit	th future devices, always write bits to 0. More information in Section 2.1 (p. 3)

Scan Reference Warmed Up

www.energymicro.com 2010-12-21 - d0034_Rev0.90 394

R

SCANREFWARM

0

Bit	Name	Reset	Access	Description
	Reference selected for s	can mode is war	med up.	
8	SINGLEREFWARM	0	R	Single Reference Warmed Up
	Reference selected for s	ingle mode is wa	rmed up.	
7:2	Reserved	To ensure c	ompatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
1	SCANACT	0	R	Scan Conversion Active
	Scan sequence is active	or has pending of	conversions.	
0	SINGLEACT	0	R	Single Conversion Active
	Single conversion is active	ve or has pending	g conversions.	

24.5.4 ADCn_SINGLECTRL - Single Sample Control Register

Offset															Bi	t Pc	siti	on														
0x00C	33	30	59	78	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	11	10	6	8	7	9	5	4	3	2	~	0
Reset			0x0					0		9	OX O				0x0							5					0	3		0	0	0
Access			-W					§ N			<u>}</u>												}				×	2		RW	RW	W.
Name			PRSSEL					PRSEN		Ļ	-				REF							INDITION	_				S H M	S L		ADJ	JJIO	REP

Bit	Name	Reset	Access	Description
31	Reserved	To ensure compa	atibility with fut	ure devices, always write bits to 0. More information in Section 2.1 (p. 3)
30:28	PRSSEL	0x0	RW	Single Sample PRS Trigger Select
	Select PRS trigger for sing	le sample.		

Value	Mode	Description
0	PRSCH0	PRS ch 0 triggers single sample
1	PRSCH1	PRS ch 1 triggers single sample
2	PRSCH2	PRS ch 2 triggers single sample
3	PRSCH3	PRS ch 3 triggers single sample
4	PRSCH4	PRS ch 4 triggers single sample
5	PRSCH5	PRS ch 5 triggers single sample
6	PRSCH6	PRS ch 6 triggers single sample
7	PRSCH7	PRS ch 7 triggers single sample

27:25 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)

24 PRSEN 0 RW Single Sample PRS Trigger Enable

Enabled/disable PRS trigger of single sample.

Value	Description	
0	Single sample is not triggered by PRS input	
1	Single sample is triggered by PRS input selected by PRSSEL	

23:20 AT 0x0 RW Single Sample Acquisition Time

Select the acquisition time for single sample.

V	'alue	Mode	Description	
0		1CYCLE	1 ADC_CLK cycle acquisition time for single sample	
1		2CYCLES	2 ADC_CLK cycles acquisition time for single sample	
2		4CYCLES	4 ADC_CLK cycles acquisition time for single sample	
3		8CYCLES 8 ADC_CLK cycles acquisition time for single sample		
4		16CYCLES	16 ADC_CLK cycles acquisition time for single sample	
5		32CYCLES	32 ADC_CLK cycles acquisition time for single sample	
6		64CYCLES	CLES 64 ADC_CLK cycles acquisition time for single sample	

Downloaded from H couls com 395 www.energymicro.com

Bit	Name	Name Reset Access Description					
	Value	Mode	Description				
	7	128CYCLES	128 ADC_CLK cycles acqu	uisition time for single sample			
	8	256CYCLES	256 ADC_CLK cycles acqu	uisition time for single sample			
19	Reserved	To ensure con	patibility with future devices, always	s write bits to 0. More information in Section 2.1 (p. 3			
18:16	REF 0x0 RW Single Sample Reference Selection						
	Select reference to ADC single sample mode.						
	Value	Mode	Description				
	0	1V25	Internal 1.25 V reference				
	1 2V5 2 VDD 3 5VDIFF 4 EXTSINGLE		Internal 2.5 V reference Buffered VDD Internal differential 5 V reference Single ended external reference from pin 6				
	5	2XEXTDIFF	Differential external reference, 2x(pin 6 - pin 7)				
	6	2XVDD	Unbuffered 2xVDD)			
15:12	Reserved	To ensure con	ppatibility with future devices, always	s write bits to 0. More information in Section 2.1 (p. 5			
11:8	INPUTSEL 0x0 RW Single Sample Input Selection						
	Select input to ADC single sample mode in either single ended mode or differential mode.						
	DIFF = 0						
	Mode	Value		Description			
	CH0	0		ADCn_CH0			
	CH1	1		ADCn_CH1			
	CH2	2		ADCn_CH2			
	CH3	3		ADCn_CH3			
	CH4	4		ADCn_CH4			
	CH5	5		ADCn_CH5			
	CH6	6		ADCn_CH6			
	CH7	7		ADCn_CH7			
	TEMP	8		Temperature reference			
	VDDDIV3	9		VDD/3			
	VDD	10		VDD			
	VSS	11		VSS			
	VREFDIV2	12		VREF/2			
	DAC0OUT0	13		DAC0 output 0			
	DAC0OUT1	14		DAC0 output 1			
	DIFF = 1						
	Mode	Value		Description			
	CH0CH1	0		Positive input: ADCn_CH0 Negative input: ADCn_CH			
	CH2CH3	1		Positive input: ADCn_CH2 Negative input: ADCn_CH			
	CH4CH5	2		Positive input: ADCn_CH4 Negative input: ADCn_CH			
	CH6CH7	3		Positive input: ADCn_CH6 Negative input: ADCn_CH			
	DIFF0	4		Differential 0 (Short between positive and negativinputs)			
7:6	Reserved	To ensure con	To ensure compatibility with future devices, always write bits to 0. More informat				
5:4	RES 0x0 RW Single Sample Resolution Select						
	Select single sample conversion resolution.						
	Value	Mode	Description				
	0	12BIT	12-bit resolution				
	1	8BIT	8-bit resolution				
	2	6BIT	6-bit resolution	6-bit resolution			
	3 OVS			Oversampling enabled. Oversampling rate is set in OVSRSEL			

Downloaded from Elecules com

Bit	Name	Reset	Access	S Description
Dit	Name	Neset	A00030	Description
2	ADJ	0	RW	Single Sample Result Adjustment
	Select single sam	nple result adjustment.		
	Value	Mode	1	Description
	0	RIGHT	F	Results are right adjusted
	1	LEFT	F	Results are left adjusted
1	DIFF	0	RW	Single Sample Differential Mode
	Select single end	ed or differential input.		
	Value	Description		
	0	Single ended input		
	1	Differential input		
0	REP	0	RW	Single Sample Repetitive Mode
	Enable/disable re	epetitive single samples.		
	Value	Description		
	0	Single conversion r	node is deactiv	vated after one conversion
	1	Single conversion r	node is conver	ting continuously until SINGLESTOP is written

24.5.5 ADCn SCANCTRL - Scan Control Register

27.0.0		_							_	_`	_		_					- J	_													
Offset															Bi	it Po	siti	on														
0x010	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	1	10	6	80	7	9	5	4	က	2	-	0
Reset			0×0					0		· ·	0X0				0×0						00×0						030	e X		0	0	0
Access			₩.					₩ M		Ž	<u>}</u>				Z.						S.						Š	Ž		₩	₩	₩ M
Name			PRSSEL					PRSEN		ŀ	Ā				REF						INPUTMASK						0	х О		ADJ	DIFF	REP
Bit	Na	ıme						Re	set			Д	CC	ess		De	scr	iptic	on													
31	Re	serv	ed					То	ens	ure c	comp	atib	ility	with	futu	ire d	evice	es, a	lwa	ys v	vrite	bits	to 0.	Mor	e inf	orm	natio	n in S	Sect	ion 2	.1 (p	o. 3)

30:28 **PRSSEL** RW Scan Sequence PRS Trigger Select 0x0

Select PRS trigger for scan sequence.

Mode	Description
PRSCH0	PRS ch 0 triggers scan sequence
PRSCH1	PRS ch 1 triggers scan sequence
PRSCH2	PRS ch 2 triggers scan sequence
PRSCH3	PRS ch 3 triggers scan sequence
PRSCH4	PRS ch 4 triggers scan sequence
PRSCH5	PRS ch 5 triggers scan sequence
PRSCH6	PRS ch 6 triggers scan sequence
PRSCH7	PRS ch 7 triggers scan sequence
	PRSCH0 PRSCH1 PRSCH2 PRSCH3 PRSCH4 PRSCH5 PRSCH6

27:25 Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)

24 **PRSEN** RW Scan Sequence PRS Trigger Enable

Enabled/disable PRS trigger of scan sequence.

Value	Description
0	Scan sequence is not triggered by PRS input
1	Scan sequence is triggered by PRS input selected by PRSSEL

23:20 0x0 RW **Scan Sample Acquisition Time**

Select the acquisition time for scan samples.

	IVI 5 2			the world's most energy friendly microcontrollers
Bit	Name	Reset	Acce	ess Description
	Value	Mode		Description
	0	1CYCLE		1 ADC_CLK cycle acquisition time for scan samples
	1	2CYCLES		2 ADC_CLK cycles acquisition time for scan samples
	2	4CYCLES		4 ADC_CLK cycles acquisition time for scan samples
	3	8CYCLES		8 ADC_CLK cycles acquisition time for scan samples
	4	16CYCLES		16 ADC_CLK cycles acquisition time for scan samples
	5	32CYCLES		32 ADC_CLK cycles acquisition time for scan samples
	6	64CYCLES		64 ADC_CLK cycles acquisition time for scan samples
	7	128CYCLES		128 ADC_CLK cycles acquisition time for scan samples
	8	256CYCLES		256 ADC_CLK cycles acquisition time for scan samples
19	Reserved	To ensure	compatibility v	with future devices, always write bits to 0. More information in Section 2.1 (p. 3)
18:16	REF	0x0	RW	Scan Sequence Reference Selection
	Select reference	ce to ADC scan sequence		
	Value	Mode		Description
	0	1V25		Internal 1.25 V reference
	1	2V5		Internal 2.5 V reference
	2	VDD		VDD
	3	5VDIFF		Internal differential 5 V reference
	4	EXTSINGLE		Single ended external reference from pin 6

6 15:8 INPUTMASK

0x00

2XEXTDIFF

2XVDD

 RW

Scan Sequence Input Mask

Differential external reference, 2x(pin 6 - pin 7)

Set one or more bits in this mask to select which inputs are included the scan sequence in either single ended or differential mode.

Unbuffered 2xVDD

DIFF = 0		
Mode	Value	Description
CH0	0000001	ADCn_CH0 included in mask
CH1	0000010	ADCn_CH1 included in mask
CH2	00000100	ADCn_CH2 included in mask
СНЗ	00001000	ADCn_CH3 included in mask
CH4	00010000	ADCn_CH4 included in mask
CH5	00100000	ADCn_CH5 included in mask
CH6	01000000	ADCn_CH6 included in mask
CH7	10000000	ADCn_CH7 included in mask
DIFF = 1		
Mode	Value	Description
CH0CH1	00000001	(Positive input: ADCn_CH0 Negative input: ADCn_CH1) included in mask
CH2CH3	00000010	(Positive input: ADCn_CH2 Negative input: ADCn_CH3) included in mask
CH4CH5	00000100	(Positive input: ADCn_CH4 Negative input: ADCn_CH5) included in mask
CH6CH7	00001000	(Positive input: ADCn_CH6 Negative input: ADCn_CH7) included in mask
	0001xxxx-1111xxxx	Reserved

7:6 Reserved

RES

5:4

0x0 RW Scan Sequence Resolution Select

Select scan sequence conversion resolution.

Value	Mode	Description
0	12BIT	12-bit resolution
1	8BIT	8-bit resolution
2	6BIT	6-bit resolution
3	ovs	Oversampling enabled. Oversampling rate is set in OVSRSEL

Reserved

To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)

To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)

Bit	Name	Reset	Access	Description
2	ADJ	0	RW	Scan Sequence Result Adjustment
	Select scan s	equence result adjustment.		
	Value	Mode	De	escription
	0	RIGHT	R	esults are right adjusted
	1	LEFT	R	esults are left adjusted
1	DIFF	0	RW	Scan Sequence Differential Mode
	Select single	ended or differential input.		
	Value	Description		
	0	Single ended inpu	t	
	1	Differential input		
0	REP	0	RW	Scan Sequence Repetitive Mode
	Enable/disabl	e repetitive scan sequence.		
	Value	Description		
	0	Scan conversion r	node is deactivat	ed after one sequence
	1	Scan conversion r	mode is convertin	g continuously until SCANSTOP is written

24.5.6 ADCn_IEN - Interrupt Enable Register

Offset															Bi	t Pc	siti	on														
0x014	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	1	10	ი	∞	7	9	2	4	က	7	-	0
Reset				•				•															0	0						,	0	0
Access																							S. ≪	S. ≪							RW	X X
Name																							SCANOF	SINGLEOF							SCAN	SINGLE

Bit	Name	Reset	Access	Description
31:10	Reserved	To ensure compa	atibility with fut	ure devices, always write bits to 0. More information in Section 2.1 (p. 3)
9	SCANOF	0	RW	Scan Result Overflow Interrupt Enable
	Enable/disable scan result	overflow interrupt.		
8	SINGLEOF	0	RW	Single Result Overflow Interrupt Enable
	Enable/disable single resul	t overflow interrupt		
7:2	Reserved	To ensure compa	atibility with fut	ure devices, always write bits to 0. More information in Section 2.1 (p. 3)
1	SCAN	0	RW	Scan Conversion Complete Interrupt Enable
	Enable/disable scan conve	rsion complete inte	errupt.	
0	SINGLE	0	RW	Single Conversion Complete Interrupt Enable
	Enable/disable single conv	ersion complete int	errupt.	

www.energymicro.com2010-12-21 - d0034_Rev0.90

24.5.7 ADCn_IF - Interrupt Flag Register

Offset															Bi	t Pc	siti	on														
0x018	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	41	13	12	11	10	6	œ	7	9	2	4	က	7	-	0
Reset																							0	0							0	0
Access																							~	œ							2	~
Name																							SCANOF	SINGLEOF							SCAN	SINGLE

Bit	Name	Reset	Access	Description
31:10	Reserved	To ensure comp	atibility with fut	ure devices, always write bits to 0. More information in Section 2.1 (p. 3)
9	SCANOF	0	R	Scan Result Overflow Interrupt Flag
	Indicates scan result overf	low when this bit is	set.	
8	SINGLEOF	0	R	Single Result Overflow Interrupt Flag
	Indicates single result ove	rflow when this bit i	s set.	
7:2	Reserved	To ensure comp	atibility with fut	rure devices, always write bits to 0. More information in Section 2.1 (p. 3)
1	SCAN	0	R	Scan Conversion Complete Interrupt Flag
	Indicates scan conversion	complete when this	s bit is set.	
0	SINGLE	0	R	Single Conversion Complete Interrupt Flag
	Indicates single conversion	n complete when th	nis bit is set.	

24.5.8 ADCn_IFS - Interrupt Flag Set Register

Offset															Bi	t Pc	siti	on														
0x01C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	41	13	12	1	10	6	œ	7	9	2	4	က	7	-	0
Reset																							0	0							0	0
Access																							W	W							W	M
Name																							SCANOF	SINGLEOF							SCAN	SINGLE

Name	Reset	Access	Description
Reserved	To ensure	compatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
SCANOF	0	W1	Scan Result Overflow Interrupt Flag Set
Write to 1 to set sca	n result overflow int	errupt flag	
SINGLEOF	0	W1	Single Result Overflow Interrupt Flag Set
Write to 1 to set sing	gle result overflow ir	terrupt flag.	
Reserved	To ensure	compatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
SCAN	0	W1	Scan Conversion Complete Interrupt Flag Set
Write to 1 to set sca	n conversion compl	ete interrupt flag.	
SINGLE	0	W1	Single Conversion Complete Interrupt Flag Set
Write to 1 to set sing	gle conversion comp	olete interrupt flag.	
	Reserved SCANOF Write to 1 to set sca SINGLEOF Write to 1 to set sing Reserved SCAN Write to 1 to set sca SINGLE	Reserved To ensure SCANOF 0 Write to 1 to set scan result overflow int SINGLEOF 0 Write to 1 to set single result overflow in Reserved To ensure SCAN 0 Write to 1 to set scan conversion comples SINGLE 0	Reserved To ensure compatibility with full SCANOF 0 W1 Write to 1 to set scan result overflow interrupt flag SINGLEOF 0 W1 Write to 1 to set single result overflow interrupt flag. Reserved To ensure compatibility with full SCAN 0 W1 Write to 1 to set scan conversion complete interrupt flag.

Downloaded from Hoods, com 2010-12-21 - d0034_Rev0.90 400 www.energymicro.com

24.5.9 ADCn_IFC - Interrupt Flag Clear Register

Offset															Bi	t Pc	siti	on														
0x020	31	30	29	28	27	56	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	2	4	က	2	-	0
Reset					•							•											0	0							0	0
Access																						-	W	W1						-	W W	N V
Name																							SCANOF	SINGLEOF							SCAN	SINGLE

Bit	Name	Reset	Access	Description
31:10	Reserved	To ensure co	ompatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
9	SCANOF	0	W1	Scan Result Overflow Interrupt Flag Clear
	Write to 1 to clear se	can result overflow int	errupt flag.	
8	SINGLEOF	0	W1	Single Result Overflow Interrupt Flag Clear
	Write to 1 to clear si	ingle result overflow ir	nterrupt flag.	
7:2	Reserved	To ensure co	ompatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
1	SCAN	0	W1	Scan Conversion Complete Interrupt Flag Clear
	Write to 1 to clear se	can conversion compl	ete interrupt flag.	
0	SINGLE	0	W1	Single Conversion Complete Interrupt Flag Clear
	Write to 1 to clear si	ingle conversion comp	olete interrupt flag.	

24.5.10 ADCn_SINGLEDATA - Single Conversion Result Data

Offset															Bi	t Pc	siti	on														
0x024	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	7	10	6	80	7	9	2	4	က	2	-	0
Reset																0000000	000000000000000000000000000000000000000															
Access																٥																
Name																\ \ C	<u> </u>															

Bit	Name	Reset	Access	Description
31:0	DATA	0x00000000	R	Single Conversion Result Data
	The register holds the register.	e results from the last s	single convers	ion. Reading this field clears the SINGLEDV bit in the ADCn_STATUS

Downloaded from H couls com 2010-12-21 - d0034_Rev0.90 401 www.energymicro.com

24.5.11 ADCn_SCANDATA - Scan Conversion Result Data

Offset															Bit P	ositi	ion													
0x028	31	30	29	28	27	26	52	24	23	22	21	20	19	2 2	16	15	41	13	11	10	6	8	7	9	2	4	3	2	-	0
Reset																0000000000														
Access																<u>~</u>														
Name																DATA														

Bit	Name	Reset	Access	Description
31:0	DATA	0x00000000	R	Scan Conversion Result Data
	The register holds the resu	Its from the last sca	in conversion.	Reading this field clears the SCANDV bit in the ADCn_STATUS register.

24.5.12 ADCn_SINGLEDATAP - Single Conversion Result Data Peek Register

Offset															Bi	t Po	siti	on														
0x02C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	=	10	თ	∞	7	9	2	4	က	2	-	0
Reset																0000000	000000000000000000000000000000000000000															
Access																٥	<u> </u>															
Name																0 V F V C																

Bit	Name	Reset	Access	Description
31:0	DATAP	0x0000000	R	Single Conversion Result Data Peek
	The register holds the rest SINGLE DMA request.	ults from the last s	single convers	ion. Reading this field will not clear SINGLEDV in ADCn_STATUS or

Downloaded from Heads, com 2010-12-21 - d0034_Rev0.90 402 www.energymicro.com

24.5.13 ADCn_SCANDATAP - Scan Sequence Result Data Peek Register

Offset														Bit	Posit	ion														
0x030	31	30	29	28	27	26	25	23	22	21	20	19	2	17	16	14	13	12	11	10	6	∞	7	9	2	4	3	2	-	0
Reset															00000000x0															
Access															ď															
Name															DATAP															

Bit	Name	Reset	Access	Description
31:0	DATAP	0x0000000	R	Scan Conversion Result Data Peek
	The register holds the res	sults from the last s	can conversion	n. Reading this field will not clear SCANDV in ADCn_STATUS or single

24.5.14 ADCn_CAL - Calibration Register

Offset															Bi	t Pc	siti	on														
0x034	31	30	29	28	27	56	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	∞	7	9	2	4	က	2	_	0
Reset			*	•	0x3F			•				*	00x0								0x3F	•						•	0000			
Access					RW								ΑW								ΑW								ΑW			
Name					SCANGAIN								SCANOFFSET								SINGLEGAIN								SINGLEOFFSET			

Bit	Name	Reset	Access	Description
31	Reserved	To ensure comp	atibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
30:24	SCANGAIN	0x3F	RW	Scan Mode Gain Calibration Value
		ence during reset, I		can conversions. This field is set to the production gain calibration value at value might differ from device to device. The field is unsigned. Higher
23	Reserved	To ensure comp	atibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
00:40	COANGEEGET			
22:16	SCANOFFSET	0x00	RW	Scan Mode Offset Calibration Value
22:16	This register contains the	offset calibration v I reference during r	alue used with eset, hence the	n scan conversions. This field is set to the production offset calibration e reset value might differ from device to device. The field is encoded as
15	This register contains the value for the 1V25 interna	offset calibration v I reference during r number. Higher valu	alue used with eset, hence the ues lead to low	n scan conversions. This field is set to the production offset calibration e reset value might differ from device to device. The field is encoded as
	This register contains the value for the 1V25 interna a signed 2's complement i	offset calibration v I reference during r number. Higher valu	alue used with eset, hence the ues lead to low	n scan conversions. This field is set to the production offset calibration e reset value might differ from device to device. The field is encoded as ver ADC results.
15	This register contains the value for the 1V25 interna a signed 2's complement in Reserved SINGLEGAIN This register contains the signed as th	offset calibration v I reference during r number. Higher valu To ensure comp 0x3F gain calibration valuence during reset, I	ralue used with eset, hence the ues lead to low natibility with furnithments. RW	n scan conversions. This field is set to the production offset calibration e reset value might differ from device to device. The field is encoded as ver ADC results. **ture devices, always write bits to 0. More information in Section 2.1 (p. 3)**

Single Mode Offset Calibration Value

2010-12-21 - d0034_Rev0.90 403 www.energymicro.com

 RW

0x00

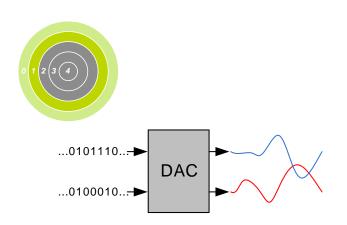
6:0

SINGLEOFFSET

Description

This register contains the offset calibration value used with single conversions. This field is set to the production offset calibration value for the 1V25 internal reference during reset, hence the reset value might differ from device to device. The field is encoded as a signed 2's complement number. Higher values lead to lower ADC results.

24.5.15 ADCn_BIASPROG - Bias Programming Register


Offset															Bi	t Pc	siti	on														
0x03C	33	30	29	78	27	26	25	24	23	22	21	20	19	18	17	16	15	41	13	12	7	10	6	8	7	9	2	4	3	2	-	0
Reset																						7.20	3			-				0x7	30	
Access																							<u> </u>			₩ N						
Name																						o viagrico				HALFBIAS				RIASPROG		

Bit	Name	Reset	Access	Description
31:12	Reserved	To ensure co	mpatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
11:8	COMPBIAS	0x7	RW	Comparator Bias Value
	These bits are used	to adjust the bias curr	ent to the ADC C	comparator.
7	Reserved	To ensure co	mpatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
6	HALFBIAS	1	RW	Half Bias Current
	Set this bit to halve	the bias current.		
5:4	Reserved	To ensure co	mpatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
3:0	BIASPROG	0x7	RW	Bias Programming Value
	These bits are used	to adjust the bias curr	ent.	

2010-12-21 - d0034_Rev0.90 404 www.energymicro.com

25 DAC - Digital to Analog Converter

Quick Facts

What?

The DAC is designed for low energy consumption, but can also provide very good performance. It can convert digital values to analog signals at up to 500 kilo samples/ second and with 12-bit accuracy.

Why?

The DAC is able to generate accurate analog signals using only a limited amount of energy.

How?

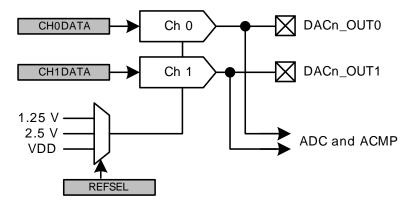
The DAC can generate high-resolution analog signals while the MCU is operating at low frequencies and with low total power consumption. Using DMA and a timer, the DAC can be used to generate waveforms without any CPU intervention.

25.1 Introduction

The Digital to Analog Converter (DAC) can convert a digital value to an analog output voltage. The DAC is fully differential rail-to-rail, with 12-bit resolution. It has two single ended output buffers which can be combined into one differential output. The DAC may be used for a number of different applications such as sensor interfaces or sound output.

25.2 Features

- 500 ksamples/s operation
- Two single ended output channels
 - · Can be combined into one differential output
- Integrated prescaler with division factor selectable between 1-128
- · Selectable voltage reference
 - Internal 2.5V
 - Internal 1.25V
 - V_{DD}
- · Conversion triggers
 - · Data write
 - PRS input
- · Automatic refresh timer
 - Selection from 16-64 prescaled HFPERCLK cycles
 - · Individual refresh enable for each channel
- Interrupt generation on finished conversion
 - Separate interrupt flag for each channel
- PRS output pulse on finished conversion
 - Separate line for each channel
- DMA request on finished conversion
 - Separate request for each channel
- · Support for offset and gain calibration



- · Output to ADC
- · Sine generation mode
- · Optional high strength line driver

25.3 Functional Description

An overview of the DAC module is shown in Figure 25.1 (p. 406).

Figure 25.1. DAC Overview

25.3.1 Conversions

The DAC consists of two channels (Channel 0 and 1) with separate 12-bit data registers (DACn_CH0DATA and DACn_CH1DATA). These can be used to produce two independent single ended outputs or the channel 0 register can be used to drive both outputs in differential mode. The DAC supports three conversion modes, continuous, sample/hold, sample/off.

25.3.1.1 Continuous Mode

In continuous mode the DAC channels will drive their outputs continuously with the data in the DACn_CHxDATA registers. This mode will maintain the output voltage and refresh is therefore not needed.

25.3.1.2 Sample/Hold Mode

In sample/hold mode, the DAC cores converts data on a triggered conversion and then holds the output in a sample/hold element. When not converting, the DAC cores are turned off between samples, which reduces the power consumption. Because of output voltage drift the sample/hold element will only hold the output for a certain period without a refresh conversion. The reader is referred to the electrical characteristics for the details on the voltage drift.

25.3.1.3 Sample/Off Mode

In sample/off mode the DAC and the sample/hold element is turned completely off between samples, tristating the DAC output. This requires the DAC output voltage to be held externally. The references are also turned off between samples, which means that a new warm-up period is needed before each conversion.

25.3.1.4 Conversion Start

The DAC channel must be enabled before it can be used. When the channel is enabled, a conversion can be started by writing to the DACn_CHxDATA register. These data registers are also mapped into a combined data register, DACn_COMBDATA, where the data values for both channels can be written simultaneously. Writing to this register will start all enabled channels.

If the PRSEN bit in DACn_CHxCTRL is set, a DAC conversion on channel x will not be started by data write, but when a positive one HFPERCLK cycle pulse is received on the PRS input selected by PRSSEL in DACn_CHxCTRL.

The CH0DV and CH1DV bits in DACn_STATUS indicate that the corresponding channel contains data that has not yet been converted.

When entering Energy Mode 4, both DAC channels must be stopped.

25.3.1.5 Clock Prescaling

The DAC has an internal clock prescaler, which can divide the HFPERCLK by any factor between 1 and 128, by setting the PRESC bits in DACnCTRL. The resulting DAC_CLK is used by the converter core and the frequency is given by Equation 25.1 (p. 407):

DAC Clock Prescaling

$$f_{DAC_CLK} = f_{HFPERCLK} / 2 ^ PRESC$$
 (25.1)

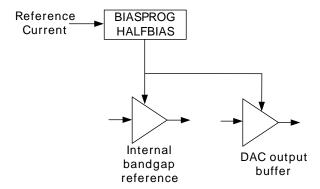
where f_{HFPERCLK} is the HFPERCLK frequency. One conversion takes 2 DAC_CLK cycles and the DAC_CLK should not be set higher than 1 MHz.

Normally the PRESCALER runs continuously when either of the channels are enabled. When running with a prescaler setting higher than 0, there will be an unpredictable delay from the time the conversion was triggered to the time the actual conversion takes place. This is because the conversions is controlled by the prescaled clock and the conversion can arrive at any time during a prescaled clock (DAC_CLK) period. However, if the CH0PRESCRST bit in DACn_CTRL is set, the prescaler will be reset every time a conversion is triggered on channel 0. This leads to a predictable latency between channel 0 trigger and conversion.

25.3.2 Reference Selection

Three internal voltage references are available and are selected by setting the REFSEL bits in DACn_CTRL:

- Internal 2.5V
- Internal 1.25V
- V_{DD}


The reference selection can only be changed while both channels are disabled. The references for the DAC need to be enabled for some time before they can be used. This is called the warm-up period, and starts when one of the channels is enabled. For a bandgap reference, this period is 5 DAC_CLK cycles while the V_{DD} reference needs 1 DAC_CLK cycle. The DAC will time this period automatically(given that the prescaler is set correctly) and delay any conversion triggers received during the warm-up until the references have stabilized.

25.3.3 Programming of Bias Current

The bias current of the bandgap reference and the DAC output buffer can be scaled by the BIASPROG and HALFBIAS bit fields of the DACn_BIASPROG register as illustrated in Figure 25.2 (p. 408).

Figure 25.2. DAC Bias Programming

The minimum value of the BIASPROG bitfield of the DACn_BIASPROG register (i.e. BIASPROG=0b0000) represents the minimum bias current. Similarly BIASPROG=0b1111 represents the maximum bias current. The bias current defined by the BIASPROG setting can be halved by setting the HALFBIAS bit of the DACn_BIASPROG register.

The bias current settings should only be changed while both DAC channels are disabled.

25.3.4 Mode

The two DAC channels can act as two separate single ended channels or be combined into one differential channel. This is selected through the DIFF bit in DACn_CTRL.

25.3.4.1 Single Ended Output

When operating in single ended mode, the channel 0 output is on DACn_OUT0 and the channel 1 output is on DACn_OUT1. The output voltage can be calculated using Equation 25.2 (p. 408)

DAC Single Ended Output Voltage

$$V_{OUT} = V_{DACn_OUTx} - V_{SS} = V_{ref} \times CHxDATA/4095$$
 (25.2)

where CHxDATA is a 12-bit unsigned integer.

25.3.4.2 Differential Output

When operating in differential mode, both DAC outputs are used as output for the bipolar voltage. The differential conversion uses DACn_CH0DATA as source. The positive output is on DACn_OUT1 and the negative output is on DACn_OUT0. Since the output can be negative, it is expected that the data is written in 2's complement form with the MSB of the 12-bit value being the signed bit. The output voltage can be calculated using Equation 25.3 (p. 408):

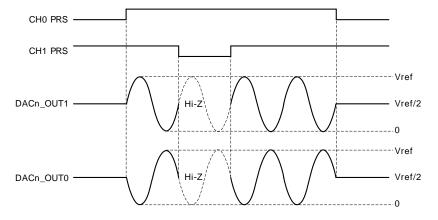
DAC Differential Output Voltage

$$V_{OUT} = V_{DACn OUT1} - V_{DACn OUT0} = V_{ref} \times CH0DATA/2047$$
 (25.3)

where CH0DATA is a 12-bit signed integer. The common mode voltage is V_{DD}/2.

25.3.5 Sine Generation Mode

The DAC contains an automatic sine-generation mode, which is enabled by setting the SINEMODE bit in DACn_CTRL. In this mode, the DAC data is overridden with a conversion data taken from a sine lookup table. The sine signal is controlled by the PRS line selected by CH0PRSSEL in DACn_CH0CTRL. When the PRS line is low, a voltage of Vref/2 will be produced. When the line is high, a sine wave will be produced. Each period, starting at 0 degrees, is made up of 16 samples and the frequency is given by Equation 25.4 (p. 409):



DAC Sine Generation

$$f_{\text{sine}} = f_{\text{HFPERCLK}} / 32 \text{ x (PRESC + 1)}$$
 (25.4)

The SINE wave will be output on channel 0. If DIFF is set in DACn_CTRL, the sine wave will be output on both channels (if enabled), but inverted (see Figure 25.1 (p. 406)). Note that when OUTENPRS in DACn_CTRL is set, the sine output will be reset to 0 degrees when the PRS line selected by CH1PRSSEL is low.

Figure 25.3. DAC Sine Mode

25.3.6 Interrupts and PRS Output

Both DAC channels have separate interrupt flags (in DACn_IF) indicating that a conversion has finished on the channel and that new data can be written to the data registers. Setting one of these flags will result in a DAC interrupt if the corresponding interrupt enable bit is set in DACn_IEN. All generated interrupts from the DAC will activate the same interrupt vector when enabled.

The DAC has two PRS outputs which will carry a one cycle (HFPERCLK) high pulse when the corresponding channel has finished a conversion.

25.3.7 DMA Request

The DAC sends out a DMA request when a conversion on a channel is complete. This request is cleared when the corresponding channel's data register is written.

25.3.8 Analog Output

Each DAC channel has its own output pin (DACn_OUT0 and DACn_OUT1) in addition to an internal loopback to the ADC and ACMP. These outputs can be enabled and disabled individually in the EN field in DACn_CHxCTRL registers in combination with OUTPUTSEL in DACn_CTRL. The DAC outputs can also be directed to the ADC and ACMP, which is also configurable in the OUTPUTSEL field in DACn_CTRL.

The DAC outputs are tristated when the channels are not enabled. By setting the OUTENPRS bit in DACn_CTRL, the outputs are also tristated when the PRS line selected by CH1PRSSEL in DACn_CH1CTRL is low. When the PRS signal is high, the outputs are enabled as normal.

25.3.9 Calibration

The DAC contains a calibration register, DACn_CAL, where calibration values for both offset and gain correction can be written. Offset calibration is done separately for each channel through the CHxOFFSET bitfields. Gain is calibrated in one common register field, GAIN. The gain calibration is linked to the

reference and when the reference is changed, the gain must be re-calibrated. Gain and offset for the 1V25, 2V5 and VDD references are calibrated during production and the calibration values for these can be found in the Device Information page. During reset, the gain and offset calibration registers are loaded with the production calibration values for the 1V25 reference.

25.3.10 Opamps

The DAC includes a set of three highly configurable opamps that can be accesssed in the DAC module. Two of the opamps are located in the DAC, while the third opamp is a standalone opamp. For detailed description see the OPAMP chapter. The register description can be found Section 25.5 (p. 411)

Downloaded from H couls com 2010-12-21 - d0034_Rev0.90 410 www.energymicro.com

25.4 Register Map

The offset register address is relative to the registers base address.

Offset	Name	Туре	Description
0x000	DACn_CTRL	RW	Control Register
0x004	DACn_STATUS	R	Status Register
0x008	DACn_CH0CTRL	RW	Channel 0 Control Register
0x00C	DACn_CH1CTRL	RW	Channel 1 Control Register
0x010	DACn_IEN	RW	Interrupt Enable Register
0x014	DACn_IF	R	Interrupt Flag Register
0x018	DACn_IFS	W1	Interrupt Flag Set Register
0x01C	DACn_IFC	W1	Interrupt Flag Clear Register
0x020	DACn_CH0DATA	RW	Channel 0 Data Register
0x024	DACn_CH1DATA	RW	Channel 1 Data Register
0x028	DACn_COMBDATA	w	Combined Data Register
0x02C	DACn_CAL	RW	Calibration Register
0x030	DACn_BIASPROG	RW	Bias Programming Register
0x054	DACn_OPACTRL	RW	Operational Amplifier Control Register
0x058	DACn_OPAOFFSET	RW	Operational Amplifier Offset Register
0x05C	DACn_OPA0MUX	RW	Operational Amplifier Mux Configuration Register
0x060	DACn_OPA1MUX	RW	Operational Amplifier Mux Configuration Register
0x064	DACn_OPA2MUX	RW	Operational Amplifier Mux Configuration Register

25.5 Register Description

25.5.1 DACn_CTRL - Control Register

Offset															Bi	t Po	siti	on								,						
0x000	33	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	41	13	12	7	10	6	8	7	9	2	4	က	7	-	0
Reset								•		•	3	e e			0x0					•		•	9	e e	0	0	3	5	9	8	0	0
Access											Š	<u>}</u>			-W								Š	<u>}</u>	§ S	₽	Š	2	2	2	RW	₹
Name												П 02 22			PRESC								L G L	XET SEL	CHOPRESCRST	OUTENPRS	HAODE		000		SINEMODE	DIFF

21.20	REERSEI	0×0	D\\/	Pofresh Interval Select
31:22	Reserved	To ensure compati	bility with fut	ure devices, always write bits to 0. More information in Section 2.1 (p. 3)
Bit	Name	Reset	Access	Description

Select refresh counter timeout value. A channel x will be refreshed with the interval set in this register if the REFREN bit in DACn_CHxCTRL is set.

Value	Mode	Description
0	8CYCLES	All channels with enabled refresh are refreshed every 8 prescaled cycles
1	16CYCLES	All channels with enabled refresh are refreshed every 16 prescaled cycles
2	32CYCLES	All channels with enabled refresh are refreshed every 32 prescaled cycles

Downloaded from E 2010-12-21 - d0034_Rev0.90 411 www.energymicro.com

Bit	Name	Reset	Acce	ss Description
	Value	Mode		Description
	3	64CYCLES		All channels with enabled refresh are refreshed every 64 prescaled cycles
19	Reserved	To ensure c	ompatibility w	vith future devices, always write bits to 0. More information in Section 2.1 (p. 3,
18:16	PRESC	0x0	RW	Prescaler Setting
	Select clock d	ivision factor.		
	Value			Description
	PRESC			Clock division factor of 2^PRESC.
15:10	Reserved	To ensure c	ompatibility w	vith future devices, always write bits to 0. More information in Section 2.1 (p. 3
9:8	REFSEL	0x0	RW	Reference Selection
	Select referen	ce.		
	Value	Mode		Description
	0	1V25		Internal 1.25 V bandgap reference
	1	2V5		Internal 2.5 V bandgap reference
	2	VDD		VDD reference
7	CH0PRESCR	ST 0	RW	Channel 0 Start Reset Prescaler
	Select if preso	aler is reset on channel 0 s	tart.	
	Value	Description		
	0	Prescaler not re	set on channel	0 start
	1	Prescaler reset		
6	OUTENPRS	0	RW	PRS Controlled Output Enable
	Enable PRS C	Control of DAC output enable	e.	
	Value	Description		
	0	DAC output ena	ble always on	
	1	DAC output ena	ble controlled b	by PRS signal selected for CH1.
5:4	OUTMODE	0x1	RW	Output Mode
	Select output	mode.		
	Value	Mode		Description
	0	DISABLE		DAC output to pin and ADC disabled
	1	PIN		DAC output to pin enabled. DAC output to ADC and ACMP disabled
	2	ADC		DAC output to pin disabled. DAC output to ADC and ACMP enabled
	3	PINADC		DAC output to pin, ADC, and ACMP enabled
3:2	CONVMODE	0x0	RW	Conversion Mode
	Configure con	version mode.		
	Value	Mode		Description
	0	CONTINUOUS		DAC is set in continuous mode
	1	SAMPLEHOLD		DAC is set in sample/hold mode
	2	SAMPLEOFF		DAC is set in sample/shut off mode
1	SINEMODE	0	RW	Sine Mode
	Enable/disable	e sine mode.		
	Value	Description		
	0	Sine mode disal	oled. Sine reset	to 0 degrees
	1	Sine mode enab	led	
0	DIFF	0	RW	Differential Mode
	Select single	ended or differential mode.		
	Value	Description		
	0	Single ended ou	tput	
		Differential outpo		

25.5.2 DACn_STATUS - Status Register

Offset															Bi	it Po	siti	on														
0x004	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	ი	∞	7	9	2	4	က	7	-	0
Reset																															0	0
Access																															~	~
Name																															CH1DV	СНОДЛ

Bit	Name	Reset	Access	Description
31:2	Reserved	To ensure co	ompatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
1	CH1DV	0	R	Channel 1 Data Valid
	This bit is set high	when CH1DATA is writ	ten and is set low	when CH1DATA is used in conversion.
0	CH0DV	0	R	Channel 0 Data Valid
	This bit is set high	when CH0DATA is writ	ten and is set low	when CH0DATA is used in conversion.

25.5.3 DACn_CH0CTRL - Channel 0 Control Register

Offset															Bi	t Pc	siti	on														
0x008	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	ი	8	7	9	2	4	က	7	-	0
Reset					•																			•			0x0			0	0	0
Access																											RW			X X	RW	RW W
Name																											PRSSEL			PRSEN	REFREN	Z

Bit	Name	Res	et Acce	ss Description
31:7	Reserved	То є	nsure compatibility v	vith future devices, always write bits to 0. More information in Section 2.1 (p. 3)
6:4	PRSSEL	0x0	RW	Channel 0 PRS Trigger Select
	Select Channe	el 0 PRS input chan	nel.	
	Value	Mode		Description
	0	PRSCH0		PRS ch 0 triggers channel 0 conversion.
	1	PRSCH1		PRS ch 1 triggers channel 0 conversion.
	2	PRSCH2		PRS ch 2 triggers channel 0 conversion.
	3	PRSCH3		PRS ch 3 triggers channel 0 conversion.
	4	PRSCH4		PRS ch 4 triggers channel 0 conversion.
	5	PRSCH5		PRS ch 5 triggers channel 0 conversion.
	6	PRSCH6		PRS ch 6 triggers channel 0 conversion.
	7	PRSCH7		PRS ch 7 triggers channel 0 conversion.
3	Reserved	То в	nsure compatibility v	vith future devices, always write bits to 0. More information in Section 2.1 (p. 3)
2	PRSEN	0	RW	Channel 0 PRS Trigger Enable
	Select Channe	el 0 conversion trigg	er.	
	Value	Descrip	tion	
	0	Channe	l 0 is triggered by CH0I	DATA or COMBDATA write

Downloaded from Floods.com

Channel 0 is triggered by PRS input

Bit	Name	Reset	Access	Description
1	REFREN	0	RW	Channel 0 Automatic Refresh Enable
	Set to enable automatic re	efresh of channel 0.	Refresh period	d is set by REFRSEL in DACn_CTRL.
	Value	Description		
	0	Channel 0 is not refre	eshed automatica	ally
	1	Channel 0 is refreshe	ed automatically	
0	EN	0	RW	Channel 0 Enable
	Enable/disable channel 0.			

25.5.4 DACn_CH1CTRL - Channel 1 Control Register

Offset															Bi	t Pc	siti	on														
0x00C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	41	13	12	7	10	თ	80	7	9	2	4	က	2	-	0
Reset																											0x0			0	0	0
Access																											RW			RW	RW	W.
Name																											PRSSEL			PRSEN	REFREN	E N

Bit	Name		Reset	Access	Description
31:7	Reserved		To ensure co	mpatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
6:4	PRSSEL		0x0	RW	Channel 1 PRS Trigger Select
	Select Channe	el 1 PRS input o	channel.		
	Value	Mode		Des	cription
	0	PRSCH0		PRS	S ch 0 triggers channel 1 conversion.
	1	PRSCH1		PRS	S ch 1 triggers channel 1 conversion.
	2	PRSCH2		PRS	S ch 2 triggers channel 1 conversion.
	3	PRSCH3		PRS	S ch 3 triggers channel 1 conversion.
	4	PRSCH4		PRS	S ch 4 triggers channel 1 conversion.
	5	PRSCH5		PRS	S ch 5 triggers channel 1 conversion.
	6	PRSCH6		PRS	S ch 6 triggers channel 1 conversion.
	7	PRSCH7		PRS	S ch 7 triggers channel 1 conversion.
3	Reserved		To ensure co	mpatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
2	PRSEN	(0	RW	Channel 1 PRS Trigger Enable
	Select Channe	el 1 conversion	trigger.		
	Value	De	escription		
	0	Ch	nannel 1 is trigg	gered by CH1DATA	or COMBDATA write
	1	Ch	nannel 1 is trigg	pered by PRS input	
1	REFREN	(0	RW	Channel 1 Automatic Refresh Enable
	Cat to anable	automatic refre	sh of channe	l 1. Refresh perio	d is set by REFRSEL in DACn_CTRL.
	Set to enable				
	Value	De	escription		
				refreshed automatic	ally
	Value	Ch	nannel 1 is not	refreshed automatic	ally
0	Value	Ch Ch	nannel 1 is not		Channel 1 Enable

Downloaded from Headles com

25.5.5 DACn_IEN - Interrupt Enable Register

Offset			,		,										Bi	t Pc	siti	on						,								
0x010	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	41	13	12	11	10	6	8	7	9	2	4	က	2	_	0
Reset																											0	0			0	0
Access																											RW	RW			RW	RW
Name																											CH1UF	CH0UF			CH1	СНО

Bit	Name	Reset	Access	Description
31:6	Reserved	To ensure co	ompatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
5	CH1UF	0	RW	Channel 1 Conversion Data Underflow Interrupt Enable
	Enable/disable cha	annel 1 data underflow i	nterrupt.	
4	CH0UF	0	RW	Channel 0 Conversion Data Underflow Interrupt Enable
	Enable/disable cha	annel 0 data underflow i	nterrupt.	
3:2	Reserved	To ensure co	ompatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
1	CH1	0	RW	Channel 1 Conversion Complete Interrupt Enable
	Enable/disable cha	annel 1 conversion com	plete interrupt.	
0	CH0	0	RW	Channel 0 Conversion Complete Interrupt Enable
	Enable/disable cha	annel 0 conversion com	plete interrupt.	

25.5.6 DACn_IF - Interrupt Flag Register

Offset															Bi	t Pc	siti	on														
0x014	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	1	10	0	8	7	9	2	4	က	2	-	0
Reset																											0	0			0	0
Access																											ď	œ			œ	~
Name																											CH1UF	CHOUF			CH1	СНО

Bit	Name	Reset	Access	Description
31:6	Reserved	To ensure co	mpatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
5	CH1UF	0	R	Channel 1 Data Underflow Interrupt Flag
	Indicates channel 1 data	underflow.		
4	CH0UF	0	R	Channel 0 Data Underflow Interrupt Flag
	Indicates channel 0 data	underflow.		
3:2	Reserved	To ensure co	mpatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
1	CH1	0	R	Channel 1 Conversion Complete Interrupt Flag
	Indicates channel 1 conv	ersion complete.		
0	CH0	0	R	Channel 0 Conversion Complete Interrupt Flag
	Indicates channel 0 conv	ersion complete.		

Downloaded from Hoods, com 2010-12-21 - d0034_Rev0.90 415 www.energymicro.com

25.5.7 DACn_IFS - Interrupt Flag Set Register

Offset															Bi	t Pc	siti	on														
0x018	31	30	29	78	27	56	22	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	∞	7	9	2	4	ო	2	-	0
Reset																											0	0			0	0
Access																											8	W			M1	M
Name																											CH1UF	CHOUF			CH1	CHO

Bit	Name	Reset	Access	Description
31:6	Reserved	To ensure c	ompatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
5	CH1UF	0	W1	Channel 1 Data Underflow Interrupt Flag Set
	Write to 1 to set ch	annel 1 Data Underflo	w interrupt flag.	
4	CH0UF	0	W1	Channel 0 Data Underflow Interrupt Flag Set
	Write to 1 to set ch	annel 0 Data Underflo	w interrupt flag.	
3:2	Reserved	To ensure c	ompatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
1	CH1	0	W1	Channel 1 Conversion Complete Interrupt Flag Set
	Write to 1 to set ch	annel 1 conversion co	mplete interrupt fla	ag.
0	CH0	0	W1	Channel 0 Conversion Complete Interrupt Flag Set
	Write to 1 to set ch	annel 0 conversion cor	mplete interrupt fla	ag.

25.5.8 DACn_IFC - Interrupt Flag Clear Register

Offset															Bi	t Po	siti	on														
0x01C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	œ	7	9	2	4	က	2	_	0
Reset																	•										0	0			0	0
Access																											W	M1			M1	W W
Name																											CH1UF	CHOUF			CH1	СНО

Bit	Name	Reset	Access	Description
31:6	Reserved	To ensure c	ompatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
5	CH1UF	0	W1	Channel 1 Data Underflow Interrupt Flag Clear
	Write to 1 to clear of	channel 1 data underflo	ow interrupt flag.	
4	CH0UF	0	W1	Channel 0 Data Underflow Interrupt Flag Clear
	Write to 1 to clear of	channel 0 data underflo	ow interrupt flag.	
3:2	Reserved	To ensure c	ompatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
1	CH1	0	W1	Channel 1 Conversion Complete Interrupt Flag Clear
	Write to 1 to clear of	channel 1 conversion of	complete interrupt	flag.
0	CH0	0	W1	Channel 0 Conversion Complete Interrupt Flag Clear
	Write to 1 to clear of	channel 0 conversion o	complete interrupt	flag.

Downloaded from Houles com

25.5.9 DACn_CH0DATA - Channel 0 Data Register

Offset															Bi	t Po	siti	on														
0x020	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	9	2	4	3	2	-	0
Reset																											000x0					
Access																											₩ N					
Name																											DATA					
Bit	Na	me						Re	set			A	\CC	ess		De	scri	ipti	on													

Bit	Name	Reset	Access	Description
31:12	Reserved	To ensure compa	atibility with fut	ure devices, always write bits to 0. More information in Section 2.1 (p. 3)
11:0	DATA	0x000	RW	Channel 0 Data
	This register contains the v	alue which will be	converted by cl	hannel 0.

25.5.10 DACn_CH1DATA - Channel 1 Data Register

Offset														•	Bi	t Po	siti	on														
0x024	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	1	10	6	8	7	9	2	4	က	2	1	0
Reset																											000x0					
Access																											χ ≷					
Name																											DATA					

Bit	Name	Reset	Access	Description
31:12	Reserved	To ensure com	patibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
11:0	DATA	0x000	RW	Channel 1 Data
	This register contains the	value which will be	converted by	channel 1.

25.5.11 DACn_COMBDATA - Combined Data Register

Offset															Bi	t Pc	siti	on														
0x028	33	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	7	10	6	8	7	9	5	4	က	2	-	0
Reset			000x0																													
Access										Š	>																≥					
Name			CH1DATA																						CHODATA							

Bit	Name	Reset	Access	Description
31:28	Reserved	To ensure comp	atibility with fut	ure devices, always write bits to 0. More information in Section 2.1 (p. 3)

Downloaded from H 2010-12-21 - d0034_Rev0.90 417 www.energymicro.com

Bit	Name	Reset	Access	Description										
27:16	CH1DATA	0x000	W	Channel 1 Data										
	Data written to this register	r will be written to [DATA in DACn	_CH1DATA.										
15:12	Reserved	To ensure comp	atibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)										
11:0	CH0DATA	0x000	W	Channel 0 Data										
	Data written to this register	Data written to this register will be written to DATA in DACn_CH0DATA.												

25.5.12 DACn_CAL - Calibration Register

Offset															Bi	t Po	siti	on														
0x02C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	7	10	0	8	7	9	2	4	က	2	-	0
Reset													0x40									0000								0000		
Access													RW									χ ≷							7	<u>}</u>		
Name													GAIN									CH10FFSET							FEGURA	L		

Bit	Name	Reset	Access	Description
31:23	Reserved	To ensure co	mpatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
22:16	GAIN	0x40	RW	Gain Calibration Value
				set to the production gain calibration value for the 1V25 internal reference to device. The field is unsigned. Higher values lead to lower DAC results.
15:14	Reserved	To ensure co	mpatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
13:8	CH1OFFSET	0x00	RW	Channel 1 Offset Calibration Value
	calibration value for		erence during rese	channel 1 conversions. This field is set to the production channel 1 offset et, hence the reset value might differ from device to device. The field is results.
7:6	Reserved	To ensure co	mpatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
5:0	CH0OFFSET	0x00	RW	Channel 0 Offset Calibration Value
	calibration value for		erence during rese	channel 0 conversions. This field is set to the production channel 0 offset et, hence the reset value might differ from device to device. The field is results.

25.5.13 DACn_BIASPROG - Bias Programming Register

Offset															Bi	t Po	siti	on														
0x030	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	41	13	12	7	10	6	∞	7	9	2	4	က	2	-	0
Reset																		-				1,3	X S			-				0x7		
Access																		W.W.				7	<u>}</u>			RW				RW		
Name																		OPA2HALFBIAS				00000	OPAZBIASPROG			HALFBIAS				BIASPROG		

Bit	Name	Reset	Access	Description
31:15	Reserved	To ensure com	patibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
14	OPA2HALFBIAS	1	RW	Half Bias Current

Value

Mode PLPFDIS

NLPFDIS

Bit	Name	Reset	Access	Description
	Set this bit to halve the	bias current.		
13:12	Reserved	To ensure co	ompatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
11:8	OPA2BIASPROG	0x7	RW	Bias Programming Value for OPA2
	These bits control the b	ias current level.		
7	Reserved	To ensure co	ompatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
6	HALFBIAS	1	RW	Half Bias Current
	Set this bit to halve the	bias current.		
5:4	Reserved	To ensure co	ompatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
3:0	BIASPROG	0x7	RW	Bias Programming Value
	These bits control the b	ias current level.		

25.5.14 DACn_OPACTRL - Operational Amplifier Control Register

Offset															Bi	t Po	sit	ion													
0x054	33	90	53	78	27	26	25	24	23	23	21	8	19	18	17	16	15	4	13	7	10	6	8	7	9	2	4	က	7	-	0
Reset								0	0	0					5	Š		000	0x0				0	0	0				0	0	0
Access							-	₩ M	₩ M	¥ N			_		200		_	 §	§ S		_	_	¥ N	§.	₩ W		_	-	₩ M	W.	Z.
	_							<u> </u>	<u> </u>	LE.					-			<u></u>	<u> </u>				L.	<u> </u>	14				<u> </u>	ш.	<u> </u>
Name								OPA2SHORT	OPA1SHORT	OPA0SHORT					2 2 2	OFAZEPTDIS		OPA1LPFDIS	OPA0LPFDIS				OPA2HCMDIS	OPA1HCMDIS	OPAOHCMDIS				OPA2EN	OPA1EN	OPA0EN
Bit	Nar	ne						Re	set			F	Acce	es	S	De	SC	ripti	on												
31:25	Res	erve	ed					То	ens	ure c	omp	atib	ility	wit	h futu	ire de	evic	es, a	ılways v	vrite	bits	to 0.	Mor	e inf	orm	natio	n in S	Sect	ion 2	.1 (p	o. 3)
24	OPA	28	HOF	RT.				0				R	W			Sho	ort	the n	on-inv	ertin	g ar	nd In	veri	ng l	npı	ut.					
	Set t	o s	hort	the	non	-inv	ertin	g an	d inv	erin/	g inp	out.																			
23	OPA	15	HOR	RT				0				R	W			Sho	ort	the n	on-inv	ertin	ıg ar	nd In	veri	ng l	npı	ut.					
	Set t	o s	hort	the	non	-inv	ertin	g an	d inv	erin/	g inp	out.																			
22	OPA	.0S	HOR	RT				0				R	2W			Sho	ort	the n	on-inv	ertin	g ar	nd In	veri	ng l	npı	ut.					
	Set t	o s	hort	the	non	-inv	ertin	g an	d In	/erin	g Inp	out.																			
21:18	Res	erve	ed					То	ens	ure c	omp	atib	ility	wit	h futu	ire de	evic	es, a	ılways v	vrite	bits	to 0.	Mor	e inf	orm	natio	n in S	Sect	ion 2	2.1 (p	o. 3)
17:16	OPA	2LI	PFD	IS				0x0)			R	W			Dis	abl	es L	ow Pas	s Fi	lter.										
	Disa	ble	s the	low	, pa	ss fi	lter l	oetw	een	pad	and	the	posi	itiv	e and	l neg	gativ	e inp	outmux.												
	Valu	ie			1	Mode									Descr	iption	1														
	1					PLPF	DIS								Disabl	les th	e Ll	PF be	tween po	ositive	e pad	and	posit	tive i	nput	t.					
	2				I	NLPF	DIS								Disabl	les th	e Ll	PF be	tween ne	egativ	e pa	d and	d neg	ative	inp	ut.					
15:14	OPA	1LI	PFD	IS				0x0)			R	w			Dis	abl	es L	ow Pas	s Fil	ter.										
	Disa	ble	s the	low	/ pa	ss fi	lter l	oetw	een	pad	and	the	posi	itiv	e and	l neg	gativ	e inp	outmux.												
	Valu	ie			ı	Mode	•								Descr	iption	1														
	1				1	PLPF	DIS								Disabl	les th	e Ll	PF be	tween po	ositive	e pad	and	posit	tive ii	nput	t.					
	2					NLPF	DIS								Disabl	les th	e Ll	PF be	tween ne	egativ	e pa	d and	neg	ative	inp	ut.					
13:12	OPA	(OLI	PFD	IS				0x0)			R	W			Dis	abl	es L	ow Pas	s Fi	lter.										
	Disa	ble	s the	low	/ pa	ss fi	lter l	oetw	een	pad	and	the	posi	itiv	e and	l neg	gativ	e inp	out mux												

Downloaded from Headles com 2010-12-21 - d0034_Rev0.90 419 www.energymicro.com

Disables the LPF between positive pad and positive input.

Disables the LPF between negative pad and negative input.

Bit	Name	Reset	Access	Description
11:9	Reserved	To ensure c	ompatibility with fu	uture devices, always write bits to 0. More information in Section 2.1 (p. 3)
8	OPA2HCMDIS	0	RW	High Common Mode Disable.
	Set to disable high co while HCM is disabled			nput, while output still remains rail-to-rail. The input voltage to the opamp -1.2V.
7	OPA1HCMDIS	0	RW	High Common Mode Disable.
	Set to disable high co while HCM is disabled			nput, while output still remains rail-to-rail. The input voltage to the opamp -1.2V.
6	001011011010			
O	OPA0HCMDIS	0	RW	High Common Mode Disable.
O		mmon mode. Disab	les rail-to-rail on ir	nput, while output still remains rail-to-rail. The input voltage to the opamp
5:3	Set to disable high co	mmon mode. Disab	les rail-to-rail on ir en VSS and VDD-	nput, while output still remains rail-to-rail. The input voltage to the opamp
	Set to disable high co while HCM is disabled	mmon mode. Disab	les rail-to-rail on ir en VSS and VDD-	nput, while output still remains rail-to-rail. The input voltage to the opamp -1.2V.
5:3	Set to disable high co while HCM is disabled Reserved	mmon mode. Disab d is restricted betwee To ensure of	les rail-to-rail on ir en VSS and VDD- ompatibility with fu	nput, while output still remains rail-to-rail. The input voltage to the opamp -1.2V. uture devices, always write bits to 0. More information in Section 2.1 (p. 3)
5:3	Set to disable high co while HCM is disabled Reserved OPA2EN	mmon mode. Disab d is restricted betwee To ensure of	les rail-to-rail on ir en VSS and VDD- ompatibility with fu	nput, while output still remains rail-to-rail. The input voltage to the opamp -1.2V. uture devices, always write bits to 0. More information in Section 2.1 (p. 3)
5:3	Set to disable high co while HCM is disabled Reserved OPA2EN Set to enable OPA2, or	mmon mode. Disable is restricted between to ensure or the control of the control	les rail-to-rail on ir en VSS and VDD- ompatibility with fu RW	nput, while output still remains rail-to-rail. The input voltage to the opamp -1.2V. uture devices, always write bits to 0. More information in Section 2.1 (p. 3) OPA2 Enable
5:3	Set to disable high co while HCM is disabled Reserved OPA2EN Set to enable OPA2, of OPA1EN	mmon mode. Disable is restricted between to ensure or the control of the control	les rail-to-rail on ir en VSS and VDD- ompatibility with fu RW	nput, while output still remains rail-to-rail. The input voltage to the opamp -1.2V. uture devices, always write bits to 0. More information in Section 2.1 (p. 3) OPA2 Enable

25.5.15 DACn_OPAOFFSET - Operational Amplifier Offset Register

Offset													•		Bi	t Po	siti	on														
0x058	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	1	10	6	8	7	9	2	4	က	2	1	0
Reset																													Ö	0000		
Access																													i	<u>}</u>		
Name																													,	OFAZOTISE		

5:0	OPA2OFFSET	0x00	RW	OPA2 Offset Configuration Value
31:6	Reserved	To ensure comp	atibility with fut	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
Bit	Name	Reset	Access	Description

This register contains the offset calibration value for OPA2. This field is set to the production OPA2 offset calibration value, hence the reset value might differ from device to device. The field is sign-magnitude encoded. Higher values lead to lower OPA results. The resolution of the LSB is 1.6mV/LSB

25.5.16 DACn_OPA0MUX - Operational Amplifier Mux Configuration Register

Offset															Bi	t Po	siti	on														
0x05C	33	30	29	28	27	26	22	24	23	22	21	20	19	18	17	16	15	41	13	12	7	10	6	8	7	9	2	4	က	2	-	0
Reset			0×0			0			7	Š						0000			0	0			0x0				()	S S			0×0	
Access			RW			RW			Š	≩ Ƴ						RW			RW	ΑM			RW				2	2			RW	
Name			RESSEL			NEXTOUT			L C							OUTPEN			NPEN	PPEN			RESINMUX					NEGOEL			POSSEL	

Downloaded from H couls com 2010-12-21 - d0034_Rev0.90 420 www.energymicro.com

	Name	Reset	Acces	s Description		
31	Reserved	To ensur	e compatibility wi	th future devices, always wi	ite bits to 0. More information in Section 2.	1 (p. 3
30:28	RESSEL	0x0	RW	OPA0 Resistor Lac	der Select	
	Configures the	resistor ladder tap for C	PA0.			
	Value	Mode	Resistor	Value Inverting	Mode Gain (-R2/R1) Non-inverting Mode Gain ((1+(R:
		DECO	R2 = 1/3	1 D4	R1) 1 1/3	
	1	RES0 RES1	R2 = 1/3		2	
	2	RES2	R2 = 1 2		2 2/3	
	3	RES3	R2 = 2 x	: R1 -2 1/5	3 1/5	
	4	RES4	R2 = 3 x	R1 -3	4	
	5	RES5	R2 = 4 1	/3 x R1 -4 1/3	5 1/3	
	6	RES6	R2 = 7 x		8	
	7	RES7	R2 = 15	x R1 -15	16	
27	Reserved	To ensur	e compatibility wi	th future devices, always wi	ite bits to 0. More information in Section 2.	1 (p. :
26	NEXTOUT	0	RW	OPA0 Next Enable		
	Makes output o	of OPA0 available to OF	PA1.			
25:24	Reserved	To ensur	e compatibility wi	th future devices, always wi	ite bits to 0. More information in Section 2.	1 (p
23:22	OUTMODE	0x1	RW	Output Select		
	Select output c	hannel.		•		
	Value	Mode		Description		
	0	DISABLE		OPA0 output is disabled		
	1	MAIN		Main OPA0 output to pin enab	ed	
	_			· · ·		
	2	ALT		OPA0 alternative output enabl	ed.	
	3	ALT ALL		OPA0 alternative output enabl Main OPA0 output drives both		
21:19		ALL	e compatibility wi	Main OPA0 output drives both	main and alternative outputs.	1 (p. 3
21:19	3 Reserved	ALL To ensure		Main OPA0 output drives both	main and alternative outputs. ite bits to 0. More information in Section 2.	1 (p. 3
21:19	3 Reserved OUTPEN	To ensure 0x00	RW	Main OPA0 output drives both	main and alternative outputs. ite bits to 0. More information in Section 2.	1 (p. 3
	Reserved OUTPEN Set to enable o	To ensure 0x00 utput, clear to disable of	RW	Main OPA0 output drives both th future devices, always wi OPA0 Output Enab	main and alternative outputs. ite bits to 0. More information in Section 2.	1 (p. ;
	Reserved OUTPEN Set to enable o	Ox00 output, clear to disable output, Mode	RW	Main OPA0 output drives both th future devices, always wi OPA0 Output Enab	main and alternative outputs. ite bits to 0. More information in Section 2.	1 (p. ;
	3 Reserved OUTPEN Set to enable o Value 0x01	Ox00 Sutput, clear to disable of OUT0	RW	Main OPA0 output drives both th future devices, always we OPA0 Output Enab Description Alternate Output 0	main and alternative outputs. ite bits to 0. More information in Section 2.	1 (p. :
	Reserved OUTPEN Set to enable of Value 0x01 0x02	Ox00 sutput, clear to disable of OUT0 OUT1	RW	Main OPA0 output drives both th future devices, always with OPA0 Output Enable Description Alternate Output 0 Alternate Output 1	main and alternative outputs. ite bits to 0. More information in Section 2.	1 (p. :
	Reserved OUTPEN Set to enable o Value 0x01 0x02 0x04	Ox00 output, clear to disable of OUT0 OUT1 OUT2	RW	Main OPA0 output drives both th future devices, always with OPA0 Output Enable Description Alternate Output 0 Alternate Output 1 Alternate Output 2	main and alternative outputs. ite bits to 0. More information in Section 2.	1 (p. 3
	Reserved OUTPEN Set to enable of Value 0x01 0x02	Ox00 sutput, clear to disable of OUT0 OUT1	RW	Main OPA0 output drives both th future devices, always with OPA0 Output Enable Description Alternate Output 0 Alternate Output 1	main and alternative outputs. ite bits to 0. More information in Section 2.	1 (p. :
18:14	Reserved OUTPEN Set to enable of the total oxole	ALL To ensure 0x00 Putput, clear to disable of Mode OUT0 OUT1 OUT2 OUT3 OUT4	RW	Main OPA0 output drives both th future devices, always with OPA0 Output Enable Description Alternate Output 0 Alternate Output 1 Alternate Output 2 Alternate Output 3 Alternate Output 4	main and alternative outputs. ite bits to 0. More information in Section 2.	11 (p. v.
18:14	Reserved OUTPEN Set to enable of Value 0x01 0x02 0x04 0x08 0x10 NPEN	ALL To ensure 0x00 output, clear to disable of Mode OUT0 OUT1 OUT2 OUT3 OUT4	RW output	Main OPA0 output drives both th future devices, always with OPA0 Output Enable Description Alternate Output 0 Alternate Output 1 Alternate Output 2 Alternate Output 3	main and alternative outputs. ite bits to 0. More information in Section 2.	1 (p
18:14	Reserved OUTPEN Set to enable of the control of t	ALL To ensure 0x00 Putput, clear to disable of Mode OUT0 OUT1 OUT2 OUT3 OUT4 0 to the negative input mu	RW sutput	Main OPA0 output drives both th future devices, always wi OPA0 Output Enab Description Alternate Output 0 Alternate Output 1 Alternate Output 2 Alternate Output 3 Alternate Output 4 OPA0 Negative Pac	main and alternative outputs. ite bits to 0. More information in Section 2. le Value I Input Enable	11 (p. : .
18:14	Reserved OUTPEN Set to enable of Value 0x01 0x02 0x04 0x08 0x10 NPEN Connects pad to PPEN	ALL To ensure 0x00 output, clear to disable of Mode OUT0 OUT1 OUT2 OUT3 OUT4 0 to the negative input mu 0	RW sutput RW RW	Main OPA0 output drives both th future devices, always with OPA0 Output Enable Description Alternate Output 0 Alternate Output 1 Alternate Output 2 Alternate Output 3 Alternate Output 4	main and alternative outputs. ite bits to 0. More information in Section 2. le Value I Input Enable	11 (p
18:14	Reserved OUTPEN Set to enable of Ovalue 0x01 0x02 0x04 0x08 0x10 NPEN Connects pad to PPEN Connects pad to Ovalue	ALL To ensure 0x00 Putput, clear to disable of Mode OUT0 OUT1 OUT2 OUT3 OUT4 0 to the negative input must of the positive input must on the posit	RW sutput RW RW IX RW	Main OPA0 output drives both th future devices, always with OPA0 Output Enable Description Alternate Output 0 Alternate Output 1 Alternate Output 2 Alternate Output 3 Alternate Output 4 OPA0 Negative Pace OPA0 Positive Pace	ite bits to 0. More information in Section 2. Ile Value I Input Enable Input Enable	
18:14	Reserved OUTPEN Set to enable of Value 0x01 0x02 0x04 0x08 0x10 NPEN Connects pad to PPEN	ALL To ensure 0x00 Putput, clear to disable of Mode OUT0 OUT1 OUT2 OUT3 OUT4 0 to the negative input must of the positive input must on the posit	RW sutput RW RW IX RW	Main OPA0 output drives both th future devices, always with OPA0 Output Enable Description Alternate Output 0 Alternate Output 1 Alternate Output 2 Alternate Output 3 Alternate Output 4 OPA0 Negative Pace OPA0 Positive Pace	main and alternative outputs. ite bits to 0. More information in Section 2. le Value I Input Enable	
18:14	Reserved OUTPEN Set to enable of Ovalue 0x01 0x02 0x04 0x08 0x10 NPEN Connects pad to PPEN Connects pad to Ovalue	ALL To ensure 0x00 Putput, clear to disable of Mode OUT0 OUT1 OUT2 OUT3 OUT4 0 to the negative input must of the positive input must on the posit	RW sutput RW RW IX RW	Main OPA0 output drives both th future devices, always with OPA0 Output Enable Description Alternate Output 0 Alternate Output 1 Alternate Output 2 Alternate Output 3 Alternate Output 4 OPA0 Negative Pace OPA0 Positive Pace	ite bits to 0. More information in Section 2. Ille Value I Input Enable Input Enable Ite bits to 0. More information in Section 2.	
18:14	Reserved OUTPEN Set to enable of the value	ALL To ensure 0x00 Putput, clear to disable of Mode OUT0 OUT1 OUT2 OUT3 OUT4 0 to the negative input must not only to the positive input must not only to the posit	RW output RW IX RW c e compatibility wi	Main OPA0 output drives both th future devices, always wi OPA0 Output Enab Description Alternate Output 0 Alternate Output 1 Alternate Output 2 Alternate Output 3 Alternate Output 4 OPA0 Negative Pac OPA0 Positive Pac th future devices, always wi OPA0 Resistor Lac	ite bits to 0. More information in Section 2. Ille Value I Input Enable Input Enable Ite bits to 0. More information in Section 2.	
18:14	Reserved OUTPEN Set to enable of the value	ALL To ensure 0x00 Putput, clear to disable of Mode OUT0 OUT1 OUT2 OUT3 OUT4 0 to the negative input must a construction of the positive input must a construct on the positive input must be a construction of the	RW output RW IX RW c e compatibility wi	Main OPA0 output drives both th future devices, always wi OPA0 Output Enab Description Alternate Output 0 Alternate Output 1 Alternate Output 2 Alternate Output 3 Alternate Output 4 OPA0 Negative Pac OPA0 Positive Pac th future devices, always wi OPA0 Resistor Lac	ite bits to 0. More information in Section 2. Ille Value I Input Enable Input Enable Ite bits to 0. More information in Section 2.	
18:14	Reserved OUTPEN Set to enable of Value 0x01 0x02 0x04 0x08 0x10 NPEN Connects pad to PPEN Connects pad to Reserved RESINMUX These bits selections	ALL To ensure 0x00 Putput, clear to disable of Mode OUT0 OUT1 OUT2 OUT3 OUT4 0 To ensure 0x0 acts the source for the income of the positive input must are acts and the control of the con	RW output RW IX RW c e compatibility wi	Main OPA0 output drives both th future devices, always with OPA0 Output Enable Description Alternate Output 0 Alternate Output 1 Alternate Output 2 Alternate Output 3 Alternate Output 4 OPA0 Negative Pad th future devices, always with OPA0 Resistor Lacesistor ladder	ite bits to 0. More information in Section 2. Ille Value I Input Enable Input Enable Ite bits to 0. More information in Section 2.	
18:14	Reserved OUTPEN Set to enable of Value 0x01 0x02 0x04 0x08 0x10 NPEN Connects pad to PPEN Connects pad to Reserved RESINMUX These bits selective Value 0 1	ALL To ensure 0x00 Putput, clear to disable of the court of the negative input must be counted to the positive input must be counted to the source for the information of the positive input must be counted to the source for the information of the positive input must be counted to the positive input must be considered to the positive input must be considere	RW output RW IX RW c e compatibility wi	Main OPA0 output drives both th future devices, always wi OPA0 Output Enab Description Alternate Output 0 Alternate Output 1 Alternate Output 2 Alternate Output 3 Alternate Output 4 OPA0 Negative Pad th future devices, always wi OPA0 Resistor Lacesistor ladder Description Set for Unity Gain set for OPA0 input	ite bits to 0. More information in Section 2. Ille Value I Input Enable Input Enable Ite bits to 0. More information in Section 2.	
	Reserved OUTPEN Set to enable of Value 0x01 0x02 0x04 0x08 0x10 NPEN Connects pad to Reserved RESINMUX These bits selection value 0 1 2	ALL To ensure 0x00 output, clear to disable of Mode OUT0 OUT1 OUT2 OUT3 OUT4 0 to the negative input must To ensure 0x0 octs the source for the in Mode DISABLE OPAOINP NEGPAD	RW output RW IX RW c e compatibility wi	Main OPA0 output drives both th future devices, always with OPA0 Output Enable Description Alternate Output 0 Alternate Output 1 Alternate Output 2 Alternate Output 3 Alternate Output 4 OPA0 Negative Pade th future devices, always with future devices, always with future devices always wit	ite bits to 0. More information in Section 2. Ille Value I Input Enable Input Enable Ite bits to 0. More information in Section 2.	
18:14	Reserved OUTPEN Set to enable of Value 0x01 0x02 0x04 0x08 0x10 NPEN Connects pad to Reserved RESINMUX These bits sele Value 0 1 2 3	ALL To ensure 0x00 Putput, clear to disable of the country of the negative input must be country of the positive input must be country of the source for the information of the positive input must be country of the positive input must be considered in the positive input must be considere	RW output RW IX RW c e compatibility wi	Main OPA0 output drives both th future devices, always with OPA0 Output Enable Description Alternate Output 0 Alternate Output 1 Alternate Output 2 Alternate Output 3 Alternate Output 4 OPA0 Negative Pade th future devices, always with OPA0 Resistor Lace esistor ladder Description Set for Unity Gain set for OPA0 input Neg pad connected Pos pad connected	ite bits to 0. More information in Section 2. Ille Value I Input Enable Input Enable Ite bits to 0. More information in Section 2.	
18:14	Reserved OUTPEN Set to enable of Value 0x01 0x02 0x04 0x08 0x10 NPEN Connects pad to Reserved RESINMUX These bits selection value 0 1 2	ALL To ensure 0x00 output, clear to disable of Mode OUT0 OUT1 OUT2 OUT3 OUT4 0 to the negative input must To ensure 0x0 octs the source for the in Mode DISABLE OPAOINP NEGPAD	RW output RW IX RW c e compatibility wi	Main OPA0 output drives both th future devices, always with OPA0 Output Enable Description Alternate Output 0 Alternate Output 1 Alternate Output 2 Alternate Output 3 Alternate Output 4 OPA0 Negative Pade th future devices, always with future devices, always with future devices always wit	ite bits to 0. More information in Section 2. Ille Value I Input Enable Input Enable Ite bits to 0. More information in Section 2.	

Bit	Name	Reset	Acce	ss Description
	These bits se	elects the source for the inve	rting input on	OPA0
	Value	Mode		Description
	0	DISABLE		Input disabled
	1	UG		Unity Gain feedback path
	2	OPATAP		Feedback resistor
	3	NEGPAD		Input from neg pad
3	Reserved	To ensure c	ompatibility w	vith future devices, always write bits to 0. More information in Section 2.1 (p. 3)
2:0	POSSEL	0x0	RW	OPA0 non-inverting Input Mux
	These bits se	elects the source for the non-	inverting inpu	ut on OPA0
	Value	Mode		Description
	0	DISABLE		Input disabled
	1	DAC		DAC as input
	2	POSPAD		POS PAD as input
	3	OPA0IN		OPA0 as input
	4	OPATAP		Resistor ladder as input

25.5.17 DACn_OPA1MUX - Operational Amplifier Mux Configuration Register

Offset															Bi	t Po	siti	on						•								
0x060	33	30	23	78	27	26	25	24	23	22	21	20	19	18	17	16	15	41	13	12	7	10	6	8	7	9	5	4	3	2	1	0
Reset			0x0			0			Ć,	e e						0000			0	0			0x0				0				0x0	
Access			R W			RW			3	≩						RW			W.	RW			RW				× ×				RW	
Name			RESSEL			NEXTOUT			i c							OUTPEN			NPEN	PPEN			RESINMUX				II O'C'I				POSSEL	

		2 0				22		_
Bit	Name	Reset	Access	Descript	ion			
31	Reserved	To ensure o	compatibility with f	uture devices,	always write bits to	o 0. More ir	nformation in	Section 2.1 (p. 3
30:28	RESSEL	0x0	RW	OPA1 Res	istor Ladder Sel	ect		
	Configures the	resistor ladder tap for OP	A1.					
	Value	Mode	Resistor Val	lue	Inverting Mode Ga		Non-inverting I	Mode Gain (1+(R2/
	0	RES0	R2 = 1/3 x F	R1	-1/3		1 1/3	
	1	RES1	R2 = R1		-1		2	
	2	RES2	R2 = 1 2/3 x	(R1	-1 2/3		2 2/3	
	3	RES3	R2 = 2 x R1		-2 1/5		3 1/5	
	4	RES4	R2 = 3 x R1		-3		4	
	5	RES5	R2 = 4 1/3 x	(R1	-4 1/3		5 1/3	
	6	RES6	R2 = 7 x R1		-7		8	
	7	RES7	R2 = 15 x R	1	-15		16	
27	Reserved	To ensure o	compatibility with f	uture devices,	always write bits to	o 0. More ir	nformation in	Section 2.1 (p. 3
26	NEXTOUT	0	RW	OPA1 Nex	t Enable			
	Makes output of	of OPA1 available to OPA	2.					
25:24	Reserved	To ensure o	compatibility with f	uture devices,	always write bits to	o 0. More ir	nformation in	Section 2.1 (p. 3
23:22	OUTMODE	0x0	RW	Output Se	lect			

2010-12-21 - d0034_Rev0.90 www.energymicro.com

Select output channel.

Bit	Name	Reset	Acces	s Description
	Value	Mode		Description
	0	DISABLE		OPA0 output is disabled
	1	MAIN		Main OPA0 output to pin enabled
	2	ALT		OPA0 alternative output enabled.
	3	ALL		Main OPA0 output drives both main and alternative outputs.
21:19	Reserved	To ensure c	ompatibility wit	th future devices, always write bits to 0. More information in Section 2.1 (p. 3)
18:14	OUTPEN	0x00	RW	OPA1 Output Enable Value
	Set to enable	output, clear to disable outp	out	
	Value	Mode		Description
	0x01	OUT0		Alternate Output 0
	0x02	OUT1		Alternate Output 1
	0x04	OUT2		Alternate Output 2
	0x08	OUT3		Alternate Output 3
	0x10	OUT4		Alternate Output 4
13	NPEN	0	RW	OPA1 Negative Pad Input Enable
	Connects pad	to the negative input mux		
12	PPEN	0	RW	OPA1 Positive Pad Input Enable
	Connects pad	to the positive input mux		
11	Reserved	To ensure c	ompatibility wit	th future devices, always write bits to 0. More information in Section 2.1 (p. 3)
10:8	RESINMUX	0x0	RW	OPA1 Resistor Ladder Input Mux
	These bits sel	ects the source for the inpu	t mux to the re	esistor ladder
	Value	Mode		Description
	0	DISABLE		Set for Unity Gain
	1	OPA0INP		set for OPA0 input
	2	NEGPAD		Neg pad connected
	3	POSPAD		Pos pad connected
	4	VSS		VSS connected
7:6	Reserved	To ensure c	ompatibility wit	th future devices, always write bits to 0. More information in Section 2.1 (p. 3)
5:4	NEGSEL	0x0	RW	OPA1 inverting Input Mux
	These bits sel	ects the source for the inve	rting input on (DPA1
	Value	Mode		Description
	0	DISABLE		Input disabled
	1	UG		Unity Gain feedback path
	1 2	UG OPATAP		Unity Gain feedback path Feedback resistor
3	2	OPATAP NEGPAD		Feedback resistor Input from neg pad
3 2:0	3	OPATAP NEGPAD		Feedback resistor
	2 3 Reserved	OPATAP NEGPAD To ensure co	ompatibility wit	Feedback resistor Input from neg pad th future devices, always write bits to 0. More information in Section 2.1 (p. 3) OPA1 non-inverting Input Mux
	2 3 Reserved	OPATAP NEGPAD To ensure co	ompatibility wit	Feedback resistor Input from neg pad th future devices, always write bits to 0. More information in Section 2.1 (p. 3) OPA1 non-inverting Input Mux
	2 3 Reserved POSSEL These bits selections	OPATAP NEGPAD To ensure co 0x0 ects the source for the non-	ompatibility wit RW inverting input	Feedback resistor Input from neg pad th future devices, always write bits to 0. More information in Section 2.1 (p. 3) OPA1 non-inverting Input Mux on OPA1
	2 3 Reserved POSSEL These bits sele Value	OPATAP NEGPAD To ensure co 0x0 ects the source for the non- Mode	ompatibility wit RW inverting input	Feedback resistor Input from neg pad th future devices, always write bits to 0. More information in Section 2.1 (p. 3) OPA1 non-inverting Input Mux on OPA1 Description
	2 3 Reserved POSSEL These bits sele Value 0	OPATAP NEGPAD To ensure of OxO ects the source for the non- Mode DISABLE	ompatibility wit RW inverting input	Feedback resistor Input from neg pad th future devices, always write bits to 0. More information in Section 2.1 (p. 3, OPA1 non-inverting Input Mux on OPA1 Description Input disabled DAC as input
	2 3 Reserved POSSEL These bits sele Value 0 1	OPATAP NEGPAD To ensure co 0x0 ects the source for the non- Mode DISABLE DAC	ompatibility wit RW inverting input	Feedback resistor Input from neg pad th future devices, always write bits to 0. More information in Section 2.1 (p. 3) OPA1 non-inverting Input Mux on OPA1 Description Input disabled

Downloaded from Elecules com

3

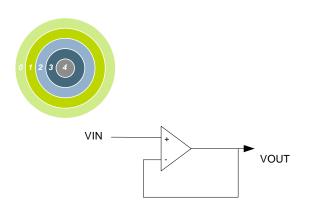
POSPAD

25.5.18 DACn_OPA2MUX - Operational Amplifier Mux Configuration Register

5																														
Offset													E	Bit P	os	ition														
0x064	31	30	78	27	26	25	24	23	1 2	20	6:	2 8	1 1	16	Ĺ	1 5 4	13	2 2	1	10	0	8	_	9	2	4	က	7	- 0	,
Reset		OX O			0		-	c	,	-		-	,			0x0	0	0								0×0			0x0	_
Access		3			X N			>	;							N N	X N				 K K				-	∑ } }			N N	_
			•													ш.		<u>"</u>												_
Name					팃			2	7							Ш Ц	z	z			Ň					Į,			맆	
Name		S.S.			NEXTOUT			TOME								OUTPEN	NPEN	PPEN			RESINMUX					NEGSEL			POSSEL	
			•		Z																								<u> </u>	_
Bit	Na	me				ا	Res	et			Acc	ces	S	D	es	cripti	on													
31	Re	served					To e	nsure	com	patil	bility	y wi	th fu	ture d	dev	vices, a	alwa	ays v	vrite	bits	to C). Moi	re in	forn	natic	n in	Secti	ion 2	.1 (p. 3)
30:28	RE	SSEL				(0x0			F	RW			OI	PA	2 Resi	isto	or La	dde	r Se	lec	t								
	Coi	nfigures	s the i	esist	tor I	adder	tap	for C	PA2.																					
	Va	lue		М	lode					ı	Resi	istor	Valu	е			Inv	/ertin	g Mo	de G	ain (-R2/F		Non- R1)	inve	rting l	Mode	Gain	(1+(R2/	7
	0			R	ESO)				-	R2 =	= 1/3	x R1				-1/:	/3					_	1 1/3	3					1
	1		RES1							ı	R2 =	= R1					-1						:	2						1
	2		RES2							ı	R2 =	= 1 2	/3 x F	R1			-1 :	2/3					:	2 2/3	3					
	3		RES3							- 1	R2 =	= 2 x	R1				-2	1/5					;	3 1/5	5]
	4			_	ES4					-		= 3 x					-3						-	4						4
	5			_	ES5					_			/3 x F	R1				1/3					-	5 1/3	3					$\frac{1}{1}$
	7			_	ES6					-		= 7 x - 15	x R1				-7 -15	5					-	8 16						-
07		/																								_	_		. , -	
27		served						nsure	com				th fui							bits	to C). Moi	re in	torn	natio	n in .	Secti	ion 2.	.1 (p. 3)
26		XTOUT kes out		OP/	A1 a) availal		o OP	A2.	F	RW			OI	PA	1 Next	t Er	nabl	е											
25:23		served				_				patil	bility	y wi	th fu	ture o	dev	vices, a	alwa	ays v	vrite	bits	to C). Moi	re in	forn	natic	n in	Secti	ion 2	.1 (p. 3)
22	OU	TMOD	E			()			F	RW			Oı	utp	ut Sel	lect	t												_
	Ena	ables o	pa2 m	nain d	outp	out.																								
21:16	Re	served					То е	nsure	com	patil	bility	y wi	th fu	ture o	dev	rices, a	alwa	ays v	vrite	bits	to C). Moi	re in	forn	natio	n in	Secti	ion 2	.1 (p. 3)
15:14	OU	TPEN				(0x0			F	RW			OI	PA:	2 Outp	out	Ena	ble	Valu	ıe									_
	Set	to ena	ble o	utput	, cle	ear to	disal	ble o	utput																					
	Va	lue		М	lode								Desc	criptio	n															7
	1			О	UTC)							Alter	nate	Out	tput 0														1
	2			0	UT1								Alter	nate	Out	tput 1]
13	NP	EN				()			F	RW			OI	PA	2 Neg	ativ	ve Pa	ad Ir	put	En	able								_
	Coi	nnects	pad to	the	ne	gative	inpu	ıt mu	x																					
12	PP	EN				()			F	RW			OI	PA	2 Posi	itiv	е Ра	d In	put	Ena	ble								_
	Coi	nnects	pad to	the	pos	sitive i	input	mux																						
11	Re	served					To e	nsure	com	patil	bility	y wi	th fu	ture o	dev	vices, a	alwa	ays v	vrite	bits	to C). Moi	re in	forn	natic	n in	Secti	ion 2	.1 (p. 3)
10:8	RE	SINMU	X			(0x0			F	RW			OI	PA	2 Resi	isto	or La	dde	r In	put	Mux								
	The	ese bits	seled	ts th	e s	ource	for t	he in	put m	iux t	o th	ne re	esisto	or lac	dde	r														
	Va	lue		М	lode								Desc	riptio	n															7
	0			D	ISA	BLE							Set f	or Un	nity	Gain														
	1			0	PA1	INP							set f	or OP	PA1	input														
	2			N	EGF	PAD							Neg	pad c	coni	nected														

Downloaded from I doubt come 2010-12-21 - d0034_Rev0.90 424 www.energymicro.com

Pos pad connected



Bit	Name	Reset	Acce	ss Description
	Value	Mode		Description
	4	VSS		VSS connected
7:6	Reserved	To ensure c	compatibility w	vith future devices, always write bits to 0. More information in Section 2.1 (p. 3)
5:4	NEGSEL	0x0	RW	OPA2 inverting Input Mux
	These bits sele	ects the source for the inve	erting input on	OPA2
	Value	Mode		Description
	0	DISABLE		Input disabled
	1	UG		Unity Gain feedback path
	2	OPATAP		Feedback resistor
	3	NEGPAD		Input from neg pad
3	Reserved	To ensure c	compatibility w	vith future devices, always write bits to 0. More information in Section 2.1 (p. 3)
2:0	POSSEL	0x0	RW	OPA2 non-inverting Input Mux
	These bits sele	ects the source for the non-	-inverting inpu	ut on OPA2
	Value	Mode		Description
	0	DISABLE		Input disabled
	2	POSPAD		POS PAD as input
	3	OPA1IN		OPA1 as input
	4	OPATAP		Resistor ladder as input

Downloaded from I 2010-12-21 - d0034_Rev0.90 425 www.energymicro.com

26 OPAMP - Operational Amplifier

Quick Facts

What?

The opamps are low power amplifiers with a high degree of flexibility targeting a wide variety of standard opamp application areas. With flexible gain and interconnection built-in programming they can be configured to support multiple common opamp functions, with all pins available externally for filter configurations. Each opamp has a rail to rail input and a rail to rail output.

Why?

The opamps are included to save energy on a pcb compared to standalone opamps, but also reduce system cost by replacing external opamps.

How?

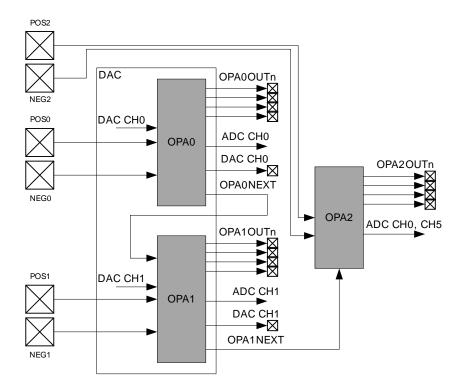
Two of the opamps are made available as part of the DAC, while the third opamp is standalone. An ADC unity gain buffer mode configuration makes it possible to isolate kickback noise, in addition to popular differential to single ended and differential to differential driver modes. The opamps can also be configured as a one, two- or three-step cascaded PGA, and for all of the built-in modes no external components are necessary.

26.1 Introduction

The opamps are highly configurable general purpose opamps, suitable for simple filters and buffer applications. The three opamps can be configured to support various operational amplifier functions through a network of muxes, with possibilities of selecting ranges of on-chip non-inverting and inverting gain configurations, and selecting between outputs to various destinations. The opamps can also be configured with external feedback in addition to supporting cascade connections between two or three opamps. The opamps are rail-to-rail in and out. An user selectable mode has been added to optimize linearity, in which case the input voltage to the opamp is restricted between VSS and VDD-1.2V.

26.2 Features

- 3 individually configurable opamps
- Opamps support rail-to-rail inputs and outputs
- Supports the following functions
 - General Opamp Mode
 - Voltage Follower Unity Gain
 - · Inverting Input PGA
 - Non-inverting PGA
 - Cascaded Inverting PGA

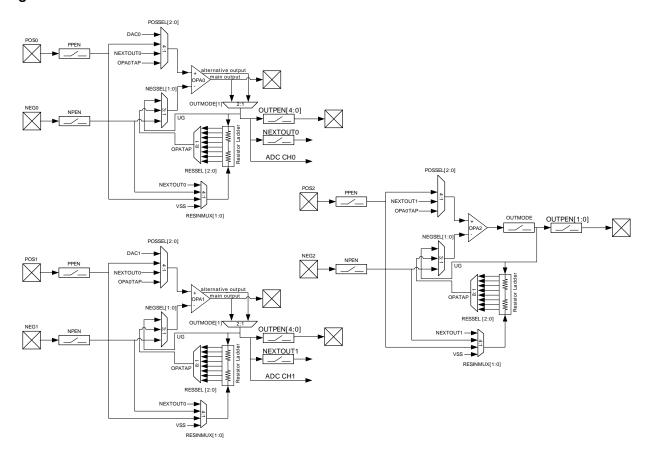


- · Cascaded Non-inverting PGA
- Two Opamp Differential Amplifier
- Three Opamp Differential Amplifier
- · Dual Buffer ADC Driver
- Programmable gain

26.3 Functional Description

The three opamps can be configured to perform various opamp functions through a network of muxes. An overview of the opamps are shown in Figure 26.1 (p. 427). Two of the three opamps are part of the DAC, while the third opamp is standalone. The output of OPA0 can be routed to ADC channel 0, DAC channel 0, OPA1 and various pad outputs. The output of OPA1 can be routed to ADC channel 1, DAC channel 1, OPA2, and various pad outputs. The output of OPA2 can be routed to ADC channel 0, channel 5, and various pad output destinations. All three opamps can also take input from PAD, and OPA0 and OPA1 can also be connected to DAC channel 0 and DAC channel 1 respectively.

Figure 26.1. OPAMP System Overview



A more detailed view of the three opamps, including the mux network is shown in Figure 26.2 (p. 428). There are a set of input muxes and multiple output switches for each opamp, making it possible to select various input sources and various output destinations. The possel mux connected to the positive input makes it possible to select pad, another opamp output, tap from the resistor network, or DAC as its source. Similarly, the negsel mux on the negative input makes it possible to select pad or a feedback path as it source. The feedback path can be a unity gain configuration, or selected from the resistor network for programmable gain. The output switches connected to the output can be used to route the output signal to various destinations, including pad, another opamp input, ADC, or into the feedback path. In addition, there is also a mux to configure the resistor ladder to be connected to vss, pad, or another opamp output.

Downloaded from H coals com 2010-12-21 - d0034_Rev0.90 427 www.energymicro.com

Figure 26.2. OPAMP Overview

26.3.1 Opamp Configuration

Since two of the three opamps (OPA0, OPA1) are part of the DAC, the opamp configuration registers are located in the DAC. The mux registers for OPA0/OPA1 together with OPA2 registers are separate register, also located under the DAC module. All three opamps can be enabled individually by setting OPAXEN in DACn OPACTRL.

26.3.1.1 Input Configuration

The inputs to the opamps are controlled through a set of input muxes. The mux connected to the positive input is configured by the POSSEL bitfield in the DACn_OPAxMUX register. Similarly, the mux connected to the negative input is configured by setting the NEGSEL bitfield in DACn OPAxMUX. To connect the pins to the input muxes, the pin switches must also be enabled. Setting the PPEN bitfield enables to POSPADx, while setting the NPEN bitfield enables the NEGPADx, both located in DACn_OPAxMUX. The input into the resistor ladder can be configured by setting the RESINMUX bitfield in DACn OPAxMUX.

26.3.1.2 Output Configuration

The outputs of the opamps are connected to switches making it possible to route the outputs to various output destinations. There are two outputs from the opamp, a main output and an alternative output with lower drive strength. The main output is connected directly to the DACx pin and can be turned on by setting OUTMODE to MAIN in DACn_OPAxMUX. There are several alternative outputs that can be driven from the opamp. These include the ADC, another opamp, and several alternative output connections. These outputs can be driven by the alternative opamp output by setting OUTMODE to ALT in DACn OPAxMUX. The main opamp output can also be configured to drive the alternative output together with the main output by setting OUTMODE to ALL in DACn_OPAxMUX. The alternative outputs are controlled through switches. Setting NEXTOUT in DACn_OPAxMUX enables the output to the next

opamp (OPA1 for OPA0, OPA2 for OPA1, and OPA0 for OPA2), while the alternative output locations can be individually enabled by setting bits in OUTPEN in DACn_OPAxMUX. The output to ADC is controlled by the ADC. See the ADC chapter for information on how to connect the output.

26.3.1.3 Gain Programming

The feedback path of each mux includes a resistor ladder, which can be used to select a set of gain values. The gain can be selected by the RESSEL bitfield located in DACn OPAxMUX register. The gain values are taken from tappings of the resistor ladder based on ratio of R2/R1. It is also possible to bypass the resistor ladder in Unity Gain (UG) mode.

26.3.1.4 Offset Calibration

The offset calibration registers are located in different registers for the opamps. OPA0 and OPA1's offset can be set through the CH0OFFSET and CH1OFFSET bitfields respectively in DACn CAL. The offset for OPA2 can be set through OPA2OFFSET in DACn_OPA2CAL.

26.3.1.5 Shorting Non-inverting and Inverting Input

Functionality for offset calibration of the opamps has been added, this functionality is enabled by setting the OPAxSHORT bitfield in DACn OPAxCTRL. Setting this bitfield enables a switch that shorts between the inverting and non-inverting input of the OPA, effectively driving the offset voltage of the opamp to the output. Using the ADC to measure this offset, the calibration register can be adjusted to minimize the output offset.

26.3.1.6 Low Pass Filter

The low pass filter is located between the pad and the positive input. The lowpass filter is designed to couple the input signal to local VSS for high frequencies and has a 3dB frequency of approximately 130MHz when driven from a 50 ohm source. The filter adds a parasitic capacitance of approximately 1.2pF towards local VSS when enabled. The filer is enabled out of reset and can be disabled by setting OPAxLPFDIS in DACn OPAxCTRL.

26.3.1.7 Disabling of rail-to-rail Operation

Each opamp can have the input rail-to-rail stage disabled by setting the OPAxHCMDIS bitfield in DACn_OPACTRL. Disabling the rail-to-rail input stage improves linearity of the opamp, thus improving THD at the cost of reduced input signal swing.

26.3.2 Opamp Modes

The opamp can be configured to perform different Operational Amplifier functions by configuring the internal signal routing between the opamps. The modes available are described in the following sections.

26.3.2.1 General Opamp Mode

In this mode the resistor ladder is isolated from the feedback path and input signal routing is defined by OPAxPOSSEL and OPAxNEGSEL in DACn OPAxMUX. The output signal routing is defined by OUTPEN in DACn_OPAxMUX

Table 26.1. General Opamp Mode Configuration

OPA bitfields	OPA Configuration
OPAx POSSEL	POSPADx, DACx
OPAx NEGSEL	OPATAP, UG, NEGPADx
OPAx RESINMUX	NEXTOUT, POSPADx, NEGPADx VSS

26.3.2.2 Voltage Follower Unity Gain

In this mode the unity gain feedback path is selected for the negative input by setting the OPAxNEGSEL bitfield to UG in the DACn_OPAxMUX register as shown in Figure 26.3 (p. 430). The positive input is selected by the OPAxPOSSEL bitfield, and the output is configured by the OUTPEN bitfield, both in the DACn_OPAxMUX register.

Figure 26.3. Voltage Follower Unity Gain Overview

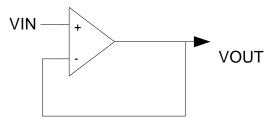


Table 26.2. Voltage Follower Unity Gain Configuration

OPA bitfields	OPA Configuration
OPAx POSSEL	OPATAP, NEXTOUT, POSPADx, DACx
OPAx NEGSEL	UG
OPAx RESINMUX	DISABLE

26.3.2.3 Inverting input PGA

Figure 26.4 (p. 430) shows the inverting input PGA configuration. In this mode the negative input is connected to the resistor ladder by setting the OPAxNEGSEL bitfield to OPATAP in the DACn_OPAxMUX register. This setting provides a programmable gain on the negative input, which can be set by choosing the wanted gain value in the RESSEL bitfield in DACn_OPAxMUX. Signal ground for the positive input can be generated off-chip through the pad by setting OPAxPOSSEL bitfield to PAD in DACn_OPAxMUX. In addition the output is configured by the OUTPEN bitfield, located in DACn_OPAxMUX.

Figure 26.4. Inverting input PGA Overview

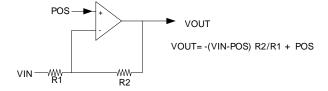


Table 26.3. Inverting input PGA Configuration

OPA bitfields	OPA Configuration
OPAx POSSEL	POSPADx
OPAx NEGSEL	ОРАТАР
OPAx RESINMUX	NEXTOUT, NEGPADx, POSPADx

26.3.2.4 Non-inverting PGA

Figure 26.5 (p. 431) shows the non-inverting input configuration. In this mode the negative input is connected to the resistor ladder by setting the OPAxNEGSEL bitfield to OPATAP in DACn_OPAxMUX. This setting provides a programmable gain on the negative input, which can be set by choosing the wanted gain value in the RESSEL bitfield in DACn_OPAxMUX. In addition the OPAxRESINMUX bitfield must be set to VSS or NEGPAD in DACn_OPAxMUX. The positive input is selected by

the OPAxPOSSEL bitfield, and the output is configured by the OUTPEN bitfield, both located in DACn_OPAxMUX.

Figure 26.5. Non-inverting PGA Overview

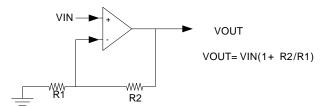


Table 26.4. Non-inverting PGA Configuration

OPA bitfields	OPA Configuration
OPAx POSSEL	NEXTOUT, POSPADx, DACx
OPAx NEGSEL	ОРАТАР
OPAx RESINMUX	VSS, NEGPAD

26.3.2.5 Cascaded Inverting PGA

This mode enables the opamp signals to be internally configured to cascade two or three opamp in inverting mode as shown in Figure 26.6 (p. 431). In both cases the positive input will be configured to signal ground by setting OPAxPOSSEL bitfield to PAD in DACn_OPAx_MUX. When cascaded, the negative input is connected to the resistor ladder by setting the OPAxNEGSEL bitfield to OPATAP in DACn_OPAxMUX. The input to the resistor ladder can be configured in the OPAxRESINMUX bitfield in DAC_nOPAxMUX. The output from OPA0 can be connected to OPA1 to create the second stage by setting the NEXTOUT bitfield in DACn_OPAxMUX. To complete the stage, OPA1RESINMUX field must be set to OPA0INP. Similarly, the last stage can be created by setting the NEXTOUT bitfield in DACn_OPA1MUX and OPA2RESINMUX bitfield to OPA1INP in DACn_OPA2MUX.

Figure 26.6. Cascaded Inverting PGA Overview

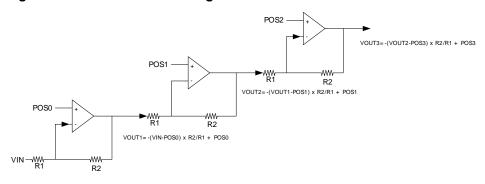


Table 26.5. Cascaded Inverting PGA Configuration

OPA	OPA bitfields	OPA Configuration
OPA0	POSSEL	POSPAD0
OPA0	NEGSEL	ОРАОТАР
OPA0	RESINMUX	NEGPAD0
OPA0	OUTPEN	NEXTOUT
OPA1	POSSEL	POSPAD1
OPA1	NEGSEL	ОРАТАР

OPA	OPA bitfields	OPA Configuration
OPA1	RESINMUX	OPA0INP
OPA1	OUTPEN	NEXTOUT
OPA2	POSSEL	POSPAD2
OPA2	NEGSEL	ОРАТАР
OPA2	RESINMUX	OPA1INP

26.3.2.6 Cascaded Non-inverting PGA

This mode enables the opamp signals to be internally configured to cascade two or three opamps in non-inverting mode as shown in Figure 26.7 (p. 432). In both cases the negative input for all opamps will be connected to the resistor ladder by setting the OPAxNEGSEL bitfield to OPATAP. In addition the resistor ladder input must be set to VSS or NEGPADx in the OPAxRESINMUX in DACn_OPAxMUX. When cascaded, the positive input on OPA0 is configured by the OPA0POSSEL bitfield. The output from OPA0 can be connected to OPA1 to create the second stage by setting NEXTOUT in DACn_OPA0MUX. To complete the stage, the OPA1POSSEL bitfield must be set to OPA0INP in DACn_OPA1MUX. Similarly, the last stage can be created by setting NEXTOUT in DACn_OPA1MUX and OPA2POSSEL bitfield to OPA1INP in DACn_OPA2MUX.

Figure 26.7. Cascaded Non-inverting PGA Overview

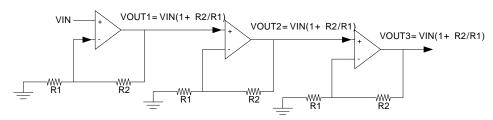


Table 26.6. Cascaded Non-inverting PGA Configuration

OPA	OPA bitfields	OPA Configuration
OPA0	POSSEL	POSPAD0, DAC0
OPA0	NEGSEL	ОРАТАР
OPA0	RESINMUX	VSS, NEGPAD0
OPA0	OUTPEN	NEXTOUT
OPA1	POSSEL	OPA0INP
OPA1	NEGSEL	ОРАТАР
OPA1	RESINMUX	VSS, NEGPAD1
OPA1	OUTPEN	NEXTOUT
OPA2	POSSEL	OPA1INP
OPA2	NEGSEL	ОРАТАР
OPA2	RESINMUX	VSS, NEGPAD2

26.3.2.7 Two Opamp Differential Amplifier

This mode enables OPA1 and OPA2 to be internally configured to form a two opamp differential amplifier as shown in Figure 26.8 (p. 433). For OPA1, the positive input can be connected to any

input by configuring the OPA1POSSEL bitfield in DACn_OPA1MUX. The OPA1 feedback path must be configured to unity gain by setting the OPA1NEGSEL bitfield to UG in DACn_OPA1MUX. In addition, the OPA1RESINMUX bitfield must be set to DISABLED. The OPA1OUT must be connected to OPA2 by setting NEXTOUT in DACn_OPA1MUX, and OPA2RESINMUX to OPA1INP. The positive input on OPA2 can be set by configuring OPA2POSSEL. The OPA2 output can be configured by configuring the OUTPEN and OUTMODE bitfield.

Figure 26.8. Two Op-amp Differential Amplifier Overview

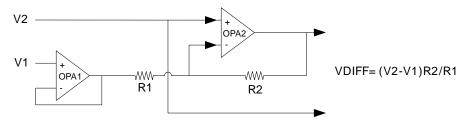


Table 26.7. Two Opamp Differential Amplifier Configuration

OPA	OPA bitfields	OPA Configuration
OPA1	POSSEL	POSPAD1, DAC1
OPA1	NEGSEL	UG
OPA1	RESINMUX	DISABLE
OPA1	OUTPEN	NEXTOUT
OPA2	POSSEL	POSPAD1
OPA2	NEGSEL	ОРАТАР
OPA2	RESINMUX	OPA1INP

26.3.2.8 Three Opamp Differential Amplifier

This mode enables the three opamps to be internally configured to form a three opamp differential amplifier as shown in Figure 26.9 (p. 433). Both OPA0 and OPA1 can be configured in the same unity gain mode. For both OPA0/OPA1 the positive input can be connected to any input by configuring the OPA0POSSEL/OPA1POSSEL bitfield. The OPA0/OPA1 feedback path must be configured to unity gain by setting the OPA0NEGSEL/OPA1NEGSEL bitfield to UG. In addition the OPA0RESINMUX/OPA1RESINMUX bitfields must be set to DISABLED. The OPA1 output must be connected to OPA2 by setting the NEXTOUT bitfield in DACn_OPA1MUX and OPA2RESINMUX to OPA1INP in DACn_OPA2MUX. In addition the OPA2POSSEL must be set to 0PATAP. The OPA2 output can be configured by configuring the OUTPEN and OUTMODE bitfield.

Figure 26.9. Three Op-amp Differential Amplifier Overview

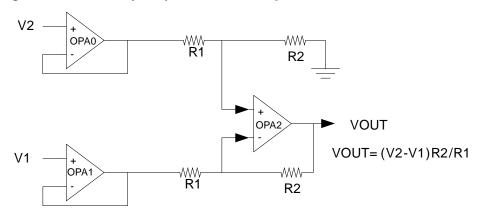


Table 26.8. Three Op-amp Differential Amplifier Configuration

OPA	OPA bitfields	OPA Configuration
OPA0	POSSEL	POPAD0, DAC0
OPA0	NEGSEL	UG
OPA0	RESINMUX	DISABLE
OPA0	OUTPEN	NEXTOUT
OPA1	POSSEL	OPA1INP
OPA1	NEGSEL	UG
OPA1	RESINMUX	DISABLE

26.3.2.9 Dual Buffer ADC Driver

It is possible to use OPA0 and OPA1 to form a Dual Buffer ADC driver as shown in Figure 26.10 (p. 434). Both opamps used can be configured in the same way. The positive input is configured by setting the 0PAxPOSSEL to PAD and the negative input can be connected to the resistor ladder by setting OPATAP in DACn_OPAxMUX. The output from the opamps can be configured to connect to the ADC by setting OUTMODE to ALT or ALL in DACn_OPAxMUX.

Figure 26.10. Dual Buffer ADC Driver Overview

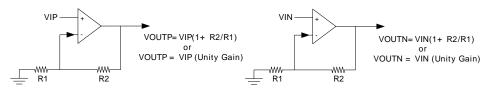
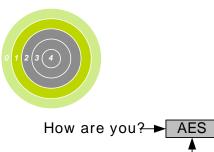


Table 26.9. Dual Buffer ADC Driver Configuration

OPA	OPA bitfields	OPA Configuration
OPA0	POSSEL	POSPAD0, DAC0
OPA0	NEGSEL	ОРАТАР
OPA0	RESINMUX	VSS
OPA1	POSSEL	POSPAD1, DAC1
OPA1	NEGSEL	OPATAP
OPA1	RESINMUX	VSS

26.4 Register Description


The register description of the opamp can be found in the DAC chapter.

26.5 Register Map

The register map of the opamp can be found in the DAC. See the DAC chapter for complete information.

27 AES - Advanced Encryption Standard Accelerator

I am fine◀ - !T4/# 2

What?

A fast and energy efficient hardware accelerator for AES-128 and AES-256 encryption and decryption.

Why?

Efficient encryption/decryption with little or no CPU intervention helps to meet the speed and energy demands of the application.

How?

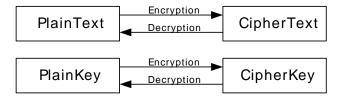
High AES throughput allows the EFM32TG to spend more time in lower energy modes. In addition, specialized data access functions allow autonomous DMA/AES operation in both EM0 and EM1.

27.1 Introduction

The Advanced Encryption Standard (FIPS-197) is a symmetric block cipher operating on 128-bit blocks of data and 128-, 192- or 256-bit keys.

The AES accelerator performs AES encryption and decryption with 128-bit or 256-bit keys. Encrypting or decrypting one 128-bit data block takes 54 HFCORECLK cycles with 128-bit keys and 75 HFCORECLK cycles with 256-bit keys. The AES module is an AHB slave which enables efficient access to the data and key registers. All write accesses to the AES module must be 32-bit operations, i.e. 8- or 16-bit operations are not supported.

27.2 Features


- AES hardware encryption/decryption
 - 128-bit key (54 HFCORECLK cycles)
 - 256-bit key (75 HFCORECLK cycles)
- Efficient CPU/DMA support
- Interrupt on finished encryption/decryption
- DMA request on finished encryption/decryption
- Key buffer in AES128 mode
- · Optional XOR on Data write
- Configurable byte ordering

27.3 Functional Description

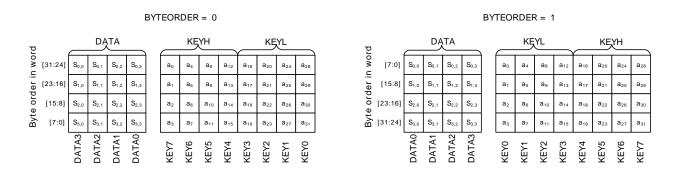
Some data and a key must be loaded into the KEY and DATA registers before an encryption or decryption can take place. The input data before encryption is called the PlainText and output from the encryption is called CipherText. For encryption, the key is called PlainKey. After one encryption, the resulting key in the KEY registers is the CipherKey. This key must be loaded into the KEY registers before every decryption. After one decryption, the resulting key will be the PlainKey. The resulting PlainKey/CipherKey is only dependent on the value in the KEY registers before encryption/decryption. The resulting keys and data are shown in Figure 27.1 (p. 436).

Figure 27.1. AES Key and Data Definitions

27.3.1 Encryption/Decryption

The AES module can be set to encrypt or decrypt by clearing/setting the DECRYPT bit in AES_CTRL. The AES256 bit in AES_CTRL configures the size of the key used for encryption/decryption. The AES_CTRL register should not be altered while AES is running, as this may lead to unpredictable behaviour.

An AES encryption/decryption can be started in the following ways:

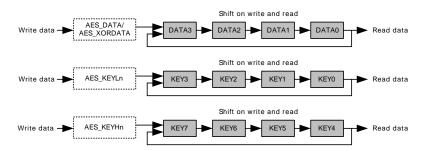

- Writing a 1 to the START bit in AES_CMD
- Writing 4 times 32 bits to AES_DATA when the DATASTART control bit is set
- Writing 4 times 32 bits to AES_XORDATA when the XORSTART control bit is set

An AES encryption/decryption can be stopped by writing a 1 to the STOP bit in AES_CMD. The RUNNING bit in AES_STATUS indicates that an AES encryption/decryption is ongoing.

27.3.2 Data and Key Access

The AES module contains a 128-bit DATA (State) register and two 128-bit KEY registers defined as DATA3-DATA0, KEY3-KEY0 (KEYL) and KEY7-KEY4 (KEYH). In AES128 mode, the 128-bit key is read from KEYL, while both KEYH and KEYL are used in AES256 mode. The AES module has configurable byte ordering which is configured in BYTEORDER in AES_CTRL. Figure 27.2 (p. 436) illustrates how data written to the AES registers is mapped to the key and state defined in the Advanced Encryption Standard (FIPS-197). The figure presents the key byte order for 256-bit keys. In 128-bit mode with BYTEORDER cleared, a₁₆ represents the first byte of the 128-bit key. When BYTEORDER is set, a₀ represents the first byte in the key. AES encryption/decryption takes two extra cycles when BYTEORDER is set. BYTEORDER has to be set prior to loading the data and key registers.

Figure 27.2. AES Data and Key Orientation as Defined in the Advanced Encryption Standard



The registers DATA3-DATA0, are not memory mapped directly, but can be written/read by accessing AES_DATA or AES_XORDATA. The same applies for the key registers, KEY3-KEY0 which are accessed through AES_KEYLn (n=A, B, C or D), while KEY7-KEY4 are accessed through KEYHn (n=A, B, C or D). Writing DATA3-DATA0 is then done through 4 consecutive writes to AES_DATA (or AES_XORDATA), starting with the word which is to be written to DATA0. For each write, the words will

be word wise barrel shifted towards the least significant word. Accessing the KEY registers are done in the same fashion through KEYLn and KEYHn. See Figure 27.3 (p. 437). Note that KEYHA, KEYHB, KEYHC and KEYHD are really the same register, just mapped to four different addresses. You can then chose freely which of these addresses you want to use to update the KEY7-KEY4 registers. The same principle applies to the KEYLn registers. Mapping the same registers to multiple addresses like this, allows the DMA controller to write a full 256-bit key in one sweep, when incrementing the address between each word write.

Figure 27.3. AES Data and Key Register Operation

27.3.2.1 Key Buffer

When encrypting multiple blocks of data in a row, the PlainKey must be written to the key register between each encryption, since the contents of the key registers will be turned into the CipherKey during the encryption. The opposite applies when decrypting, where you have to re-supply the CipherKey between each block. However, in AES128 mode, KEY4-KEY7 can be used as a buffer register, to hold an extra copy of the KEY4-KEY0 registers. When KEYBUFEN is set in AES_CTRL, the contents of KEY7-KEY4 are copied to KEY4-KEY0, when an encryption/decryption is started. This eliminates the need for re-loading the KEY for every encrypted/decrypted block when running in AES128 mode.

27.3.2.2 Data Write XOR

The AES module contains an array of XOR gates connected to the DATA registers, which can be used during a data write to XOR the existing contents of the registers with the new data written. To use the XOR function, the data must be written to AES XORDATA location.

Reading data from AES XORDATA is equivalent to reading data from AES DATA.

27.3.2.3 Start on Data Write

The AES module can be configured to start an encryption/decryption when the new data has been written to AES DATA and/or AES XORDATA. A 2-bit counter is incremented each time the AES DATA or AES_XORDATA registers are written. This counter indicates which data word is written. If DATASTART/ XORSTART in AES_CTRL is set, an encryption will start each time the counter overflows (DATA3 is written). Writing to the AES_CTRL register will reset the counter to 0.

27.3.3 Interrupt Request

The DONE interrupt flag is set when an encryption/ decryption has finished.

27.3.4 DMA Request

The AES module has 4 DMA requests which are all set on a finished encryption/decryption and cleared on the following conditions:

- DATAWR: Cleared on a AES_DATA write or AES_CTRL write
- XORDATAWR: Cleared on a AES_XORDATA write or AES_CTRL write
- DATARD: Cleared on a AES_DATA read or AES_CTRL write

• KEYWR: Cleared on a AES_KEYHn write or AES_CTRL write

27.3.5 Block Chaining Example

Example 27.1 (p. 438) below illustrates how the AES module could be configured to perform Cipher Block Chaining with 128-bit keys.

Example 27.1. AES Cipher Block Chaining

- 1. Configure module to encryption, key buffer enabled and XORSTART in AES CTRL
- Write 128-bit initialization vector to AES_DATA, starting with least significant word.
- 3. Write PlainKey to AES_KEYHn, starting with least significant word.
- 4. Write PlainText to AES_XORDATA, starting with least significant word. Encryption will be started when the DATA3 is written. KEYH (PlainKey) will be copied to KEYL before encryption starts.
- When encryption finished, read CipherText from AES_DATA, starting with least significant word.
- 6. Loop to step 4, if new PlainText is available.

Downloaded from H couls com 2010-12-21 - d0034_Rev0.90 438 www.energymicro.com

27.4 Register Map

The offset register address is relative to the registers base address.

Offset	Name	Туре	Description
0x000	AES_CTRL	RW	Control Register
0x004	AES_CMD	W1	Command Register
0x008	AES_STATUS	R	Status Register
0x00C	AES_IEN	RW	Interrupt Enable Register
0x010	AES_IF	R	Interrupt Flag Register
0x014	AES_IFS	W1	Interrupt Flag Set Register
0x018	AES_IFC	W1	Interrupt Flag Clear Register
0x01C	AES_DATA	RW	DATA Register
0x020	AES_XORDATA	RW	XORDATA Register
0x030	AES_KEYLA	RW	KEY Low Register
0x034	AES_KEYLB	RW	KEY Low Register
0x038	AES_KEYLC	RW	KEY Low Register
0x03C	AES_KEYLD	RW	KEY Low Register
0x040	AES_KEYHA	RW	KEY High Register
0x044	AES_KEYHB	RW	KEY High Register
0x048	AES_KEYHC	RW	KEY High Register
0x04C	AES_KEYHD	RW	KEY High Register

27.5 Register Description

27.5.1 AES_CTRL - Control Register

Offset															Bi	t Pc	siti	on														
0x000	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	41	13	12	1	10	ნ	∞	7	9	2	4	က	2	-	0
Reset				•											•										,	0	0	0		0	0	0
Access																									-	ΑW	ΑM	RW		W.	W.	R W
Name																										BYTEORDER	XORSTART	DATASTART		KEYBUFEN	AES256	DECRYPT

Bit	Name	Reset	Access	Description
31:7	Reserved	To ensure co	mpatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
6	BYTEORDER	0	RW	Configure byte order in data and key registers
	When set, the byte orde	ers in the data and	key registers are	swapped before and after encryption/decryption.
5	XORSTART	0	RW	AES_XORDATA Write Start
	Set this bit to start encr	yption/decryption w	vhen DATA3 is wr	itten through AES_XORDATA.
4	DATASTART	0	RW	AES_DATA Write Start
	Set this bit to start encr	yption/decryption w	vhen DATA3 is wr	itten through AES_DATA.
3	Reserved	To ensure co	mpatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
2	KEYBUFEN	0	RW	Key Buffer Enable

Bit	Name	Reset	Access	Description
	Enable/disable key buffer	in AES-128 mode.		
1	AES256	0	RW	AES-256 Mode
	Select AES-128 or AES-2	256 mode.		
	Value	Description		
	0	AES-128 mode		
	1	AES-256 mode		
0	DECRYPT	0	RW	Decryption/Encryption Mode
	Select encryption or decry	yption.		
	Value	Description		
	0	AES Encryption		
	1	AES Decryption		

27.5.2 AES_CMD - Command Register

Offset															Bi	t Pc	siti	on														
0x004	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	41	13	12	7	10	6	8	7	9	2	4	က	2	-	0
Reset																															0	0
Access																															W	W
Name																															STOP	START

Bit	Name	Reset	Access	Description
31:2	Reserved	To ensure co	ompatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
1	STOP	0	W1	Encryption/Decryption Stop
	Set to stop encryp	tion/decryption.		
0	START	0	W1	Encryption/Decryption Start
	Set to start encryp	tion/decryption.		

27.5.3 AES_STATUS - Status Register

Offset															Bi	t Pc	siti	on														
0x008	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	7	10	6	80	7	9	2	4	က	2	_	0
Reset																																0
Access																																~
Name																																RUNNING

Bit	Name	Reset	Access	Description
31:1	Reserved	To ensure co	ompatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
0	RUNNING	0	R	AES Running
	This bit indicates th	at the AES module is	unning an encryp	tion/decryption.

www.energymicro.com2010-12-21 - d0034_Rev0.90

Encryption/Decryption Done Interrupt Enable

Encryption/Decryption Done Interrupt Flag Set

DONE

27.5.4 AES_IEN - Interrupt Enable Register

Offset														Bit	Ро	sitio	on														
0x00C	33	29	28	27	26	22	24	23	22	21	20	19	18	17	16	15	4	13	12	11	10	თ	œ	7	9	2	4	က	7	-	0
Reset															,																0
Access																															R ≷
Name																															DONE
Bit	Name	;					Re	set			Α	cce	ess		De	scri	iptio	on													
31:1	Reserv	/ed					То	ensi	ure c	omp	atibi	ility v	vith	futur	e de	vice	es, a	alway	/S W	rite l	bits t	o 0.	Mor	e inf	orm	atio	n in S	Secti	ion 2	. 1 (r	o. 3)

27.5.5 AES_IF - Interrupt Flag Register

Enable/disable interrupt on encryption/decryption done.

Offset															Bi	t Po	siti	on														
0x010	33	30	29	28	27	56	25	24	23	22	21	20	19	18	17	16	15	4	13	12	1	10	6	8	_	9	2	4	က	2	-	0
Reset																																0
Access																																~
Name																																DONE
Bit	Na	me						Re	set			Α	CC	ess		De	scri	ipti	on													
31:1	Re	serv	ed					То	ensı	ıre c	отр	atibi	lity	with	futu	re de	evice	es, a	alwa	iys v	vrite	bits	to 0.	Mor	e inf	orm	natio	n in	Sect	ion 2	.1 (p	o. 3)
0	DO	NE						0				R				End	cryp	tion	ı/De	cry	ptio	n Do	ne I	nter	rupt	Fla	ag					
	Set	whe	en ar	n end	crypt	tion/	/dec	rypti	on h	as fi	nishe	ed.																				

27.5.6 AES_IFS - Interrupt Flag Set Register

Write to 1 to set encryption/decryption done interrupt flag

Offset															Bi	t Po	siti	on														
0x014	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	41	13	12	7	10	6	∞	7	9	2	4	က	7	-	0
Reset		-																														0
Access																																W N
Name																																DONE
Bit	Na	ıme						Re	set			A	\CC	ess		De	scri	iptic	on													
31:1	Re	serv	ed					To	ensi	ire c	comp	atihi	ilitv	with	friti	ire di	evice	20 2	lwa	1/2 1/	/rite	hits	to 0	Mor	e inf	orm	natio	n in .	Sect	ion 2	1 (r	3)

Downloaded from Hoods, com www.energymicro.com

27.5.7 AES_IFC - Interrupt Flag Clear Register

Offset												Ві	it Po	sitic	on												
0x018	30	59	28	27	26	24	23	22	21	20	6 8	1	16	15	4	5 2	7	10	6	80	7	9 4) 4	က	2	-	0
Reset				,		·					·		,										·	,			0
Access																											W1
Name																											DONE
Bit	Name					Re	eset			A	cces	s	De	scri	ptio	n											
31:1	Reserv	ed				То	ensu	ıre c	omp	atibil	ity wit	h futu	ire de	evice	s, alv	vays	write	bits t	to 0.	More	e info	ormat	ion in	Sec	tion 2	.1 (p	o. 3)
0	DONE					0				W	1		End	rypt	ion/l	Decry	/ptio	n Do	ne l	nter	rupt	Flag	Clea	r			

27.5.8 AES_DATA - DATA Register

Write to 1 to clear encryption/decryption done interrupt flag

Offset															Bi	t Pc	siti	on			•			•				•				
0x01C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	7	10	6	80	7	9	2	4	က	2	1	0
Reset																	000000000000000000000000000000000000000															
Access		\S \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \																														
Name																\ \ \	<u> </u>															
Bit	Na	me						Re	set			Α	CCE	ess		De	scr	iptio	on													
31:0	DA ⁻	TA						0x0	0000	0000)	R'	W			Dat	a A	cces	S													
	Acc	ess	data	thro	ough	thi	s re	giste	r.																							

27.5.9 AES_XORDATA - XORDATA Register

Offset															Bit	t Po	siti	on														
0x020	31	8	53	78	27	26	22	24	23	23	21	20	19	18	17	16	15	14	13	12	7	10	6	8	7	9	2	4	က	2	-	0
Reset																000000000000000000000000000000000000000																
Access																W.																
Name																XORDATA																

Bit	Name	Reset	Access	Description							
31:0	XORDATA	0x00000000	RW	XOR Data Access							
	Access data with XOR fund	Access data with XOR function through this register.									

27.5.10 AES_KEYLA - KEY Low Register

Offset	Bit Position
0x030	31 31 32 33 34 35 36 37 38 38 40
Reset	00000000000000000000000000000000000000
Access	RW.
Name	KEYLA

Bit	Name	Reset	Access	Description
31:0	KEYLA	0x00000000	RW	Key Low Access A
	Access the low key words	through this registe	er.	

27.5.11 AES_KEYLB - KEY Low Register

Offset	Bit Position														
0x034	33 34 35 36 37 38 39 40														
Reset	00000000000000000000000000000000000000														
Access	RW.														
Name	KEYLB														

Bit	Name	Reset	Access	Description
31:0	KEYLB	0x00000000	RW	Key Low Access B
	Access the low key words	through this registe	er.	

2010-12-21 - d0034_Rev0.90 www.energymicro.com

27.5.12 AES_KEYLC - KEY Low Register

Offset															Bi	t P	ositi	on														
0x038	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	41	13	2 2	11	10	6	8	7	9	2	4	3	2	-	0
Reset																	00000000x0															
Access	 <u>&</u>																															
Name																	KEYLC															
Bit	Na	me						Re	set			Α	CC	ess		De	escr	iptic	on	1												
31:0	KE'	YLC						0x0	0000	0000		R	W			Ke	y Lo	w A	СС	ess	С											
	Acc	ess	the	low k	кеу ч	wor	ds t	hroug	gh th	is re	giste	er.																				

27.5.13 AES_KEYLD - KEY Low Register

Offset															Bi	t Po	ositi	on														
0x03C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	=======================================	10	0	80	7	9	2	4	က	7	1	0
Reset																	00000000x0															
Access		§ ⊗																														
Name																	KEYLD															
Bit	Na	me						Res	set			Α	CC	ess		De	escr	iptio	on													
31:0	ΚE	YLD						0x0	0000	000		R'	W			Ke	y Lo	w A	CC	ess l	D											
	Acc	ess	the I	low	key v	vor	ds th	roug	h thi	s reg	giste	er.																				

27.5.14 AES_KEYHA - KEY High Register

Offset		Bit Position																														
0x040	33	30	29	28	27	26	22	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	9	2	4	3	2	1	0
Reset	000000000000000000000000000000000000000																															
Access																Z Š																
Name																KEYHA																

Bit	Name	Reset	Access	Description					
31:0	KEYHA	0x00000000	RW	Key High Access A					
	Access the high key words through this register.								

27.5.15 AES_KEYHB - KEY High Register

Offset	Bit Position								
0x044	31 31 32 33 34 35 36 37 38 39 40								
Reset	00000000000000000000000000000000000000								
Access	RW.								
Name	KEYHB								

Bit	Name	Reset	Access	Description					
31:0	KEYHB	0x00000000	RW	Key High Access B					
	Access the high key words through this register.								

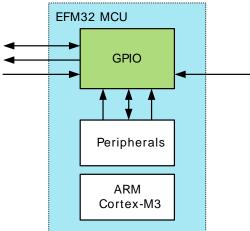
27.5.16 AES_KEYHC - KEY High Register

Offset	Bit Position								
0x048	33 30 31 31 32 32 32 32 32 32 33 33 34 34 34 34 34 34 34 34 34 34 34								
Reset	00000000000000000000000000000000000000								
Access									
Name	KEY HC								

Bit	Name	Reset	Access	Description					
31:0	KEYHC	0x00000000	RW	Key High Access C					
	Access the high key words through this register.								

Downloaded from Houlescom 2010-12-21 - d0034_Rev0.90 445 www.energymicro.com

27.5.17 AES_KEYHD - KEY High Register


Offset									Bit Position																					
0x04C	31	29	28	27	26	25	24	23	22	21	20	19	18	,	15	14	,	12	1	10	0	8	7	9	2	4	8	2	1	0
Reset		00000000000000000000000000000000000000																												
Access															RW															
Name		KEYHD																												
Bit	Name						Re	set			Α	ссе	ss		Desc	ripti	or	า												
31:0	KEYHI)					0x0	0000	0000)	R	W		ŀ	(ey H	igh A	٩c	cess	D											
	Access the high key words through this register.																													

Downloaded from Elecules com

28 GPIO - General Purpose Input/Output

Quick Facts

What?

The GPIO (General Purpose Input/Output) is used for pin configuration and direct pin manipulation and sensing as well as routing for peripheral pin connections.

Why?

Easy to use and highly configurable input/ output pins are important to fit many communication protocols as well as minimizing software control overhead. Flexible routing of peripheral functions helps to ease PCB layout.

How?

Each pin on the device can be individually configured as either an input or an output with several different drive modes. Also, individual bit manipulation registers minimizes control overhead. Peripheral connections to pins can be routed to several different locations, thus solving congestion issues that may arise with multiple functions on the same pin. Fully asynchronous interrupts can also be generated from any pin.

28.1 Introduction

In the EFM32TG devices the General Purpose Input/Output (GPIO) pins are organized into ports with up to 16 pins each. These pins can individually be configured as either an output or input. More advanced configurations like open-drain, filtering and drive strength can also be configured individually for the pins. The GPIO pins can also be overridden by peripheral pin connections, like Timer PWM outputs or USART communication, which can be routed to several locations on the device. The GPIO supports up to 16 asynchronous external pin interrupts, which enables interrupts from any pin on the device. Also, the input value of a pin can be routed through the Peripheral Reflex System to other peripherals.

28.2 Features

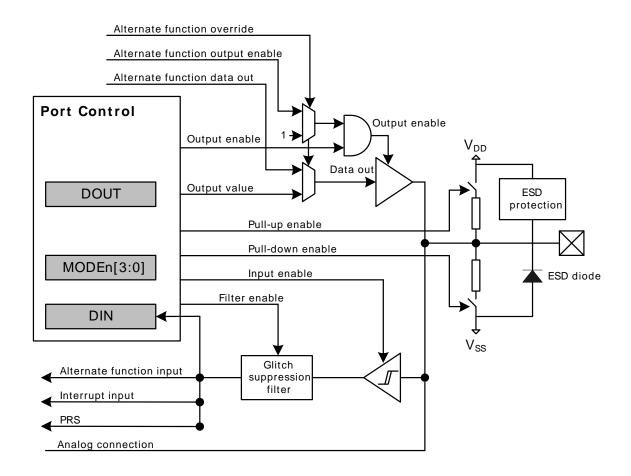
- Individual configuration for each pin
 - Tristate (reset state)
 - Push-pull
 - Open-drain
 - Pull-up resistor
 - · Pull-down resistor
 - Drive strength
 - 0.5 mA
 - 2 mA
 - 6 mA
 - 20 mA

Downloaded from F 2010-12-21 - d0034_Rev0.90 447 www.energymicro.com

- EM4 IO pin retention. This includes
 - Output enable
 - Output value
 - Pull enable
 - · Pull direction
- EM4 wake-up on selected GPIO pins
- · Glitch suppression input filter.
- Analog connection to e.g. ADC or LCD.
- Alternate functions (e.g. peripheral outputs and inputs)
 - · Routed to several locations on the device
 - Pin connections can be enabled individually
 - Output data can be overridden by peripheral
 - Output enable can be overridden by peripheral
- Toggle, set and clear registers for output data
- Dedicated data input register (read-only)
- Interrupts
 - 2 interrupt lines from up to 16 pending sources
 - · All GPIO pins are selectable
 - Separate enable, status, set and clear registers
 - · Asynchronous sensing
 - Rising, falling or both edges
 - Wake up from EM0-EM3
- Peripheral Reflex System producer
 - · All GPIO pins are selectable
- Configuration lock functionality to avoid accidental changes

28.3 Functional Description

An overview of the GPIO module is shown in Figure 28.1 (p. 449). The GPIO pins are grouped into 16-pin ports. Each individual GPIO pin is called Pxn where x indicates the port (A, B, C ...) and n indicates the pin number (0,1,....,15). Fewer than 16 bits may be available on some ports, depending on the total number of I/O pins on the package. After a reset both input and output is disabled for all pins on the device, except for debug pins. To use a pin, the port GPIO_Px_MODEL/GPIO_Px_MODEH registers must be configured for the pin to make it an input or output. These registers can also do more advanced configuration, which is covered in Section 28.3.1 (p. 449). When the port is either configured as an input or an output, the Data In Register (GPIO_Px_DIN) can be used to read the level of each pin in the port (bit n in the register is connected to pin n on the port). When configured as an output, the value of the Data Out Register (GPIO_Px_DOUT) will be driven to the pin.


The DOUT value can be changed in 4 different ways

- Writing to the GPIO Px DOUT register.
- Writing a 1 to a bit in the GPIO_Px_DOUTSET register sets the corresponding DOUT bit
- Writing a 1 to a bit in the GPIO_Px_DOUTCLR register clears the corresponding DOUT bit
- Writing a 1 to a bit in the GPIO_Px_DOUTTGL register toggles the corresponding DOUT bit

Reading the GPIO_Px_DOUT register will return its contents. Reading the GPIO_Px_DOUTSET, GPIO_Px_CLR or GPIO_Px_TGL will return 0.

Figure 28.1. Pin Configuration

Note

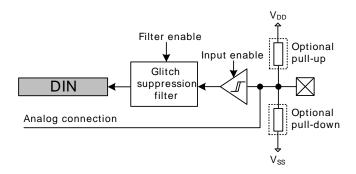
There is no ESD diode to Vdd because if using LCD voltage boost the pin voltage will be higher than Vdd. Nevertheless there is an ESD protection block against over voltage.

28.3.1 Pin Configuration

In addition to setting the pins as either outputs or inputs, the GPIO_Px_MODEL and GPIO_Px_MODEH registers can be used for more advanced configurations. GPIO_Px_MODEL contains 8 bit fields named MODEn (n=0,1,...7) which control pins 0-7, while GPIO Px MODEH contains 8 bit fields named MODEn (n=8,9,..15) which control pins 8-15. In some modes GPIO_Px_DOUT is also used for extra configurations like pull-up/down and glitch suppression filter enable. Table 28.1 (p. 449) shows the available configurations.

Table 28.1. Pin Configuration

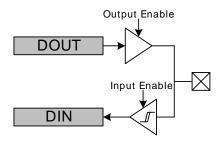
MODEx	Input	Output	DOUT	Pull- down	Pull- up	Alt. strength	Input Filter	Description
0b0000	Disabled	Disabled	0					Input disabled
			1		On			Input disabled with pull-up
0b0001	Enabled		0					Input enabled
			1				On	Input enabled with filter
0b0010			0	On				Input enabled with pull-down
			1		On			Input enabled with pull-up



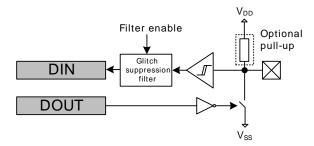
MODEx	Input	Output	DOUT	Pull- down	Pull- up	Alt. strength	Input Filter	Description
0b0011			0	On			On	Input enabled with pull-down and filter
			1		On		On	Input enabled with pull-up and filter
0b0100		Push-pull	х					Push-pull
0b0101			х			On		Push-pull with alt. drive strength
0b0110	1	Open	х					Open-source
0b0111		Source (Wired-OR)	х	On				Open-source with pull-down
0b1000	-	Open Drain	х					Open-drain
0b1001		(Wired- AND)	х				On	Open-drain with filter
0b1010			х		On			Open-drain with pull-up
0b1011			х		On		On	Open-drain with pull-up and filter
0b1100	_		х			On		Open-drain with alt. drive strength
0b1101			х			On	On	Open-drain with alt. drive strength and filter
0b1110			х		On	On		Open-drain with alt. drive strength and pull-up
0b1111			х		On	On	On	Open-drain with alt. drive strength, pull-up and filter

MODEn determines which mode the pin is in at a given time. Setting MODEn to 0b0000 disables the pin, reducing power consumption to a minimum. When the output driver is disabled, the pin can be used as a connection for an analog module (e.g. ADC, LCD...). Input is enabled by setting MODEn to any value other than 0b0000. The pull-up, pull-down and filter function can optionally be applied to the input, see Figure 28.2 (p. 450).

The internal pull-up resistance, R_{PU} , and pull-down resistance, R_{PD} , are defined in the device datasheet. When the filter is enabled it suppresses glitches with pulse widths as defined by the parameter $t_{IOGLITCH}$ in the device datasheet.


Figure 28.2. Tristated Output with Optional Pull-up or Pull-down

When MODEn=0b0100 or MODEn=0b0101, the pin operates in push-pull mode. In this mode, the pin is driven either high or low, dependent on the value of GPIO_Px_DOUT. The push-pull configuration is shown in Figure 28.3 (p. 451) .


Figure 28.3. Push-Pull Configuration

When MODEn is 0110 or 0111, the pin operates in open-source mode, the latter with a pull-down resistor. When driving a high value in open-source mode, the pull-down is disconnected to save power.

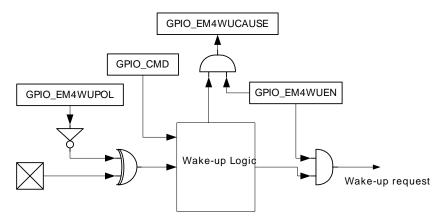
For the remaining MODEn values, i.e. MODEn >= 1000, the pin operates in open-drain mode as shown in Figure 28.4 (p. 451). In open-drain mode, the pin can have an input filter, a pull-up, different driver strengths or any combination of these. When driving a low value in open-drain mode, the pull-up is disconnected to save power.

Figure 28.4. Open-drain

When MODEn=0b0101 or 0b11xx, the output driver uses the drive strength specified in DRIVEMODE in GPIO_Px_CTRL. In all other output modes, the drive strength is set to 6 mA.

28.3.1.1 Configuration Lock

GPIO_Px_MODEL, GPIO_Px_MODEH, GPIO_Px_CTRL, GPIO_Px_PINLOCKN, GPIO_EXTIPSELL, GPIO_EXTIPSELH, GPIO_INSENSE and GPIO_ROUTE can be locked by writing any other value than 0xA534 to GPIO_LOCK. Writing the value 0xA534 to the GPIOx_LOCK register unlocks the configuration registers.


In addition to configuration lock, GPIO_Px_MODEL, GPIO_Px_MODEH, GPIO_Px_DOUT, GPIO_Px_DOUTSET, GPIO_Px_DOUTCLR, and GPIO_Px_DOUTTGL can be locked individually for each pin by clearing the corresponding bit in GPIO_Px_PINLOCKN. Bits in the GPIO_Px_PINLOCKN register can only be cleared, they are set high again after reset.

28.3.2 EM4 Wake-up

It is possible to wake-up from EM4 through reset triggered from any of up to 6 selectable GPIO pins. For the wake-up logic to work correctly, EM4 retention needs to be enabled before entering EM4, as described in Section 28.3.3 (p. 452) The wake-up request can be triggered through the pins by enabling the corresponding bit in the GPIO_EM4WUEN register. When EM4 wake-up is enabled for the pin, the input filter is enabled during EM4. This is done to avoid false wake-up caused by glitches. In addition, the polarity of the EM4 wake-up request can be selected using the GPIO_EM4WUPOL register.

Figure 28.5. EM4 Wake-up Logic

The pins used for EM4 wake-up must be configured as inputs using the GPIO Px MODEL/ GPIO_Px_MODEH register. If input is disabled, the wakeup polarity is low a false wakeup will happen when entering EM4. Before going down to EM4, it is important to clear the wake-up logic by setting the EM4WUCLR bitfield in the GPIO EM4WUCMD register, which clears the complete wake-up logic, including the GPIO EM4WUCAUSE register. When the chip comes out of reset, it is possible to determine what caused the reset by reading the RMU_RSTCAUSE register. If an em4 wake-up reset occured, the EM4RST (indicating the chip was in EM4) and the EM4WU (indicating the EM4 wakeup reset) bits should be set. It is possible to determine which pin caused the reset by reading the GPIO_EM4WUCAUSE register. The mapping between pins and the bits in the GPIO_EM4WUEN, GPIO EM4WUPOL, and GPIO EM4WUCAUSE registers are described in Table 28.2 (p. 452)

Table 28.2. EM4 WU Register bits to pin mapping

Wake-up Registers Bits	Pin
bit 0	A0
bit 1	A6
bit 2	C9
bit 3	F1
bit 4	F2
bit 5	E13

28.3.3 EM4 Retention

It is possible to enable retention of output enable, output value and pull enable when in EM4. EM4 retention also makes it possible to wake up from EM4 on pin reset as described in Section 28.3.2 (p. 451) EM4 retention can be enabled by setting the EM4RET field in GPIO CTRL register before going down in EM4.

28.3.4 Alternate Functions

Alternate functions are connections to pins from Timers, USARTs etc. These modules contain route registers, where the pin connections are enabled. In addition, these registers contain a location bit field, which configures which pins the outputs of that module will be connected to if they are enabled. If an alternate signal output is enabled for a pin and output is enabled for the pin, the alternate function's output data and output enable signals override the data output and output enable signals from the GPIO. However, the pin configuration stays as set in GPIO Px MODEL, GPIO Px MODEH and GPIO Px DOUT registers. I.e. the pin configuration must be set to output enable in GPIO for a peripheral to be able to use the pin as an output.

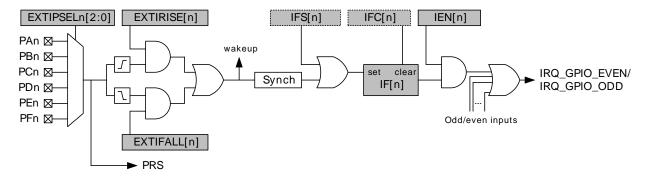
It is possible, but not recommended to select two or more peripherals as output on the same pin. These signals will then be OR'ed together. However, TIMER CCx outputs, which are routed as alternate functions, have priority, and will never be OR'ed with other alternate functions. The reader is referred to the pin map section of the device datasheet for more information on the possible locations of each alternate function and any priority settings.

28.3.4.1 Serial Wire Debug Port Connection

The SW Debug Port is routed as an alternate function and the SWDIO and SWCLK pin connections are enabled by default with internal pull down resistors. It is possible to disable these pin connections (and disable the pull down resistors) by setting the SWDIOPEN and SWCLKPEN bits in GPIO_ROUTE to 0.

WARNING: When the debug pins are disabled, the device can no longer be accessed by a debugger. A reset will set the debug pins back to their default state as enabled. If you do disable the debug pins, make sure you have at least a 3 second timeout at the start of your program code before you disable the debug pins. This way the debugger will have time to halt the device after a reset before the pins are disabled.

The Serial Wire Viewer Output pin (SWO) can be enabled by setting the SWOPEN bit in GPIO_ROUTE. This bit can also be routed to alternate locations by configuring the LOCATION bitfield in GPIO_ROUTE.


28.3.4.2 Analog Connections

When using the GPIO pin for analog functionality, it is recommended to disable the digital output and set the MODEn in GPIO_Px_MODEL/GPIO_Px_MODEH equal to 0b0000 to disable the input sense and pull resistors.

28.3.5 Interrupt Generation

The GPIO can generate an interrupt from the input of any GPIO pin on a device. The interrupts have asynchronous sense capability, enabling wake-up from energy modes as low as EM3, see Figure 28.6 (p. 453).

Figure 28.6. Pin n Interrupt Generation

All pins with the same pin number (n) are grouped together to trigger one interrupt flag (EXT[n] in GPIO_IF). The EXTIPSELn[2:0] bits in GPIO_EXTIPSELL or GPIO_EXTIPSELH select which port will trigger the interrupt flag. The GPIO_EXTIRISE[n] and GPIO_EXTIFALL[n] registers enables sensing of rising and falling edges. By setting the EXT[n] bit in GPIO_IEN, a high interrupt flag n, will trigger one of two interrupt lines. The even interrupt line is triggered by any enabled even numbered interrupt flag, while the odd is triggered by odd flags. The interrupt flags can be set and cleared by software by writing the GPIO_IFS and GPIO_IFC registers, see Example 28.1 (p. 454). Since the external interrupts are asynchronous, they are sensitive to noise. To increase noise tolerance, the MODEL and MODEH fields in the GPIO_Px_MODEL and GPIO_Px_MODEH registers, respectively, should be set to include filtering for pins that have external interrupts enabled.

Example 28.1. Interrupt Example

Setting EXTIPSEL3 in GPIO_EXTIPSELL to 2 (Port C) and setting the GPIO_EXTIRISE[3] bit, the interrupt flag EXT[3] in GPIO_IF will be triggered by a rising edge on pin 3 on PORT C. If EXT[3] in GPIO_IEN is set as well, a interrupt request will be sent on IRQ_GPIO_ODD.

28.3.6 Output to PRS

All pins with the same pin number (n) are grouped together to form one PRS producer output, giving a total of 16 outputs to the PRS. The port on which the output n should be taken is selected by the EXTIPSELn[3:0] bits in the GPIO_EXTIPSELL or the GPIO_EXTIPSELH registers.

28.3.7 Synchronization

To avoid metastability in synchronous logic connected to the pins, all inputs are synchronized with double flip-flops. The flip-flops for the input data run on the HFCORECLK. Consequently, when a pin changes state, the change will have propagated to GPIO_Px_DIN after 2 positive HFCORECLK edges, or maximum 2 HFCORECLK cycles. Synchronization (also running on the HFCORECLK) is also added for interrupt input. The input to the PRS generation is also synchronized, but these flip-flops run on the HFPERCLK. To save power when the external interrupts or PRS generation is not used, the synchronization flip-flops for these can be turned off by clearing the INTSENSE or PRSSENSE, respectively, in GPIO_INSENSE register.

Note

To use the GPIO, the GPIO clock must first be enabled in CMU_HFPERCLKEN0. Setting this bit enables the HFCORECLK and the HFPERCLK for the GPIO. HFCORECLK is used for updating registers, while HFPERCLK is only used to synchronize PRS and interrupts. The PRS and interrupt synchronization can also be disabled through GPIO_INSENSE, if these are not used.

Downloaded from H couls com

28.4 Register Map

The offset register address is relative to the registers base address.

	-	1	
Offset	Name	Туре	Description
0x000	GPIO_PA_CTRL	RW	Port Control Register
0x004	GPIO_PA_MODEL	RW	Port Pin Mode Low Register
0x008	GPIO_PA_MODEH	RW	Port Pin Mode High Register
0x00C	GPIO_PA_DOUT	RW	Port Data Out Register
0x010	GPIO_PA_DOUTSET	W1	Port Data Out Set Register
0x014	GPIO_PA_DOUTCLR	W1	Port Data Out Clear Register
0x018	GPIO_PA_DOUTTGL	W1	Port Data Out Toggle Register
0x01C	GPIO_PA_DIN	R	Port Data In Register
0x020	GPIO_PA_PINLOCKN	RW	Port Unlocked Pins Register
0x024	GPIO_PB_CTRL	RW	Port Control Register
0x028	GPIO_PB_MODEL	RW	Port Pin Mode Low Register
0x02C	GPIO_PB_MODEH	RW	Port Pin Mode High Register
0x030	GPIO_PB_DOUT	RW	Port Data Out Register
0x034	GPIO_PB_DOUTSET	W1	Port Data Out Set Register
0x038	GPIO_PB_DOUTCLR	W1	Port Data Out Clear Register
0x03C	GPIO_PB_DOUTTGL	W1	Port Data Out Toggle Register
0x040	GPIO_PB_DIN	R	Port Data In Register
0x044	GPIO_PB_PINLOCKN	RW	Port Unlocked Pins Register
0x048	GPIO_PC_CTRL	RW	Port Control Register
0x04C	GPIO_PC_MODEL	RW	Port Pin Mode Low Register
0x050	GPIO_PC_MODEH	RW	Port Pin Mode High Register
0x054	GPIO_PC_DOUT	RW	Port Data Out Register
0x058	GPIO_PC_DOUTSET	W1	Port Data Out Set Register
0x05C	GPIO_PC_DOUTCLR	W1	Port Data Out Clear Register
0x060	GPIO_PC_DOUTTGL	W1	Port Data Out Toggle Register
0x064	GPIO_PC_DIN	R	Port Data In Register
0x068	GPIO_PC_PINLOCKN	RW	Port Unlocked Pins Register
0x06C	GPIO_PD_CTRL	RW	Port Control Register
0x070	GPIO_PD_MODEL	RW	Port Pin Mode Low Register
0x074	GPIO_PD_MODEH	RW	Port Pin Mode High Register
0x078	GPIO_PD_DOUT	RW	Port Data Out Register
0x07C	GPIO_PD_DOUTSET	W1	Port Data Out Set Register
0x080	GPIO_PD_DOUTCLR	W1	Port Data Out Clear Register
0x084	GPIO_PD_DOUTTGL	W1	Port Data Out Toggle Register
0x088	GPIO_PD_DIN	R	Port Data In Register
0x08C	GPIO_PD_PINLOCKN	RW	Port Unlocked Pins Register
0x090	GPIO_PE_CTRL	RW	Port Control Register
0x094	GPIO_PE_MODEL	RW	Port Pin Mode Low Register
0x098	GPIO_PE_MODEH	RW	Port Pin Mode High Register
0x09C	GPIO_PE_DOUT	RW	Port Data Out Register
			<u> </u>

Offset	Name	Туре	Description
0x0A0	GPIO_PE_DOUTSET	W1	Port Data Out Set Register
0x0A4	GPIO_PE_DOUTCLR	W1	Port Data Out Clear Register
0x0A8	GPIO_PE_DOUTTGL	W1	Port Data Out Toggle Register
0x0AC	GPIO_PE_DIN	R	Port Data In Register
0x0B0	GPIO_PE_PINLOCKN	RW	Port Unlocked Pins Register
0x0B4	GPIO_PF_CTRL	RW	Port Control Register
0x0B8	GPIO_PF_MODEL	RW	Port Pin Mode Low Register
0x0BC	GPIO_PF_MODEH	RW	Port Pin Mode High Register
0x0C0	GPIO_PF_DOUT	RW	Port Data Out Register
0x0C4	GPIO_PF_DOUTSET	W1	Port Data Out Set Register
0x0C8	GPIO_PF_DOUTCLR	W1	Port Data Out Clear Register
0x0CC	GPIO_PF_DOUTTGL	W1	Port Data Out Toggle Register
0x0D0	GPIO_PF_DIN	R	Port Data In Register
0x0D4	GPIO_PF_PINLOCKN	RW	Port Unlocked Pins Register
0x100	GPIO_EXTIPSELL	RW	External Interrupt Port Select Low Register
0x104	GPIO_EXTIPSELH	RW	External Interrupt Port Select High Register
0x108	GPIO_EXTIRISE	RW	External Interrupt Rising Edge Trigger Register
0x10C	GPIO_EXTIFALL	RW	External Interrupt Falling Edge Trigger Register
0x110	GPIO_IEN	RW	Interrupt Enable Register
0x114	GPIO_IF	R	Interrupt Flag Register
0x118	GPIO_IFS	W1	Interrupt Flag Set Register
0x11C	GPIO_IFC	W1	Interrupt Flag Clear Register
0x120	GPIO_ROUTE	RW	I/O Routing Register
0x124	GPIO_INSENSE	RW	Input Sense Register
0x128	GPIO_LOCK	RW	Configuration Lock Register
0x12C	GPIO_CTRL	RW	GPIO Control Register
0x130	GPIO_CMD	W1	EM4 Wake-up Clear Register
0x134	GPIO_EM4WUEN	RW	EM4 Wake-up Enable Register
0x138	GPIO_EM4WUPOL	RW	EM4 Wake-up Polarity Register
0x13C	GPIO_EM4WUCAUSE	R	EM4 Wake-up Cause Register

28.5 Register Description

28.5.1 GPIO_Px_CTRL - Port Control Register

Offset															Bi	it Po	siti	on			,											
0x000	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	1	10	6	æ	7	9	2	4	8	7	-	0
Reset								•					'			'													,		2	NXO
Access																															<u> </u>	 }
Name																															and Marian	

Downloaded from Heads, com 2010-12-21 - d0034_Rev0.90 456 www.energymicro.com

Bit	Name	Reset	Access	Description
31:2	Reserved	To ensure co	mpatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
1:0	DRIVEMODE	0x0	RW	Drive Mode Select
	Select drive mod	de for all pins on port confi	gured with altern	ate drive strength.
	Value	Mode	Des	scription
	0	STANDARD	6 m	A drive current
	1	LOWEST	0.5	mA drive current
	2	HIGH	20 r	mA drive current
	3	LOW	2 m	A drive current

28.5.2 GPIO_Px_MODEL - Port Pin Mode Low Register

Offset				Bit Po	sition			
0x004	30 29 28	27 26 25 24	23 22 21 20 20	18 17 19 19	5 4 5 2	11 0 6 8	r 0 2 4	0 1 2 3
Reset	0×0	0×0	0×0	0×0	0×0	0×0	0×0	0×0
Access	RW	R	RW	RW	RW	RW	RW	RW
Name	MODE7	MODE6	MODE5	MODE4	MODE3	MODE2	MODE1	MODE0

Bit	Name	Reset	Access	Description
31:28	MODE7	0x0	RW	Pin 7 Mode
	Configure mode	for pin 7. Enumeration is e	qual to MODE0.	
27:24	MODE6	0x0	RW	Pin 6 Mode
	Configure mode	for pin 6. Enumeration is e	qual to MODE0.	
23:20	MODE5	0x0	RW	Pin 5 Mode
	Configure mode	for pin 5. Enumeration is e	qual to MODE0.	
19:16	MODE4	0x0	RW	Pin 4 Mode
	Configure mode	for pin 4. Enumeration is e	qual to MODE0.	
15:12	MODE3	0x0	RW	Pin 3 Mode
	Configure mode	for pin 3. Enumeration is e	qual to MODE0.	
11:8	MODE2	0x0	RW	Pin 2 Mode
	Configure mode	for pin 2. Enumeration is e	qual to MODE0.	
7:4	MODE1	0x0	RW	Pin 1 Mode
	Configure mode	for pin 1. Enumeration is e	qual to MODE0.	
3:0	MODE0	0x0	RW	Pin 0 Mode
	Configure mode	for pin 0.		

Value	Mode	Description
0	DISABLED	Input disabled. Pullup if DOUT is set.
1	INPUT	Input enabled. Filter if DOUT is set
2	INPUTPULL	Input enabled. DOUT determines pull direction
3	INPUTPULLFILTER	Input enabled with filter. DOUT determines pull direction
4	PUSHPULL	Push-pull output
5	PUSHPULLDRIVE	Push-pull output with drive-strength set by DRIVEMODE
6	WIREDOR	Wired-or output
7	WIREDORPULLDOWN	Wired-or output with pull-down
8	WIREDAND	Open-drain output
9	WIREDANDFILTER	Open-drain output with filter
10	WIREDANDPULLUP	Open-drain output with pullup
11	WIREDANDPULLUPFILTER	Open-drain output with filter and pullup
12	WIREDANDDRIVE	Open-drain output with drive-strength set by DRIVEMODE

Downloaded from Houlescom 2010-12-21 - d0034_Rev0.90 457 www.energymicro.com

Bit	Name	Reset Acces	s Description
	Value	Mode	Description
	13	WIREDANDDRIVEFILTER	Open-drain output with filter and drive-strength set by DRIVEMODE
	14	WIREDANDDRIVEPULLUP	Open-drain output with pullup and drive-strength set by DRIVEMODE
	15	WIREDANDDRIVEPULLUPFILTER	Open-drain output with filter, pullup and drive-strength set by DRIVEMODE

28.5.3 GPIO_Px_MODEH - Port Pin Mode High Register

Offset															Bi	t Po	siti	on														
0x008	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	7	10	6	8	7	9	2	4	က	2	-	0
Reset		2	OXO				OXO			9	×				0x0			0×0				>	2				0×0			OxO	3	
Access			<u>}</u>				<u>}</u>				<u>}</u>				S N			 N					2				% §					
Name		74000	5			i d	MODE14			7	_				MODE12			MODE11				MODE 10	2001				MODE9			MODER		

Bit	Name	Reset	Access	Description
31:28	MODE15	0x0	RW	Pin 15 Mode
	Configure mode for	or pin 15. Enumeration is	equal to MOD	E8.
27:24	MODE14	0x0	RW	Pin 14 Mode
	Configure mode for	or pin 14. Enumeration is	equal to MOD	E8.
23:20	MODE13	0x0	RW	Pin 13 Mode
	Configure mode for	or pin 13. Enumeration is	equal to MOD	E8.
19:16	MODE12	0x0	RW	Pin 12 Mode
	Configure mode for	or pin 12. Enumeration is	equal to MOD	E8.
15:12	MODE11	0x0	RW	Pin 11 Mode
	Configure mode for	or pin 11. Enumeration is	equal to MOD	E8.
11:8	MODE10	0x0	RW	Pin 10 Mode
	Configure mode for	or pin 10. Enumeration is	equal to MOD	E8.
7:4	MODE9	0x0	RW	Pin 9 Mode
	Configure mode for	or pin 9. Enumeration is e	qual to MODE	8.
3:0	MODE8	0x0	RW	Pin 8 Mode
	Configure mode for	or pin 8.		
	V-I	NA. J.		

Value	Mode	Description
0	DISABLED	Input disabled. Pullup if DOUT is set.
1	INPUT	Input enabled. Filter if DOUT is set
2	INPUTPULL	Input enabled. DOUT determines pull direction
3	INPUTPULLFILTER	Input enabled with filter. DOUT determines pull direction
4	PUSHPULL	Push-pull output
5	PUSHPULLDRIVE	Push-pull output with drive-strength set by DRIVEMODE
6	WIREDOR	Wired-or output
7	WIREDORPULLDOWN	Wired-or output with pull-down
8	WIREDAND	Open-drain output
9	WIREDANDFILTER	Open-drain output with filter
10	WIREDANDPULLUP	Open-drain output with pullup
11	WIREDANDPULLUPFILTER	Open-drain output with filter and pullup
12	WIREDANDDRIVE	Open-drain output with drive-strength set by DRIVEMODE
13	WIREDANDDRIVEFILTER	Open-drain output with filter and drive-strength set by DRIVEMODE
14	WIREDANDDRIVEPULLUP	Open-drain output with pullup and drive-strength set by DRIVEMODE
15	WIREDANDDRIVEPULLUPFILTER	Open-drain output with filter, pullup and drive-strength set by DRIVEMODE

28.5.4 GPIO_Px_DOUT - Port Data Out Register

Offset															Bi	t Po	siti	on														
0x00C	31	30	29	28	27	26	22	24	23	22	21	20	19	18	17	16	15	4	13	12	11	10	6	8	7	9	2	4	က	2	-	0
Reset																									0000x0							
Access																								i	≷ Ƴ							
Name																								į	1000							

Bit	Name	Reset	Access	Description
31:16	Reserved	To ensure cor	mpatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
15:0	DOUT	0x0000	RW	Data Out
	Data output on port.			

28.5.5 GPIO_Px_DOUTSET - Port Data Out Set Register

Offset															Bi	t Pc	siti	on														
0x010	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	9	2	4	3	2	_	0
Reset																								000	000000							
Access																								77.	S							
Name																								i i	DOUISEI							

Bit	Name	Reset	Access	Description
31:16	Reserved	To ensure comp	atibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
15:0	DOUTSET	0x0000	W1	Data Out Set
	Write bits to 1 to set corres	sponding bits in GP	IO_Px_DOUT	. Bits written to 0 will have no effect.

28.5.6 GPIO_Px_DOUTCLR - Port Data Out Clear Register

Offset															Bi	t Po	siti	on														
0x014	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	1	10	6	8	7	9	2	4	က	2	-	0
Reset																									nnnnn							
Access																								3	<u> </u>							
Name																								<u> </u>	DOOLCER							

Downloaded from Heads, com 2010-12-21 - d0034_Rev0.90 459 www.energymicro.com

Bit	Name	Reset	Access	Description
31:16	Reserved	To ensure compa	atibility with fut	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
15:0	DOUTCLR	0x0000	W1	Data Out Clear
	Write bits to 1 to clear corr	esponding bits in G	PIO_Px_DOU	T. Bits written to 0 will have no effect.

28.5.7 GPIO_Px_DOUTTGL - Port Data Out Toggle Register

Offset															Bi	t Po	siti	on														
0x018	33	30	29	28	27	26	22	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	9	5	4	3	2	1	0
Reset																									000000							
Access																								74/4	^							
Name																																

Bit	Name	Reset	Access	Description
31:16	Reserved	To ensure comp	atibility with fut	ure devices, always write bits to 0. More information in Section 2.1 (p. 3)
15:0	DOUTTGL	0x0000	W1	Data Out Toggle
	Write bits to 1 to toggle cor	responding bits in	GPIO_Px_DOI	JT. Bits written to 0 will have no effect.

28.5.8 GPIO_Px_DIN - Port Data In Register

Offset															Bi	t Pc	siti	on												·		
0x01C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	1	10	6	80	7	9	5	4	3	2	1	0
Reset																								0	000000							
Access																								c	Y							
Name																								į	Z D							

Bit	Name	Reset	Access	Description
31:16	Reserved	To ensure compa	atibility with fut	ure devices, always write bits to 0. More information in Section 2.1 (p. 3)
15:0	DIN	0x0000	R	Data In
	Port data input.			

Downloaded from Heads, com 2010-12-21 - d0034_Rev0.90 460 www.energymicro.com

28.5.9 GPIO_Px_PINLOCKN - Port Unlocked Pins Register

Offset															Bit	t Po	siti	on														
0x020	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	9	2	4	က	2	1	0
Reset																								L	UXFFFF							
Access																								i	≩							
Name																								0	LINECCKIN							

Bit	Name	Reset	Access	Description
31:16	Reserved	To ensure co	mpatibility with f	uture devices, always write bits to 0. More information in Section 2.1 (p. 3)
15:0	PINLOCKN	0xFFFF	RW	Unlocked Pins
	Shows unlocked pina	s in the port. To lock p	in n, clear bit n.	The pin is then locked until reset.

28.5.10 GPIO_EXTIPSELL - External Interrupt Port Select Low Register

Offset															Bi	t Po	siti	on														
0x100	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	41	13	12	7	10	6	æ	7	9	2	4	3	2	-	0
Reset			0x0				0x0				0x0				0x0				0x0													
Access			M				Z N				_ W				₩				R ⊗				RW				 N				R ≪	
Name			EXTIPSEL7				EXTIPSEL6				EXTIPSEL5				EXTIPSEL4				EXTIPSEL3				EXTIPSEL2				EXTIPSEL1				EXTIPSEL0	

Bit	Name	Reset	Access	Description
31	Reserved	To ensure c	ompatibility with	future devices, always write bits to 0. More information in Section 2.1 (p. 3)
30:28	EXTIPSEL7	0x0	RW	External Interrupt 7 Port Select
	Select input por	rt for external interrupt 7.		
	Value	Mode	De	escription
	0	PORTA	Po	ort A pin 7 selected for external interrupt 7
	1	PORTB	Po	ort B pin 7 selected for external interrupt 7
	2	PORTC	Po	ort C pin 7 selected for external interrupt 7
	3	PORTD	Po	ort D pin 7 selected for external interrupt 7
	4	PORTE	Po	ort E pin 7 selected for external interrupt 7
	5	PORTF	Po	ort F pin 7 selected for external interrupt 7
27	Reserved	To ensure c	ompatibility with	future devices, always write bits to 0. More information in Section 2.1 (p. 3)

26:24 EXTIPSEL6 0x0 RW External Interrupt 6 Port Select

Select input port for external interrupt 6.

Value	Mode	Description
0	PORTA	Port A pin 6 selected for external interrupt 6
1	PORTB	Port B pin 6 selected for external interrupt 6
2	PORTC	Port C pin 6 selected for external interrupt 6
3	PORTD	Port D pin 6 selected for external interrupt 6
4	PORTE	Port E pin 6 selected for external interrupt 6
5	PORTF	Port F pin 6 selected for external interrupt 6

Downloaded from Heads, com 2010-12-21 - d0034_Rev0.90 461 www.energymicro.com

Bit	Name	Reset	Access	s Description
23	Reserved	To ensure co	ompatibility with	h future devices, always write bits to 0. More information in Section 2.1 (p. 3,
22:20	EXTIPSEL5	0x0	RW	External Interrupt 5 Port Select
	Select input po	ort for external interrupt 5.		
	Value	Mode		Description
	0	PORTA		Port A pin 5 selected for external interrupt 5
	1	PORTB		Port B pin 5 selected for external interrupt 5
	2	PORTC		Port C pin 5 selected for external interrupt 5
	3	PORTD	1	Port D pin 5 selected for external interrupt 5
	4	PORTE	I	Port E pin 5 selected for external interrupt 5
	5	PORTF	I	Port F pin 5 selected for external interrupt 5
19	Reserved	To ensure co	ompatibility with	h future devices, always write bits to 0. More information in Section 2.1 (p. 3
18:16	EXTIPSEL4	0x0	RW	External Interrupt 4 Port Select
	Select input po	ort for external interrupt 4.		
	Value	Mode	I	Description
	0	PORTA	1	Port A pin 4 selected for external interrupt 4
	1	PORTB	ı	Port B pin 4 selected for external interrupt 4
	2	PORTC	I	Port C pin 4 selected for external interrupt 4
	3	PORTD	I	Port D pin 4 selected for external interrupt 4
	4	PORTE	I	Port E pin 4 selected for external interrupt 4
	5	PORTF	I	Port F pin 4 selected for external interrupt 4
15	Reserved	To ensure co	ompatibility with	h future devices, always write bits to 0. More information in Section 2.1 (p. 3
			,	
14:12	EXTIPSEL3	0x0		External Interrupt 3 Port Select
14:12	EXTIPSEL3	0x0	RW	External Interrupt 3 Port Select
14:12	Select input po	0x0 ort for external interrupt 3.		External Interrupt 3 Port Select
14:12	Select input po	ort for external interrupt 3.	RW	Description
14:12	Select input po	ort for external interrupt 3. Mode PORTA	RW	Description Port A pin 3 selected for external interrupt 3
14:12	Select input po	Mode PORTA PORTB	RW I	Description Port A pin 3 selected for external interrupt 3 Port B pin 3 selected for external interrupt 3
14:12	Select input po Value 0 1 2	Mode PORTA PORTB PORTC	RW	Description Port A pin 3 selected for external interrupt 3 Port B pin 3 selected for external interrupt 3 Port C pin 3 selected for external interrupt 3
14:12	Select input po Value 0 1 2 3	Mode PORTA PORTB PORTC PORTD	RW	Description Port A pin 3 selected for external interrupt 3 Port B pin 3 selected for external interrupt 3 Port C pin 3 selected for external interrupt 3 Port D pin 3 selected for external interrupt 3
14:12	Value 0 1 2 3 4	Mode PORTA PORTB PORTC PORTD PORTE	RW	Description Port A pin 3 selected for external interrupt 3 Port B pin 3 selected for external interrupt 3 Port C pin 3 selected for external interrupt 3 Port D pin 3 selected for external interrupt 3 Port E pin 3 selected for external interrupt 3
	Select input po	Mode PORTA PORTB PORTC PORTD PORTB PORTD	RW	Description Port A pin 3 selected for external interrupt 3 Port B pin 3 selected for external interrupt 3 Port C pin 3 selected for external interrupt 3 Port D pin 3 selected for external interrupt 3 Port E pin 3 selected for external interrupt 3 Port F pin 3 selected for external interrupt 3
11	Value 0 1 2 3 4 5	Mode PORTA PORTB PORTC PORTD PORTE PORTF To ensure co	RW	Description Port A pin 3 selected for external interrupt 3 Port B pin 3 selected for external interrupt 3 Port C pin 3 selected for external interrupt 3 Port D pin 3 selected for external interrupt 3 Port E pin 3 selected for external interrupt 3 Port F pin 3 selected for external interrupt 3 Port F pin 3 selected for external interrupt 3 In future devices, always write bits to 0. More information in Section 2.1 (p. 3)
	Select input po	Mode PORTA PORTB PORTC PORTD PORTB PORTD	RW	Description Port A pin 3 selected for external interrupt 3 Port B pin 3 selected for external interrupt 3 Port C pin 3 selected for external interrupt 3 Port D pin 3 selected for external interrupt 3 Port E pin 3 selected for external interrupt 3 Port F pin 3 selected for external interrupt 3
11	Select input po Value 0 1 2 3 4 5 Reserved EXTIPSEL2	Mode PORTA PORTB PORTC PORTD PORTE PORTF To ensure co	RW	Description Port A pin 3 selected for external interrupt 3 Port B pin 3 selected for external interrupt 3 Port C pin 3 selected for external interrupt 3 Port D pin 3 selected for external interrupt 3 Port E pin 3 selected for external interrupt 3 Port F pin 3 selected for external interrupt 3 Port F pin 3 selected for external interrupt 3 In future devices, always write bits to 0. More information in Section 2.1 (p. 3)
11	Select input po Value 0 1 2 3 4 5 Reserved EXTIPSEL2	Mode PORTA PORTB PORTC PORTD PORTB PORTC PORTD PORTF To ensure co	RW	Description Port A pin 3 selected for external interrupt 3 Port B pin 3 selected for external interrupt 3 Port C pin 3 selected for external interrupt 3 Port D pin 3 selected for external interrupt 3 Port E pin 3 selected for external interrupt 3 Port F pin 3 selected for external interrupt 3 Port F pin 3 selected for external interrupt 3 In future devices, always write bits to 0. More information in Section 2.1 (p. 3)
11	Select input po Value 0 1 2 3 4 5 Reserved EXTIPSEL2 Select input po	Mode PORTA PORTB PORTC PORTD PORTE PORTF To ensure co	RW	Description Port A pin 3 selected for external interrupt 3 Port B pin 3 selected for external interrupt 3 Port C pin 3 selected for external interrupt 3 Port D pin 3 selected for external interrupt 3 Port E pin 3 selected for external interrupt 3 Port F pin 3 selected for external interrupt 3 Port F pin 3 selected for external interrupt 3 h future devices, always write bits to 0. More information in Section 2.1 (p. 3) External Interrupt 2 Port Select
11	Select input po Value 0 1 2 3 4 5 Reserved EXTIPSEL2 Select input po Value	Mode PORTA PORTB PORTC PORTD PORTE PORTF To ensure co	RW	Description Port A pin 3 selected for external interrupt 3 Port B pin 3 selected for external interrupt 3 Port C pin 3 selected for external interrupt 3 Port D pin 3 selected for external interrupt 3 Port E pin 3 selected for external interrupt 3 Port F pin 3 selected for external interrupt 3 Port F pin 3 selected for external interrupt 3 In future devices, always write bits to 0. More information in Section 2.1 (p. 3 External Interrupt 2 Port Select
11	Select input po Value 0 1 2 3 4 5 Reserved EXTIPSEL2 Select input po Value 0	Mode PORTA PORTB PORTC PORTD PORTE PORTF To ensure co	RW	Description Port A pin 3 selected for external interrupt 3 Port B pin 3 selected for external interrupt 3 Port C pin 3 selected for external interrupt 3 Port D pin 3 selected for external interrupt 3 Port E pin 3 selected for external interrupt 3 Port F pin 3 selected for external interrupt 3 Port F pin 3 selected for external interrupt 3 External Interrupt 2 Port Select Description Port A pin 2 selected for external interrupt 2
11	Select input po Value 0 1 2 3 4 5 Reserved EXTIPSEL2 Select input po Value 0 1	Mode PORTA PORTB PORTC PORTD PORTE PORTF To ensure co	RW	Description Port A pin 3 selected for external interrupt 3 Port B pin 3 selected for external interrupt 3 Port C pin 3 selected for external interrupt 3 Port D pin 3 selected for external interrupt 3 Port E pin 3 selected for external interrupt 3 Port F pin 3 selected for external interrupt 3 Port F pin 3 selected for external interrupt 3 External Interrupt 2 Port Select Description Port A pin 2 selected for external interrupt 2 Port B pin 2 selected for external interrupt 2
11	Select input po Value 0 1 2 3 4 5 Reserved EXTIPSEL2 Select input po Value 0 1 2	Mode PORTA PORTB PORTC PORTD PORTE PORTF To ensure co Ox0 ort for external interrupt 2. Mode PORTA PORTB PORTB PORTF	RW I I I I I I I I I I I I I I I I I I	Description Port A pin 3 selected for external interrupt 3 Port B pin 3 selected for external interrupt 3 Port C pin 3 selected for external interrupt 3 Port D pin 3 selected for external interrupt 3 Port E pin 3 selected for external interrupt 3 Port F pin 3 selected for external interrupt 3 Port F pin 3 selected for external interrupt 3 In future devices, always write bits to 0. More information in Section 2.1 (p. 3 External Interrupt 2 Port Select Description Port A pin 2 selected for external interrupt 2 Port B pin 2 selected for external interrupt 2 Port C pin 2 selected for external interrupt 2
11	Select input po Value 0 1 2 3 4 5 Reserved EXTIPSEL2 Select input po Value 0 1 2 3	Mode PORTA PORTB PORTC PORTD PORTE PORTF To ensure co 0x0 out for external interrupt 2. Mode PORTA PORTB PORTC PORTD PORTF To ensure co 0x0 PORTC PORTD PORTC PORTD PORTC PORTD	RW I I I I I I I I I I I I I I I I I I	Description Port A pin 3 selected for external interrupt 3 Port B pin 3 selected for external interrupt 3 Port C pin 3 selected for external interrupt 3 Port D pin 3 selected for external interrupt 3 Port E pin 3 selected for external interrupt 3 Port F pin 3 selected for external interrupt 3 Port F pin 3 selected for external interrupt 3 Interrupt 2 Port Select Description Port A pin 2 selected for external interrupt 2 Port B pin 2 selected for external interrupt 2 Port C pin 2 selected for external interrupt 2 Port D pin 2 selected for external interrupt 2
11 10:8	Select input po Value 0 1 2 3 4 5 Reserved EXTIPSEL2 Select input po Value 0 1 2 3 4	Mode PORTA PORTB PORTC PORTD PORTE PORTF To ensure co 0x0 out for external interrupt 2. Mode PORTA PORTB PORTC PORTD PORTF Mode PORTA PORTB PORTC PORTB PORTC PORTB PORTC PORTD PORTC PORTD PORTC PORTD PORTF	RW I I I I I I I I I I I I I I I I I I	Description Port A pin 3 selected for external interrupt 3 Port B pin 3 selected for external interrupt 3 Port C pin 3 selected for external interrupt 3 Port D pin 3 selected for external interrupt 3 Port E pin 3 selected for external interrupt 3 Port F pin 3 selected for external interrupt 3 Port F pin 3 selected for external interrupt 3 Interrupt 2 Port Select Description Port A pin 2 selected for external interrupt 2 Port B pin 2 selected for external interrupt 2 Port C pin 2 selected for external interrupt 2 Port D pin 2 selected for external interrupt 2 Port E pin 2 selected for external interrupt 2 Port E pin 2 selected for external interrupt 2
11 10:8	Select input po Value 0 1 2 3 4 5 Reserved EXTIPSEL2 Select input po Value 0 1 2 3 4 5 5	Mode PORTA PORTB PORTC PORTD PORTE PORTF To ensure co Ox0 ort for external interrupt 2. Mode PORTA PORTB PORTF To ensure co	RW I I I I I I I I I I I I I I I I I I	Description Port A pin 3 selected for external interrupt 3 Port B pin 3 selected for external interrupt 3 Port C pin 3 selected for external interrupt 3 Port D pin 3 selected for external interrupt 3 Port E pin 3 selected for external interrupt 3 Port F pin 3 selected for external interrupt 3 Port F pin 3 selected for external interrupt 3 Interrupt 2 Port Select Description Port A pin 2 selected for external interrupt 2 Port B pin 2 selected for external interrupt 2 Port C pin 2 selected for external interrupt 2 Port D pin 2 selected for external interrupt 2 Port E pin 2 selected for external interrupt 2 Port E pin 2 selected for external interrupt 2 Port F pin 2 selected for external interrupt 2 Port F pin 2 selected for external interrupt 2 Port F pin 2 selected for external interrupt 2 Port F pin 2 selected for external interrupt 2 Port F pin 2 selected for external interrupt 2 Port F pin 2 selected for external interrupt 2
11 10:8	Select input po Value 0 1 2 3 4 5 Reserved EXTIPSEL2 Select input po Value 0 1 2 3 4 5 Reserved EXTIPSEL2 Select input po EXTIPSEL2 Select input po EXTIPSEL2 Select input po Value 0 1 2 3 4 5	Mode PORTA PORTB PORTC PORTD PORTE PORTF To ensure co 0x0 out for external interrupt 2. Mode PORTA PORTB PORTC PORTD PORTF Mode PORTA PORTB PORTC PORTB PORTC PORTB PORTC PORTD PORTC PORTD PORTC PORTD PORTF	RW	Description Port A pin 3 selected for external interrupt 3 Port B pin 3 selected for external interrupt 3 Port C pin 3 selected for external interrupt 3 Port D pin 3 selected for external interrupt 3 Port E pin 3 selected for external interrupt 3 Port F pin 3 selected for external interrupt 3 Port F pin 3 selected for external interrupt 3 Interrupt 2 Port Select Description Port A pin 2 selected for external interrupt 2 Port B pin 2 selected for external interrupt 2 Port C pin 2 selected for external interrupt 2 Port D pin 2 selected for external interrupt 2 Port E pin 2 selected for external interrupt 2 Port E pin 2 selected for external interrupt 2 Port F pin 2 selected for external interrupt 2 Port F pin 2 selected for external interrupt 2 Port F pin 2 selected for external interrupt 2
11 10:8	Select input po Value 0 1 2 3 4 5 Reserved EXTIPSEL2 Select input po Value 0 1 2 3 4 5 Reserved EXTIPSEL2 Select input po EXTIPSEL2 Select input po EXTIPSEL2 Select input po Value 0 1 2 3 4 5	Mode PORTA PORTB PORTC PORTC PORTF To ensure co Ox0 Ort for external interrupt 2. Mode PORTA PORTF To ensure co Ox0 Ort for external interrupt 2. Mode PORTA PORTB PORTB PORTC PORTD PORTC PORTD PORTC PORTD PORTC Ox0	RW	Description Port A pin 3 selected for external interrupt 3 Port B pin 3 selected for external interrupt 3 Port C pin 3 selected for external interrupt 3 Port D pin 3 selected for external interrupt 3 Port E pin 3 selected for external interrupt 3 Port F pin 3 selected for external interrupt 3 Port F pin 3 selected for external interrupt 3 Interrupt 2 Port Select Description Port A pin 2 selected for external interrupt 2 Port B pin 2 selected for external interrupt 2 Port C pin 2 selected for external interrupt 2 Port D pin 2 selected for external interrupt 2 Port E pin 2 selected for external interrupt 2 Port F pin 2 selected for external interrupt 2 Port F pin 2 selected for external interrupt 2 Port F pin 2 selected for external interrupt 2 Port F pin 2 selected for external interrupt 2 Port F pin 2 selected for external interrupt 2 Port F pin 2 selected for external interrupt 2 Port F pin 2 selected for external interrupt 2
11 10:8	Select input po Value 0 1 2 3 4 5 Reserved EXTIPSEL2 Select input po Value 0 1 2 3 4 5 Reserved EXTIPSEL1 Select input po	Mode PORTA PORTB PORTC PORTD PORTE PORTF To ensure co 0x0 ort for external interrupt 2. Mode PORTA PORTB PORTF To ensure co 0x0 ort for external interrupt 2. Mode PORTA PORTB PORTC PORTD PORTC PORTD PORTC PORTD PORTE PORTT To ensure co 0x0 ort for external interrupt 1.	RW I I I I I I I I I I I I I I I I I I	Description Port A pin 3 selected for external interrupt 3 Port B pin 3 selected for external interrupt 3 Port C pin 3 selected for external interrupt 3 Port D pin 3 selected for external interrupt 3 Port E pin 3 selected for external interrupt 3 Port F pin 3 selected for external interrupt 3 Port F pin 3 selected for external interrupt 3 Interrupt 2 Port Select Description Port A pin 2 selected for external interrupt 2 Port B pin 2 selected for external interrupt 2 Port C pin 2 selected for external interrupt 2 Port D pin 2 selected for external interrupt 2 Port E pin 2 selected for external interrupt 2 Port F pin 2 selected for external interrupt 2 Port F pin 2 selected for external interrupt 2 Port F pin 2 selected for external interrupt 2 Port F pin 2 selected for external interrupt 2 Port F pin 2 selected for external interrupt 2 Port F pin 2 selected for external interrupt 2 Port F pin 2 selected for external interrupt 2 External Interrupt 1 Port Select
11 10:8	Select input po Value 0 1 2 3 4 5 Reserved EXTIPSEL2 Select input po Value 0 1 2 3 4 5 Reserved EXTIPSEL1 Select input po Value O 1 2 3 4 5	Mode PORTA PORTB PORTC PORTB PORTC PORTF To ensure co Ox0 Ort for external interrupt 2. Mode PORTA PORTB PORTF To ensure co Ox0 ort for external interrupt 2. Mode PORTA PORTB PORTC PORTD PORTC PORTD PORTC PORTD AND PORTE PORTF To ensure co Ox0 Oxt for external interrupt 1.	RW I I I I I I I I I I I I I I I I I I I	Description Port A pin 3 selected for external interrupt 3 Port C pin 3 selected for external interrupt 3 Port D pin 3 selected for external interrupt 3 Port E pin 3 selected for external interrupt 3 Port F pin 3 selected for external interrupt 3 Port F pin 3 selected for external interrupt 3 Port F pin 3 selected for external interrupt 3 Interrupt 2 Port Select Description Port A pin 2 selected for external interrupt 2 Port B pin 2 selected for external interrupt 2 Port C pin 2 selected for external interrupt 2 Port D pin 2 selected for external interrupt 2 Port E pin 2 selected for external interrupt 2 Port F pin 2 selected for external interrupt 2 Port F pin 2 selected for external interrupt 2 Port F pin 2 selected for external interrupt 2 Port F pin 2 selected for external interrupt 2 Port F pin 2 selected for external interrupt 2 Port F pin 2 selected for external interrupt 2 Port F pin 2 selected for external interrupt 2 Port F pin 2 selected for external interrupt 1 External Interrupt 1 Port Select Description
11 10:8	Select input po Value 0 1 2 3 4 5 Reserved EXTIPSEL2 Select input po Value 0 1 2 3 4 5 Reserved EXTIPSEL1 Select input po Value 0 1 2 3 4 5 Reserved EXTIPSEL1 Select input po Value 0 Value 0	Mode PORTA PORTB PORTC PORTC PORTF To ensure co OxO Out for external interrupt 2. Mode PORTA PORTB PORTF To ensure co OxO Out for external interrupt 2. Mode PORTA PORTB PORTC Node PORTA	RW I I I I I I I I I I I I I I I I I I I	Description Port A pin 3 selected for external interrupt 3 Port B pin 3 selected for external interrupt 3 Port C pin 3 selected for external interrupt 3 Port D pin 3 selected for external interrupt 3 Port E pin 3 selected for external interrupt 3 Port F pin 3 selected for external interrupt 3 Port F pin 3 selected for external interrupt 3 Interrupt 2 Port Select Description Port A pin 2 selected for external interrupt 2 Port B pin 2 selected for external interrupt 2 Port C pin 2 selected for external interrupt 2 Port D pin 2 selected for external interrupt 2 Port E pin 2 selected for external interrupt 2 Port F pin 2 selected for external interrupt 2 Port F pin 2 selected for external interrupt 2 Port F pin 2 selected for external interrupt 2 Port F pin 2 selected for external interrupt 2 Port F pin 2 selected for external interrupt 2 Port F pin 1 selected for external interrupt 2 Description Port A pin 1 selected for external interrupt 1
11 10:8	Select input po Value 0 1 2 3 4 5 Reserved EXTIPSEL2 Select input po Value 0 1 2 3 4 5 Reserved EXTIPSEL1 Select input po Value 0 1 1 2 1 3 4 5 Reserved EXTIPSEL1 Select input po Value 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Mode PORTA PORTB PORTC PORTC PORTB PORTF To ensure co 0x0 out for external interrupt 2. Mode PORTA PORTB PORTC PORTB To ensure co 0x0 out for external interrupt 2. Mode PORTA PORTB PORTC PORTC PORTC PORTC PORTD PORTC PORTC PORTD PORTE PORTF To ensure co 0x0 out for external interrupt 1.	RW I I I I I I I I I I I I I I I I I I I	Description Port A pin 3 selected for external interrupt 3 Port B pin 3 selected for external interrupt 3 Port C pin 3 selected for external interrupt 3 Port D pin 3 selected for external interrupt 3 Port E pin 3 selected for external interrupt 3 Port F pin 3 selected for external interrupt 3 Port F pin 3 selected for external interrupt 3 Port F pin 3 selected for external interrupt 3 Interrupt 2 Port Select Description Port A pin 2 selected for external interrupt 2 Port B pin 2 selected for external interrupt 2 Port C pin 2 selected for external interrupt 2 Port E pin 2 selected for external interrupt 2 Port F pin 2 selected for external interrupt 2 Port F pin 2 selected for external interrupt 2 Port F pin 2 selected for external interrupt 2 Port F pin 2 selected for external interrupt 2 Port F pin 2 selected for external interrupt 2 Port F pin 2 selected for external interrupt 1 Port A pin 1 selected for external interrupt 1 Port B pin 1 selected for external interrupt 1

Downloaded from Education 2010-12-21 - d0034_Rev0.90 462 www.energymicro.com

Bit	Name	Reset	Acce	ss Description
	Value	Mode		Description
	5	PORTF		Port F pin 1 selected for external interrupt 1
3	Reserved	To ensure c	ompatibility w	rith future devices, always write bits to 0. More information in Section 2.1 (p. 3)
2:0	EXTIPSEL0	0x0	RW	External Interrupt 0 Port Select
	Select input por	t for external interrupt 0.		
	Value	Mode		Description
	0	PORTA		Port A pin 0 selected for external interrupt 0
	1	PORTB		Port B pin 0 selected for external interrupt 0
	2	PORTC		Port C pin 0 selected for external interrupt 0
	3	PORTD		Port D pin 0 selected for external interrupt 0
	4	PORTE		Port E pin 0 selected for external interrupt 0
	5	PORTF		Port F pin 0 selected for external interrupt 0

28.5.11 GPIO_EXTIPSELH - External Interrupt Port Select High Register

Offset															Bi	t Po	siti	on														
0x104	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	7	10	6	80	7	9	2	4	က	2	-	0
Reset			0×0				0x0				0×0				0x0				0x0				0x0				0×0				0x0	
Access			RW				RW				RW				-W				- N N				RW				ΑM				RW	
Name			EXTIPSEL15				EXTIPSEL14				EXTIPSEL13				EXTIPSEL12				EXTIPSEL11				EXTIPSEL10				EXTIPSEL9				EXTIPSEL8	

	EXTIP	EXTIP	EXTIP	EXTIP	EXTIP	EXTIP	EXTIF	EXTIF
Bit	Name	Reset	Acce	ss Descri _l	otion			
31	Reserved	To ensure	compatibility w	vith future devices	s, always wr	ite bits to 0. Mor	e information in	Section 2.1 (p. 3)
30:28	EXTIPSEL15	0x0	RW	Externa	I Interrupt 1	5 Port Select		
	Select input port	for external interrupt 15	j.					
	Value	Mode		Description				
	0	PORTA		Port A pin 15 sele	ected for exte	rnal interrupt 15		
	1	PORTB		Port B pin 15 sele	ected for exte	rnal interrupt 15		
	2	PORTC		Port C pin 15 sel	ected for exte	rnal interrupt 15		
	3	PORTD		Port D pin 15 sel	ected for exte	rnal interrupt 15		
	4	PORTE		Port E pin 15 sele	ected for exte	rnal interrupt 15		
	5	PORTF		Port F pin 15 sele	ected for exter	nal interrupt 15		
27	Reserved	To ensure	compatibility w	vith future device:	s, always wr	ite bits to 0. Mor	e information in	Section 2.1 (p. 3)
26:24	EXTIPSEL14	0x0	RW	Externa	I Interrupt 1	4 Port Select		
	Select input port	for external interrupt 14	١.					
	Value	Mode		Description				
	0	PORTA		Port A pin 14 sele	ected for exte	rnal interrupt 14		
	1	PORTB		Port B pin 14 sele	ected for exte	rnal interrupt 14		
	2	PORTC		Port C pin 14 sel	ected for exte	rnal interrupt 14		
	3	PORTD		Port D pin 14 sel	ected for exte	rnal interrupt 14		
	4	PORTE		Port E pin 14 sele	ected for exte	rnal interrupt 14		
	5	PORTF		Port F pin 14 sele	ected for exter	nal interrupt 14		
23	Reserved	To ensure	compatibility w	vith future devices	s, always wr	ite bits to 0. Mor	e information in	Section 2.1 (p. 3)
22:20	EXTIPSEL13	0x0	RW	Externa	I Interrupt 1	3 Port Select		

Downloaded from Heads Company 2010-12-21 - d0034_Rev0.90 463 www.energymicro.com

Select input port for external interrupt 13.

Value 0 1 2 3 4 5 EXTIPSEL11 Select input port invalue 0 1	Ox0 for external interrupt 12. Mode PORTA PORTB PORTC PORTD PORTE PORTF To ensure c Ox0 for external interrupt 11. Mode PORTA PORTB	RW compatibility w	Description Port A pin 13 selected for external interrupt 13 Port B pin 13 selected for external interrupt 13 Port C pin 13 selected for external interrupt 13 Port D pin 13 selected for external interrupt 13 Port E pin 13 selected for external interrupt 13 Port F pin 13 selected for external interrupt 13 Port F pin 13 selected for external interrupt 13 Port F pin 13 selected for external interrupt 13 Port F pin 13 selected for external interrupt 13 External Interrupt 12 Port Select Description Port A pin 12 selected for external interrupt 12 Port B pin 12 selected for external interrupt 12 Port C pin 12 selected for external interrupt 12 Port D pin 12 selected for external interrupt 12 Port F pin 12 selected for external interrupt 12 Port F pin 12 selected for external interrupt 12 Port F pin 12 selected for external interrupt 12 Port F pin 12 selected for external interrupt 12 Port F pin 12 selected for external interrupt 12 Port F pin 13 selected for external interrupt 14 External Interrupt 11 Port Select Description Port A pin 11 selected for external interrupt 11
Reserved EXTIPSEL12 Select input port in the	PORTB PORTC PORTC PORTD PORTE PORTF To ensure c 0x0 for external interrupt 12. Mode PORTA PORTB PORTC PORTD PORTE PORTF To ensure c 0x0 for external interrupt 11. Mode PORTA PORTB	RW compatibility w	Port B pin 13 selected for external interrupt 13 Port C pin 13 selected for external interrupt 13 Port D pin 13 selected for external interrupt 13 Port E pin 13 selected for external interrupt 13 Port F pin 13 selected for external interrupt 13 Port F pin 13 selected for external interrupt 13 Port F pin 13 selected for external interrupt 13 Port B pin 12 selected for external interrupt 12 Port A pin 12 selected for external interrupt 12 Port B pin 12 selected for external interrupt 12 Port C pin 12 selected for external interrupt 12 Port D pin 12 selected for external interrupt 12 Port E pin 12 selected for external interrupt 12 Port F pin 12 selected for external interrupt 12 Port F pin 12 selected for external interrupt 12 Port F pin 12 selected for external interrupt 12 Port F pin 14 selected for external interrupt 15 External Interrupt 11 Port Select Description
22 33 44 55 Reserved EXTIPSEL12 Select input port in the select input	PORTC PORTD PORTE PORTF To ensure c 0x0 for external interrupt 12. Mode PORTA PORTB PORTC PORTD PORTE PORTF To ensure c 0x0 for external interrupt 11. Mode PORTA PORTB PORTF	RW compatibility w	Port C pin 13 selected for external interrupt 13 Port D pin 13 selected for external interrupt 13 Port E pin 13 selected for external interrupt 13 Port F pin 13 selected for external interrupt 13 Port F pin 13 selected for external interrupt 13 Port F pin 13 selected for external interrupt 13 Port F pin 13 selected for external interrupt 13 External Interrupt 12 Port Select Description Port A pin 12 selected for external interrupt 12 Port B pin 12 selected for external interrupt 12 Port C pin 12 selected for external interrupt 12 Port D pin 12 selected for external interrupt 12 Port E pin 12 selected for external interrupt 12 Port F pin 12 selected for external interrupt 12 Port F pin 12 selected for external interrupt 12 Port F pin 12 selected for external interrupt 12 Port F pin 12 selected for external interrupt 12 Port F pin 12 selected for external interrupt 12 Port F pin 12 selected for external interrupt 12 Port F pin 12 selected for external interrupt 12 Port F pin 12 selected for external interrupt 12 Port F pin 12 selected for external interrupt 12 Port F pin 12 selected for external interrupt 12 Port F pin 12 selected for external interrupt 12 Port F pin 12 selected for external interrupt 12 Port F pin 12 selected for external interrupt 12 Port F pin 12 selected for external interrupt 12
3 4 5 6 6 6 6 6 6 7 7 7 8 7 8 8 7 8 8 8 8 8 8	PORTD PORTE PORTF To ensure c 0x0 for external interrupt 12. Mode PORTA PORTB PORTC PORTD PORTE PORTF To ensure c 0x0 for external interrupt 11. Mode PORTA PORTB PORTF	RW compatibility w	Port D pin 13 selected for external interrupt 13 Port E pin 13 selected for external interrupt 13 Port F pin 13 selected for external interrupt 13 Port F pin 13 selected for external interrupt 13 Port F pin 13 selected for external interrupt 13 External Interrupt 12 Port Select Description Port A pin 12 selected for external interrupt 12 Port B pin 12 selected for external interrupt 12 Port C pin 12 selected for external interrupt 12 Port D pin 12 selected for external interrupt 12 Port E pin 12 selected for external interrupt 12 Port F pin 12 selected for external interrupt 12 Port F pin 12 selected for external interrupt 12 Port F pin 12 selected for external interrupt 12 Port F pin 14 selected for external interrupt 15 External Interrupt 11 Port Select Description
Reserved EXTIPSEL12 Select input port in the s	PORTE PORTF To ensure c 0x0 for external interrupt 12. Mode PORTA PORTB PORTC PORTD PORTE PORTF To ensure c 0x0 for external interrupt 11. Mode PORTA PORTB	RW compatibility w	Port E pin 13 selected for external interrupt 13 Port F pin 13 selected for external interrupt 13 iith future devices, always write bits to 0. More information in Section 2.1 (p. 3 External Interrupt 12 Port Select Description Port A pin 12 selected for external interrupt 12 Port B pin 12 selected for external interrupt 12 Port C pin 12 selected for external interrupt 12 Port D pin 12 selected for external interrupt 12 Port E pin 12 selected for external interrupt 12 Port F pin 12 selected for external interrupt 12 Port F pin 12 selected for external interrupt 12 Port F pin 12 selected for external interrupt 12 Port F pin 12 selected for external interrupt 12 Port F pin 12 selected for external interrupt 12 Port F pin 12 selected for external interrupt 12 Port F pin 12 selected for external interrupt 12 Port F pin 12 selected for external interrupt 12 Port F pin 12 selected for external interrupt 12 Port F pin 12 selected for external interrupt 12 Port F pin 12 selected for external interrupt 12 Port F pin 12 selected for external interrupt 12 Port F pin 12 selected for external interrupt 12 Port F pin 12 selected for external interrupt 12 Port F pin 12 selected for external interrupt 12 Port F pin 12 selected for external interrupt 12
Reserved EXTIPSEL12 Select input port in the s	PORTF To ensure c 0x0 for external interrupt 12. Mode PORTA PORTB PORTC PORTD PORTE PORTF To ensure c 0x0 for external interrupt 11. Mode PORTA PORTB	RW compatibility w	Port F pin 13 selected for external interrupt 13 ith future devices, always write bits to 0. More information in Section 2.1 (p. 3) External Interrupt 12 Port Select Description Port A pin 12 selected for external interrupt 12 Port B pin 12 selected for external interrupt 12 Port C pin 12 selected for external interrupt 12 Port D pin 12 selected for external interrupt 12 Port F pin 12 selected for external interrupt 12 Port F pin 12 selected for external interrupt 12 ith future devices, always write bits to 0. More information in Section 2.1 (p. 3) External Interrupt 11 Port Select Description
Reserved EXTIPSEL12 Select input port invalue 0 1 2 3 4 5 EXTIPSEL11 Select input port invalue EXTIPSEL11 Select input port invalue 0 1 2	To ensure c 0x0 for external interrupt 12. Mode PORTA PORTB PORTC PORTD PORTE PORTF To ensure c 0x0 for external interrupt 11. Mode PORTA PORTB	RW compatibility w	External Interrupt 12 Port Select Description Port A pin 12 selected for external interrupt 12 Port B pin 12 selected for external interrupt 12 Port C pin 12 selected for external interrupt 12 Port D pin 12 selected for external interrupt 12 Port E pin 12 selected for external interrupt 12 Port F pin 12 selected for external interrupt 12 Port F pin 12 selected for external interrupt 12 Port F pin 12 selected for external interrupt 12 Port F pin 12 selected for external interrupt 12 External Interrupt 11 Port Select Description
EXTIPSEL12 Select input port invalue 0 1 2 3 4 5 EXTIPSEL11 Select input port invalue 0 1 1 2 2 3 4 5 EXTIPSEL11 Select input port invalue 0 1 2	Ox0 for external interrupt 12. Mode PORTA PORTB PORTC PORTD PORTE PORTF To ensure c Ox0 for external interrupt 11. Mode PORTA PORTB	RW compatibility w	Description Port A pin 12 selected for external interrupt 12 Port B pin 12 selected for external interrupt 12 Port C pin 12 selected for external interrupt 12 Port D pin 12 selected for external interrupt 12 Port E pin 12 selected for external interrupt 12 Port F pin 12 selected for external interrupt 12 Port F pin 12 selected for external interrupt 12 Port F pin 12 selected for external interrupt 12 Port F pin 12 selected for external interrupt 12 External Interrupt 11 Port Select Description
Select input port invalue 0 1 2 3 4 5 Reserved EXTIPSEL11 Select input port invalue 0 1	for external interrupt 12. Mode	compatibility w	Description Port A pin 12 selected for external interrupt 12 Port B pin 12 selected for external interrupt 12 Port C pin 12 selected for external interrupt 12 Port D pin 12 selected for external interrupt 12 Port E pin 12 selected for external interrupt 12 Port F pin 12 selected for external interrupt 12 Port F pin 12 selected for external interrupt 12 Pith future devices, always write bits to 0. More information in Section 2.1 (p. 3) External Interrupt 11 Port Select
Value 0 1 2 3 4 5 EXTIPSEL11 Select input port invalue 0 1	Mode PORTA PORTB PORTC PORTD PORTE PORTF To ensure c 0x0 for external interrupt 11. Mode PORTA PORTB	compatibility w	Port A pin 12 selected for external interrupt 12 Port B pin 12 selected for external interrupt 12 Port C pin 12 selected for external interrupt 12 Port D pin 12 selected for external interrupt 12 Port E pin 12 selected for external interrupt 12 Port F pin 12 selected for external interrupt 12 Port F pin 12 selected for external interrupt 12 ith future devices, always write bits to 0. More information in Section 2.1 (p. 3 External Interrupt 11 Port Select
10000000000000000000000000000000000000	PORTA PORTB PORTC PORTC PORTD PORTE PORTF To ensure c 0x0 for external interrupt 11. Mode PORTA PORTB	RW	Port A pin 12 selected for external interrupt 12 Port B pin 12 selected for external interrupt 12 Port C pin 12 selected for external interrupt 12 Port D pin 12 selected for external interrupt 12 Port E pin 12 selected for external interrupt 12 Port F pin 12 selected for external interrupt 12 Port F pin 12 selected for external interrupt 12 ith future devices, always write bits to 0. More information in Section 2.1 (p. 3 External Interrupt 11 Port Select
Reserved EXTIPSEL11 Select input port invalue 0 1	PORTB PORTC PORTD PORTE PORTF To ensure c 0x0 for external interrupt 11. Mode PORTA PORTB	RW	Port B pin 12 selected for external interrupt 12 Port C pin 12 selected for external interrupt 12 Port D pin 12 selected for external interrupt 12 Port E pin 12 selected for external interrupt 12 Port F pin 12 selected for external interrupt 12 Port F pin 12 selected for external interrupt 12 vith future devices, always write bits to 0. More information in Section 2.1 (p. External Interrupt 11 Port Select Description
Reserved EXTIPSEL11 Select input port invalue 0 1	PORTC PORTD PORTE PORTF To ensure c 0x0 for external interrupt 11. Mode PORTA PORTB	RW	Port C pin 12 selected for external interrupt 12 Port D pin 12 selected for external interrupt 12 Port E pin 12 selected for external interrupt 12 Port F pin 12 selected for external interrupt 12 Port F pin 12 selected for external interrupt 12 with future devices, always write bits to 0. More information in Section 2.1 (p. External Interrupt 11 Port Select Description
3 4 5 Reserved EXTIPSEL11 Select input port invalue 0 1	PORTD PORTE PORTF To ensure c 0x0 for external interrupt 11. Mode PORTA PORTB	RW	Port D pin 12 selected for external interrupt 12 Port E pin 12 selected for external interrupt 12 Port F pin 12 selected for external interrupt 12 ith future devices, always write bits to 0. More information in Section 2.1 (p. External Interrupt 11 Port Select Description
A Seserved EXTIPSEL11 Select input port in Value 0 1	PORTE PORTF To ensure c 0x0 for external interrupt 11. Mode PORTA PORTB	RW	Port E pin 12 selected for external interrupt 12 Port F pin 12 selected for external interrupt 12 ith future devices, always write bits to 0. More information in Section 2.1 (p. 3 External Interrupt 11 Port Select Description
Reserved EXTIPSEL11 Select input port invalue 0 1	PORTF To ensure c 0x0 for external interrupt 11. Mode PORTA PORTB	RW	Port F pin 12 selected for external interrupt 12 with future devices, always write bits to 0. More information in Section 2.1 (p. Section 2.1) External Interrupt 11 Port Select Description
Reserved EXTIPSEL11 Select input port invalue 0 1	To ensure c 0x0 for external interrupt 11. Mode PORTA PORTB	RW	vith future devices, always write bits to 0. More information in Section 2.1 (p. Section 2.1) External Interrupt 11 Port Select Description
EXTIPSEL11 Select input port to Value 0 1	0x0 for external interrupt 11. Mode PORTA PORTB	RW	External Interrupt 11 Port Select Description
Select input port invalue 0 1	for external interrupt 11. Mode		Description
Value 0 1	Mode PORTA PORTB		·
0 1 2	PORTA PORTB		·
1	PORTB		Port A pin 11 selected for external interrupt 11
2			
			Port B pin 11 selected for external interrupt 11
	PORTC		Port C pin 11 selected for external interrupt 11
3	PORTD		Port D pin 11 selected for external interrupt 11
4	PORTE		Port E pin 11 selected for external interrupt 11
5	PORTF		Port F pin 11 selected for external interrupt 11
Reserved	To ensure c	compatibility w	vith future devices, always write bits to 0. More information in Section 2.1 (p. 3
EXTIPSEL10	0x0	RW	External Interrupt 10 Port Select
Select input port	for external interrupt 10.		
Value	Mode		Description
0	-		Port A pin 10 selected for external interrupt 10
			Port B pin 10 selected for external interrupt 10
2			Port C pin 10 selected for external interrupt 10
			·
			Port D pin 10 selected for external interrupt 10
4			Port E pin 10 selected for external interrupt 10
		a na na a tih ilitu u s	Port F pin 10 selected for external interrupt 10
			vith future devices, always write bits to 0. More information in Section 2.1 (p. External Interrupt 9 Port Select
		KVV	External interrupt 9 Fort Select
Value	·		Description
0			Port A pin 9 selected for external interrupt 9
~ 1			Port B pin 9 selected for external interrupt 9
2			
			Port C pin 9 selected for external interrupt 9
3			Port D pin 9 selected for external interrupt 9
4			Port E pin 9 selected for external interrupt 9
5	PORTF		Port F pin 9 selected for external interrupt 9
Reserved	To ensure c	ompatibility w	vith future devices, always write bits to 0. More information in Section 2.1 (p.
S V 0 1 2 3 4 5 7 1 2 3 4 5 7	elect input port	elect input port for external interrupt 10. falue	elect input port for external interrupt 10. falue

Bit	Name	Reset	Acces	s Description
	Select input port for	or external interrupt 8.		
	Value	Mode		Description
	0	PORTA		Port A pin 8 selected for external interrupt 8
	1	PORTB		Port B pin 8 selected for external interrupt 8
	2	PORTC		Port C pin 8 selected for external interrupt 8
	3	PORTD		Port D pin 8 selected for external interrupt 8
	4	PORTE		Port E pin 8 selected for external interrupt 8
	5	PORTF		Port F pin 8 selected for external interrupt 8

28.5.12 GPIO_EXTIRISE - External Interrupt Rising Edge Trigger Register

Offset															Bi	t Pc	siti	on		•					-					-		
0x108	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	7	10	6	8	7	9	2	4	က	2	-	0
Reset																									0000x0							
Access																								i	<u>×</u>							
Name																								i i	EXTIRISE							

Bit	Name	Reset	Access	Description
31:16	Reserved	To ensure co	mpatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
15:0	EXTIRISE	0x0000	RW	External Interrupt n Rising Edge Trigger Enable
	Set bit n to enable trigge	ring of external in	terrupt n on rising	edge.
	Value		Des	cription
	EXTIRISE[n] = 0		Risii	ng edge trigger disabled
	EXTIRISE[n] = 1		Risi	ng edge trigger enabled

28.5.13 GPIO_EXTIFALL - External Interrupt Falling Edge Trigger Register

Offset															Bi	t Po	siti	on														
0x10C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	1	10	6	8	7	. 9	5	4	3	2	-	0
Reset																									0000x0							
Access																								i	<u>}</u>							
Name																								i L	EXIIFALL							

Bit	Name	Reset	Access	Description
31:16	Reserved	To ensure comp	atibility with fut	ure devices, always write bits to 0. More information in Section 2.1 (p. 3)
15:0	EXTIFALL	0x0000	RW	External Interrupt n Falling Edge Trigger Enable

Downloaded from H 2010-12-21 - d0034_Rev0.90 465 www.energymicro.com

Bit	Name	Reset	Access	Description
	Set bit n to enable triggering	g of external interru	ıpt n on fallinα	g edge.
	Value		Des	cription
	EXTIFALL[n] = 0		Falli	ng edge trigger disabled
	EXTIFALL[n] = 1		Falli	ng edge trigger enabled

28.5.14 GPIO_IEN - Interrupt Enable Register

Offset															Bi	t Pc	siti	on														
0x110	31	30	29	28	27	26	22	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	80	7	9	2	4	3	2	1	0
Reset																								0000	OXOOO							
Access																								i	<u>}</u>							
Name																								ŀ	- K J							

Bit	Name	Reset	Acce	ss Description
31:16	Reserved	To ensure com	patibility v	vith future devices, always write bits to 0. More information in Section 2.1 (p. 3)
15:0	EXT	0x0000	RW	External Interrupt n Enable
	Set bit n to enable external	interrupt from pir	n n.	
	Value			Description
	EXT[n] = 0			Pin n external interrupt disabled
	EXT[n] = 1			Pin n external interrupt enabled

28.5.15 GPIO_IF - Interrupt Flag Register

Offset															Bi	t Pc	siti	on														
0x114	31	8	53	78	27	26	22	24	23	22	21	70	19	18	17	16	15	41	13	12	1	10	0	80	7	9	2	4	က	2	-	0
Reset																								0000	000000							
Access																								٥	۷							
Name																								<u>}</u>	- - - -							

Bit	Name	Reset	Access	Description									
31:16	Reserved	To ensure co	mpatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)									
15:0	EXT	0x0000 R External Interrupt Flag n											
	Pin n external inter	rupt flag.											
	Value		Desc	ription									
	EXT[n] = 0		Pin n	external interrupt flag cleared									

Downloaded from Heads.com 2010-12-21 - d0034_Rev0.90 466 www.energymicro.com

Bit	Name	Reset	Acce	ss Description
	Value			Description
	EXT[n] = 1			Pin n external interrupt flag set

28.5.16 GPIO_IFS - Interrupt Flag Set Register

Offset															Bi	t Po	siti	on														
0x118	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	1	10	6	∞	7	9	2	4	က	2	-	0
Reset																								000	000000							
Access																								3	>							
Name																								ŀ	Ë							

Bit	Name	Reset	Access	Description
31:16	Reserved	To ensure co	mpatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
15:0	EXT	0x0000	W1	External Interrupt Flag n Set
	Write bit n to 1 to set inter	rupt flag n.		
	Value		Descrip	otion
	EXT[n] = 0		Pin n e	xternal interrupt flag unchanged
	EXT[n] = 1		Pin n e	xternal interrupt flag set

28.5.17 GPIO_IFC - Interrupt Flag Clear Register

Offset															Bi	t Po	siti	on														
0x11C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	41	13	12	1	10	თ	8	7	9	2	4	က	2	-	0
Reset																									000000							
Access																									<u> </u>							
Name																								ŀ	EXI							

Bit	Name	Reset	Access	Description								
31:16	Reserved	To ensure cor	mpatibility with fu	uture devices, always write bits to 0. More information in Section 2.1 (p. 3)								
15:0	EXT	0x0000	W1	External Interrupt Flag Clear								
	Write bit n to 1 to clear exte	ernal interrupt fla										
	Value		Descri	ption								
	EXT[n] = 0		Pin n e	external interrupt flag unchanged								
	EXT[n] = 1	Pin n external interrupt flag cleared										

Downloaded from Heads, com 2010-12-21 - d0034_Rev0.90 467 www.energymicro.com

28.5.18 GPIO_ROUTE - I/O Routing Register

Offset															Bi	t Po	siti	on														
0x120	31	30	29	28	27	56	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	80	7	9	2	4	က	7	-	0
Reset			•								•	•											6	OXO						0	-	-
Access																							i	<u>}</u>						RW	RW	RW
Name																							F	SWECCA HOIN						SWOPEN	SWDIOPEN	SWCLKPEN

Bit	Name		Reset	Acces	ss Description
31:10	Reserved		To ensure	compatibility w	ith future devices, always write bits to 0. More information in Section 2.1 (p. 3)
9:8	SWLOCATION		0x0	RW	I/O Location
	Decides the loca	ation of the	SW pins.		
	Value	Mode			Description
	0	LOC0			Location 0
	1	LOC1			Location 1
	2	LOC2			Location 2
	3	LOC3			Location 3
7:3	Reserved		To ensure	compatibility w	ith future devices, always write bits to 0. More information in Section 2.1 (p. 3)
2	SWOPEN		0	RW	Serial Wire Viewer Output Pin Enable
	Enable Serial W	/ire Viewer	Output conne	ection to pin.	
1	SWDIOPEN		1	RW	Serial Wire Data Pin Enable
	A reset will set	the pin bad ou progran	ck to a default	t state as enab	When this pin is disabled, the device can no longer be accessed by a debugger. led. If you disable this pin, make sure you have at least a 3 second timeout e pin. This way, the debugger will have time to halt the device after a reset
0	SWCLKPEN		1	RW	Serial Wire Clock Pin Enable
	debugger. A res	set will set	the pin back to	o a default state	IG: When this pin is disabled, the device can no longer be accessed by a eas enabled. If you disable this pin, make sure you have at least a 3 second

timeout at the start of you program code before you disable the pin. This way, the debugger will have time to halt the device after a reset before the pin is disabled.

28.5.19 GPIO_INSENSE - Input Sense Register

Offset															Bi	t Pc	siti	on														
0x124	31	30	29	28	27	26	22	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	∞	7	9	2	4	က	2	-	0
Reset																															_	-
Access																															R.	Z.
Name																															PRS	LN.

Bit	Name	Reset	Access	Description
31:2	Reserved	To ensure co	ompatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
1	PRS	1	RW	PRS Sense Enable
	Set this bit to enable in	out sensing for PR	S	

Downloaded from H course on 2010-12-21 - d0034_Rev0.90 468 www.energymicro.com

Bit	Name	Reset	Access	Description							
0	INT	1	RW	Interrupt Sense Enable							
	Set this bit to enable input sensing for interrupts.										

28.5.20 GPIO_LOCK - Configuration Lock Register

Offset															Bi	t Po	siti	on														
0x128	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	1	10	6	∞	7	9	2	4	က	2	-	0
Reset																								0000	000000							
Access																								Š	<u>}</u>							
Name																								\L\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	LOCANE							

Bit	Name	Reset	Access	Description
31:16	Reserved	To ensure co	mpatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
15:0	LOCKKEY	0x0000	RW	Configuration Lock Key
	,			EL, MODEH, CTRL, PINLOCKN, EPISELL, EIPSELH, INSENSE and a When reading the register, bit 0 is set when the lock is enabled.
	Mode	Value		Description
	Read Operation			
	UNLOCKED	0		GPIO registers are unlocked
	LOCKED	1		GPIO registers are locked

Write Operation LOCK 0 Lock GPIO registers UNLOCK 0xA534 Unlock GPIO registers

28.5.21 GPIO_CTRL - GPIO Control Register

Offset															Bi	t Po	siti	on														
0x12C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	41	13	12	7	10	6	∞	7	9	2	4	က	2	-	0
Reset																																0
Access																																R ⊗
Name																																EM4RET

Bit	Name	Reset	Access	Description
31:1	Reserved	To ensure co	mpatibility with fu	uture devices, always write bits to 0. More information in Section 2.1 (p. 3)
0	EM4RET	0	RW	Enable EM4 retention
	Set to enables EM4	retention of output en	able, output value	e and pull enable.

Downloaded from Heads, com 2010-12-21 - d0034_Rev0.90 469 www.energymicro.com

28.5.22 GPIO_CMD - EM4 Wake-up Clear Register

Offset															Bi	t Po	siti	on														
0x130	31	30	29	28	27	56	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	∞	7	9	2	4	က	2	-	0
Reset																																0
Access																																×
Name																																EM4WUCLR

Bit	Name	Reset	Access	Description
31:1	Reserved	To ensure comp	atibility with fut	ure devices, always write bits to 0. More information in Section 2.1 (p. 3)
0	EM4WUCLR	0	W1	EM4 Wake-up clear
	Write 1 to clear all wake-up	requests.		

28.5.23 GPIO_EM4WUEN - EM4 Wake-up Enable Register

Offset															Bi	t Po	siti	on														
0x134	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	∞	7	9	2	4	က	2	-	0
Reset																														0000		
Access																													74.0	<u>^</u>		
Name																														EINI4WOEN		

Bit	Name	Reset	Access	Description										
31:6	Reserved	To ensure c	ompatibility with t	future devices, always write bits to 0. More information in Section 2.1 (p. 3)										
5:0	EM4WUEN	0x00	RW	EM4 Wake-up enable										
	Write 1 to enable wa	Write 1 to enable wake-up request, write 0 to disable wake-up request.												

Value	Mode	Description
0x01	A0	Enable em4 wakeup on pin A0
0x02	A6	Enable em4 wakeup on pin A6
0x04	C9	Enable em4 wakeup on pin C9
0x08	F1	Enable em4 wakeup on pin F1
0x10	F2	Enable em4 wakeup on pin F2
0x20	E13	Enable em4 wakeup on pin E13

28.5.24 GPIO_EM4WUPOL - EM4 Wake-up Polarity Register

Offset															Bi	t Po	siti	on														
0x138	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	7	10	6	∞	7	9	2	4	က	2	-	0
Reset																													9	0000		
Access																													Š	<u>}</u>		
Name																														EM4WUPUL		

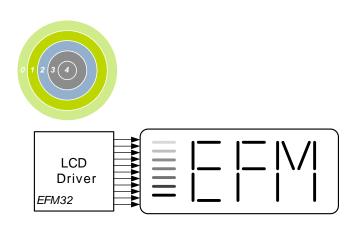
Downloaded from H couls com 2010-12-21 - d0034_Rev0.90 470 www.energymicro.com

Bit	Name	Reset	Access	Description
31:6	Reserved	To ensure co	ompatibility with fo	uture devices, always write bits to 0. More information in Section 2.1 (p. 3)
5:0	EM4WUPOL	0x00	RW	EM4 Wake-up Polarity
	Write bit n to 1 f	or high wake-up request.	Write bit n to 0 fo	r low wake-up request
	Value	Mode	Des	scription
	0x01	A0	Det	termines polarity on pin A0
	0x02	A6	Det	termines polarity on pin A6
	0x04	C9	Det	termines polarity on pin C9
	0x08	F1	Det	termines polarity on pin F1
	0x10	F2	Det	termines polarity on pin F2
	0x20	E13	Det	termines polarity on pin E13

28.5.25 GPIO_EM4WUCAUSE - EM4 Wake-up Cause Register

Offset															Bi	t Po	siti	on														
0x13C	31	30	29	28	27	56	25	24	23	22	21	20	19	18	17	16	15	41	13	12	7	10	თ	∞	7	9	2	4	က	2	-	0
Reset																													0	0000		
Access																													۵	۷		
Name																													0100100	000000000000000000000000000000000000000		
Bit	Na	me						Re	set			A	CC	ess		De	scri	iptio	on													

Bit	Name	Reset	Access	Description
31:6	Reserved	To ensure c	ompatibility with f	uture devices, always write bits to 0. More information in Section 2.1 (p. 3)
5:0	EM4WUCAUSE	0x00	R	EM4 wake-up cause


Bit n indicates which pin the wake-up request occurd.

Value	Mode	Description
0x01	A0	This bit indicates an em4 wake-up request occurd on pin A0
0x02	A6	This bit indicates an em4 wake-up request occurd on pin A6
0x04	C9	This bit indicates an em4 wake-up request occurd on pin C9
0x08	F1	This bit indicates an em4 wake-up request occurd on pin F1
0x10	F2	This bit indicates an em4 wake-up request occurd on pin F2
0x20	E13	This bit indicates an em4 wake-up request occurd on pin E13

Downloaded from Hoods, com 2010-12-21 - d0034_Rev0.90 471 www.energymicro.com

29 LCD - Liquid Crystal Display Driver

Quick Facts

What?

The LCD driver can drive up to 8x20 segmented LCD directly. The LCD driver consumes less than 900 nA in EM2. The animation feature makes it possible to have active animations without CPU intervention.

Why?

Segmented LCD displays are common way to display information. The extreme low-power LCD driver enables a lot of applications to utilize an LCD display even in energy critical systems.

How?

The low frequency clock signal, low-power waveform, animation and blink capabilities enable the LCD driver to run autonomously in EM2 for long periods. Adding the flexible frame rate setting, contrast control, and different multiplexing modes make the EFM32TG the optimal choice for batterydriven systems with LCD panels.

29.1 Introduction

The LCD driver is capable of driving a segmented LCD display combination of: 1x24, 2x24, 3x24, 4x24, 6x22 or 8x20 segments. A voltage boost function enables it to provide the LCD display with higher voltage than the supply voltage for the device. In addition, an animation feature can run custom animations on the LCD display without any CPU intervention. The LCD driver can also remain active even in Energy Mode 2 and provides a Frame Counter interrupt that can wake-up the device on a regular basis for updating data.

29.2 Features

- Up to 8x20 segments.
- Configurable multiplexing (1, 2, 3, 4, 6, 8)
- LCD supports the following COM/SEG combinations
 - 1x24, 2x24, 3x24, 4x24, 6x22, 8x20
- Configurable bias/voltage levels settings
- Configurable clock source prescaler
- · Configurable Framerate
- Segment lines can be enabled or disabled individually
- Blink capabilities
- Integrated animation functionality
- Voltage boost capabilities
- Possible to run on external power
- Programmable contrast
- Frame Counter


- LCD frame interrupt
- · Direct segment control

29.3 Functional Description

An overview of the LCD module is shown in Figure 29.1 (p. 473). In its simplest form, an LCD driver would apply a voltage above a certain threshold voltage in order to darken a segment and a voltage below threshold to make a segment clear. However, the LCD display segment will degrade if the applied voltage has a DC-component. To avoid this, the applied waveforms are arranged such that the differential voltage seen by each segment has an average value of zero, and such that the RMS voltage (or differential sum of the two waveforms for fast response LCDs) is below the segment threshold voltage if the segment shall be transparent, and above the segment threshold voltage when the segment shall be dark.

The waveforms are multiplexed up to eight (1-8) different common lines and 20-24 segment lines to support up to 160 different LCD segments. The common lines and segment lines can be enabled or disabled individually to prevent the LCD driver from occupying more I/O resources than required.

Figure 29.1. LCD Block Diagram

For simplicity, only one segment pin and one common terminal is shown in the figure.

29.3.1 LCD Driver Enable

Setting the EN bit in LCD_CTRL enables the LCD driver. The MUX bitfield in LCD_DISPCTRL determines which COM lines are driven by the LCD driver. By default, LCD_COM0 is driven whenever the LCD driver is enabled.

The LCD_SEGEN register determines which segment lines are enabled. Segment lines can be enabled in groups of 4 and disabled in groups of 4 or individually disabled. To enable output on segment lines 0-7 for instance, the two lowest segment groups, set the two lowest bits in LCD_SEGEN. Disabling individual segment lines can be done by disabling the pin in GPIO.

Each LCD segment pin can also be individually disabled by configuring the pin as input in the GPIO.

Downloaded from E 2010-12-21 - d0034_Rev0.90 473 www.energymicro.com

29.3.2 Multiplexing, Bias, and Wave Settings

The LCD driver supports different multiplexing and bias settings, and these can be set individually in the MUX and BIAS bits in LCD_DISPCTRL respectively, see Table 29.1 (p. 474) and Table 29.2 (p. 474).

Note

If the MUX and BIAS settings in LCD_DISPCTRL are changed while the LCD driver is enabled, the output waveform is unpredictable and may lead to a DC-component for one LCD frame.

The MUX setting determines the number of LCD COM lines that are enabled. When using octaplex or sextaplex multiplexing, the additional COM lines used (COM4-COM7) are actually located on the SEG (SEG20-SEG23) lines. When static multiplexing is selected, LCD output is enabled on LCD COM0, when duplex multiplexing is used, LCD_COM0-LCD_COM1 are used, when triplex multiplexing is selected, LCD_COM0-LCD_COM2 are used, when quadruplex multiplexing is selected, LCD_COM0-LCD_COM3 are used, when sextaplex multiplexing is selected, LCD_COM0-LCD_COM3 together with SEG20-SEG21 as LCD COM4-LCD COM5 are used, making 22 segments available, located in SEG0-SEG19, and SEG22-SEG23. Finally when octaplex multiplexing is selected, LCD COM0-LCD COM3 together with SEG20-SEG23 as LCD_COM4-LCD_COM7 are used, making the 20 segments available, located in SEG0-SEG19.

See Section 29.3.3 (p. 475) for waveforms for the different bias and multiplexing settings.

The waveforms generated by the LCD controller can be generated in two different versions, regular and low-power. The low power mode waveforms have a lower switching frequency than the regular waveforms, and thus consume less power. The WAVE bit in LCD_DISPCTRL decides which waveforms to generate. An example of a low-power waveform is shown in Figure 29.2 (p. 475), and an example of a regular waveform is shown in Figure 29.3 (p. 475).

Table 29.1. LCD Mux Settings

MUXE	MUX	Mode	Multiplexing
0	00	Static	Static (segments can be multiplexed with LCD_COM[0])
0	01	Duplex	Duplex (segments can be multiplexed with LCD_COM[1:0])
0	10	Triplex	Triplex (segments can be multiplexed with LCD_COM[2:0])
0	11	Quadruplex	Quadruplex (segments can be multiplexed with LCD_COM[3:0])
1	01	Sextaplex	Sextaplex (segments can be multiplexed with LCD_COM[3:0] and SEG[23:22])
1	11	Octaplex	Octaplex (segments can be multiplexed with LCD_COM[3:0]) and SEG[23:20]

Table 29.2. LCD BIAS Settings

BIAS	Mode	Bias setting
00	Static	Static (2 levels)
01	Half Bias	1/2 Bias (3 levels)
10	Third Bias	1/3 Bias (4 levels)
11	Fourth Bias	1/4 Bias (5 levels)

Table 29.3. LCD Wave Settings

WAVE	Mode	Wave mode
0	LowPower	Low power optimized waveform output
1	Normal	Regular waveform output

Figure 29.2. LCD Low-power Waveform for LCD_COM0 in Quadruples Multiplex Mode, 1/3 Bias

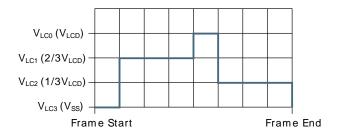
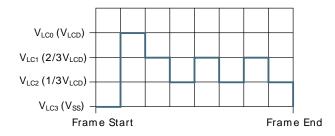
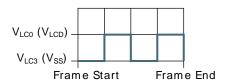



Figure 29.3. LCD Normal Waveform for LCD_COM0 in Quadruples Multiplex Mode, 1/3 Bias


29.3.3 Waveform Examples

The numbers on the illustration's y-axes in the following sections only indicate different voltage levels. All examples are shown with low-power waveforms.

29.3.3.1 Waveforms with Static Bias and Multiplexing

- With static bias and multiplexing, each segment line can be connected to LCD_COM0. When the segment line has the same waveform as LCD_COM0, the LCD panel pixel is turned off, while when the segment line has the opposite waveform, the LCD panel pixel is turned on.
- DC voltage = 0 (over one frame)
- V_{RMS} (on) = V_{LCD_OUT}
- V_{RMS} (off) = 0 (V_{SS})

Figure 29.4. LCD Static Bias and Multiplexing - LCD_COM0

29.3.3.2 Waveforms with 1/2 Bias and Duplex Multiplexing

In this mode, each frame is divided into 4 periods. LCD_COM[1:0] lines can be multiplexed with all segment lines. Figures show 1/2 bias and duplex multiplexing (waveforms show two frames)

Figure 29.5. LCD 1/2 Bias and Duplex Multiplexing - LCD_COM0

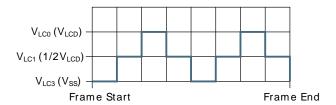
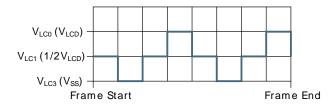



Figure 29.6. LCD 1/2 Bias and Duplex Multiplexing - LCD_COM1

1/2 bias and duplex multiplexing - LCD_SEG0

The LCD_SEG0 waveform on the left is just an example to illustrate how different segment waveforms can be multiplexed with the LCD_COM lines in order to turn on and off LCD pixels. As illustrated in the figures below, this waveform will turn ON pixels connected to LCD_COM0, while pixels connected to LCD_COM1 will be turned OFF.

Figure 29.7. LCD 1/2 Bias and Duplex Multiplexing - LCD_SEG0

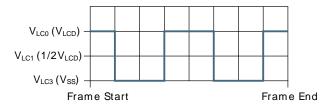
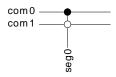
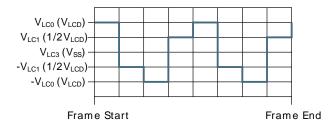
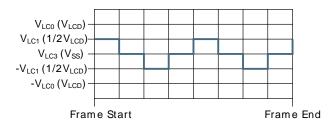



Figure 29.8. LCD 1/2 Bias and Duplex Multiplexing - LCD_SEG0 Connection



1/2 bias and duplex multiplexing - LCD_SEG0-LCD_COM0

- DC voltage = 0 (over one frame)
- $V_{RMS} = 0.79 \times V_{LCD_OUT}$
- The LCD display pixel that is connected to LCD_SEG0 and LCD_COM0 will be ON with this waveform.


Figure 29.9. LCD 1/2 Bias and Duplex Multiplexing - LCD_SEG0-LCD_COM0

1/2 bias and duplex multiplexing - LCD_SEG0-LCD_COM1

- DC voltage = 0 (over one frame)
- $V_{RMS} = 0.35 \times V_{LCD OUT}$
- The LCD display pixel that is connected to LCD_SEG0 and LCD_COM0 will be OFF with this waveform

Figure 29.10. LCD 1/2 Bias and Duplex Multiplexing - LCD_SEG0-LCD_COM1

29.3.3.3 Waveforms with 1/3 Bias and Duplex Multiplexing

In this mode, each frame is divided into 4 periods. LCD_COM[1:0] lines can be multiplexed with all segment lines. Figures show 1/3 bias and duplex multiplexing (waveforms show two frames).

Figure 29.11. LCD 1/3 Bias and Duplex Multiplexing - LCD_COM0

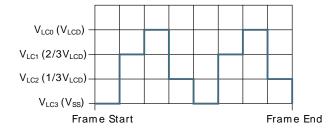
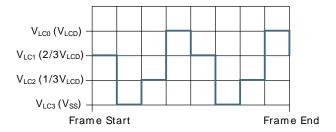
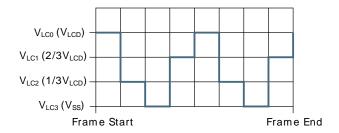
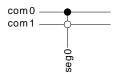



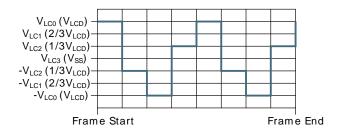
Figure 29.12. LCD 1/3 Bias and Duplex Multiplexing - LCD_COM1

1/3 bias and duplex multiplexing - LCD_SEG0

The LCD_SEG0 waveform on the left is just an example to illustrate how different segment waveforms can be multiplexed with the COM lines in order to turn on and off LCD pixels. As illustrated in the figures below, this waveform will turn ON pixels connected to LCD_COM0, while pixels connected to LCD_COM1 will be turned OFF.

Figure 29.13. LCD 1/3 Bias and Duplex Multiplexing - LCD_SEG0

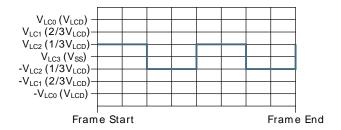




Figure 29.14. LCD 1/3 Bias and Duplex Multiplexing - LCD_SEG0 Connection

1/3 bias and duplex multiplexing - LCD_SEG0-LCD_COM0

- DC voltage = 0 (over one frame)
- $V_{RMS} = 0.75 \times V_{LCD OUT}$
- The LCD display pixel that is connected to LCD_SEG0 and LCD_COM0 will be ON with this waveform

Figure 29.15. LCD 1/3 Bias and Duplex Multiplexing - LCD_SEG0-LCD_COM0



1/3 bias and duplex multiplexing - LCD_SEG0-LCD_COM0

- DC voltage = 0 (over one frame)
- $V_{RMS} = 0.33 \times V_{LCD OUT}$
- The LCD display pixel that is connected to LCD_SEG0 and LCD_COM1 will be OFF with this waveform

Figure 29.16. LCD 1/3 Bias and Duplex Multiplexing - LCD_SEG0-LCD_COM1

29.3.3.4 Waveforms with 1/2 Bias and Triplex Multiplexing

In this mode, each frame is divided into 6 periods. LCD_COM[2:0] lines can be multiplexed with all segment lines. Figures show 1/2 bias and triplex multiplexing (waveforms show two frames).

Figure 29.17. LCD 1/2 Bias and Triplex Multiplexing - LCD_COM0



Figure 29.18. LCD 1/2 Bias and Triplex Multiplexing - LCD COM1

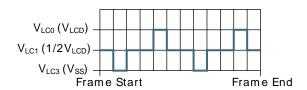
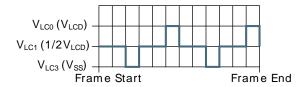



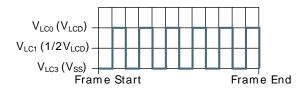
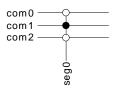
Figure 29.19. LCD 1/2 Bias and Triplex Multiplexing - LCD_COM2

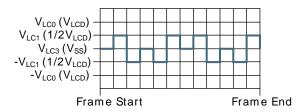
1/2 bias and triplex multiplexing - LCD_SEG0

The LCD_SEG0 waveform on the left is just an example to illustrate how different segment waveforms can be multiplexed with the COM lines in order to turn on and off LCD pixels. As illustrated in the figures below, this waveform will turn ON pixels connected to LCD_COM1, while pixels connected to LCD_COM0 and LCD_COM2 will be turned OFF.

Downloaded from H couls com 2010-12-21 - d0034_Rev0.90 479 www.energymicro.com

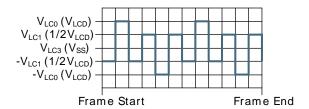
Figure 29.20. LCD 1/2 Bias and Triplex Multiplexing - LCD_SEG0


Figure 29.21. LCD 1/2 Bias and Triplex Multiplexing - LCD_SEG0 Connection

1/2 bias and triplex multiplexing - LCD_SEG0-LCD_COM0

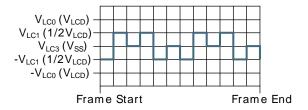
- DC voltage = 0 (over one frame)
- $V_{RMS} = 0.4 \times V_{LCD_OUT}$
- The LCD display pixel that is connected to LCD_SEG0 and LCD_COM0 will be OFF with this waveform


Figure 29.22. LCD 1/2 Bias and Triplex Multiplexing - LCD_SEG0-LCD_COM0

1/2 bias and triplex multiplexing - LCD_SEG0-LCD_COM1

- DC voltage = 0 (over one frame)
- $V_{RMS} = 0.7 V_{LCD OUT}$
- The LCD display pixel that is connected to LCD_SEG0 and LCD_COM1 will be ON with this waveform

Figure 29.23. LCD 1/2 Bias and Triplex Multiplexing - LCD_SEG0-LCD_COM1



1/2 bias and triplex multiplexing - LCD_SEG0-LCD_COM2

- DC voltage = 0 (over one frame)
- $V_{RMS} = 0.4 \times V_{LCD OUT}$
- The LCD display pixel that is connected to LCD_SEG0 and LCD_COM2 will be OFF with this waveform

Figure 29.24. LCD 1/2 Bias and Triplex Multiplexing - LCD_SEG0-LCD_COM2

29.3.3.5 Waveforms with 1/3 Bias and Triplex Multiplexing

In this mode, each frame is divided into 6 periods. LCD_COM[2:0] lines can be multiplexed with all segment lines. Figures show 1/3 bias and triplex multiplexing (waveforms show two frames).

Figure 29.25. LCD 1/3 Bias and Triplex Multiplexing - LCD COM0

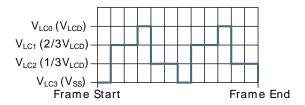


Figure 29.26. LCD 1/3 Bias and Triplex Multiplexing - LCD_COM1

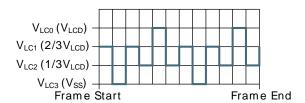
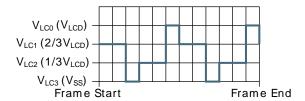



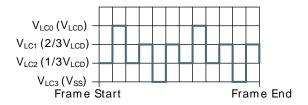
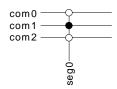
Figure 29.27. LCD 1/3 Bias and Triplex Multiplexing - LCD_COM2

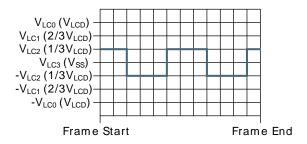
1/3 bias and triplex multiplexing - LCD_SEG0

The LCD_SEG0 waveform illustrates how different segment waveforms can be multiplexed with the COM lines in order to turn on and off LCD pixels. As illustrated in the figures below, this waveform will turn ON pixels connected to LCD_COM1, while pixels connected to LCD_COM0 and LCD_COM2 will be turned OFF.

Downloaded from H couls com 2010-12-21 - d0034_Rev0.90 481 www.energymicro.com

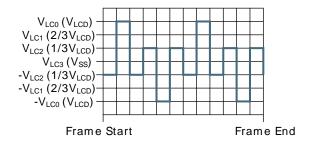
Figure 29.28. LCD 1/3 Bias and Triplex Multiplexing - LCD_SEG0


Figure 29.29. LCD 1/3 Bias and Triplex Multiplexing - LCD_SEG0 Connection

1/3 bias and triplex multiplexing - LCD_SEG0-LCD_COM0

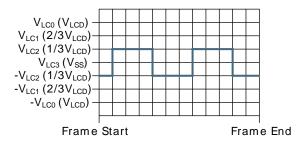
- DC voltage = 0 (over one frame)
- $V_{RMS} = 0.33 V_{LCD OUT}$
- The LCD display pixel that is connected to LCD_SEG0 and LCD_COM0 will be OFF with this waveform


Figure 29.30. LCD 1/3 Bias and Triplex Multiplexing - LCD_SEG0-LCD_COM0

1/3 bias and triplex multiplexing - LCD_SEG0-LCD_COM1

- DC voltage = 0 (over one frame)
- $V_{RMS} = 0.64 \times V_{LCD_OUT}$
- The LCD display pixel that is connected to LCD_SEG0 and LCD_COM1 will be ON with this waveform

Figure 29.31. LCD 1/3 Bias and Triplex Multiplexing - LCD_SEG0-LCD_COM1



1/3 bias and triplex multiplexing - LCD_SEG0-LCD_COM2

- DC voltage = 0 (over one frame)
- $V_{RMS} = 0.33 \times V_{LCD OUT}$
- The LCD display pixel that is connected to LCD SEG0 and LCD COM2 will be OFF with this waveform

Figure 29.32. LCD 1/3 Bias and Triplex Multiplexing - LCD_SEG0-LCD_COM2

29.3.3.6 Waveforms with 1/3 Bias and Quadruplex Multiplexing

In this mode, each frame is divided into 8 periods. All COM lines can be multiplexed with all segment lines. Figures show 1/3 bias and quadruplex multiplexing (waveforms show two frames).

Figure 29.33. LCD 1/3 Bias and Quadruplex Multiplexing - LCD_COM0

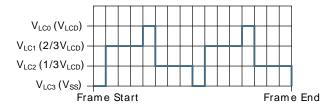


Figure 29.34. LCD 1/3 Bias and Quadruplex Multiplexing - LCD_COM1

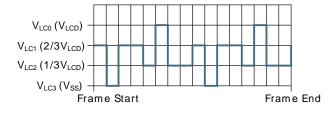


Figure 29.35. LCD 1/3 Bias and Quadruplex Multiplexing - LCD_COM2

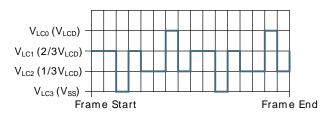
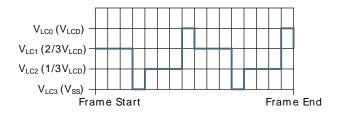
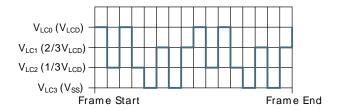
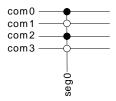



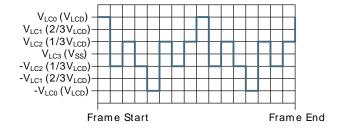
Figure 29.36. LCD 1/3 Bias and Quadruplex Multiplexing - LCD_COM3

1/3 bias and quadruplex multiplexing - LCD_SEG0

The LCD_SEG0 waveform on the left is just an example to illustrate how different segment waveforms can be multiplexed with the COM lines in order to turn on and off LCD pixels. As illustrated in the figures below, this wave form will turn ON pixels connected to LCD_COM0 and LCD_COM2, while pixels connected to LCD_COM1 and LCD_COM3 will be turned OFF.

Figure 29.37. LCD 1/3 Bias and Quadruplex Multiplexing - LCD_SEG0

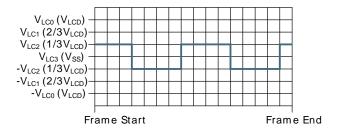




Figure 29.38. LCD 1/3 Bias and Quadruplex Multiplexing - LCD SEG0 Connection

1/3 bias and quadruplex multiplexing - LCD_SEG0-LCD_COM0

- DC voltage = 0 (over one frame)
- $V_{RMS} = 0.58 \times V_{LCD\ OUT}$
- The LCD display pixel that is connected to LCD_SEG0 and LCD_COM0 will be ON with this waveform

Figure 29.39. LCD 1/3 Bias and Quadruplex Multiplexing - LCD_SEG0-LCD_COM0


1/3 bias and quadruplex multiplexing - LCD_SEG0-LCD_COM1

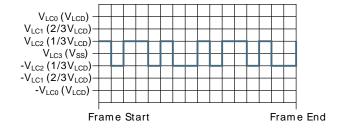
• DC voltage = 0 (over one frame)

- $V_{RMS} = 0.33 \times V_{LCD OUT}$
- The LCD display pixel that is connected to LCD SEG0 and LCD COM1 will be OFF with this waveform

Figure 29.40. LCD 1/3 Bias and Quadruplex Multiplexing - LCD_SEG0-LCD_COM1

1/3 bias and quadruplex multiplexing - LCD_SEG0-LCD_COM2

- DC voltage = 0 (over one frame)
- $V_{RMS} = 0.58 \times V_{LCD\ OUT}$
- The LCD display pixel that is connected to LCD_SEG0 and LCD_COM2 will be ON with this waveform


Figure 29.41. LCD 1/3 Bias and Quadruplex Multiplexing - LCD_SEG0-LCD_COM2

1/3 bias and quadruplex multiplexing - LCD_SEG0-LCD_COM2

- DC voltage = 0 (over one frame)
- $V_{RMS} = 0.33 \times V_{LCD OUT}$
- The LCD display pixel that is connected to LCD_SEG0 and LCD_COM3 will be OFF with this waveform

Figure 29.42. LCD 1/3 Bias and Quadruplex Multiplexing- LCD_SEG0-LCD_COM3

29.3.4 LCD Contrast

Different LCD panels have different characteristics and also temperature may affect the characteristics of the LCD panels. To compensate for such variations, the LCD driver has a programmable contrast that

adjusts the V_{LCD_OUT} . The contrast is set by CONLEV in LCD_DISPCTRL, and can be adjusted relative to either V_{DD} (V_{LCD}) or Ground using CONCONF in LCD_DISPCTRL. See Table 29.4 (p. 486) and Table 29.5 (p. 486), Table 29.5 (p. 486) and Table 29.6 (p. 487).

Table 29.4. LCD Contrast

BIAS	CONLEV	Equation	Range
00	00000-11111	V _{LCD_OUT} = V _{LCD} x (0.61 x (1 + CONLEV/(2 ⁵ - 1)))	CONLEV = 0 => V _{LCD_OUT} = 0.61V _{LCD}
			CONLEV = 31 => V _{LCD_OUT} = V _{LCD}
01	00000-11111	$V_{LCD_OUT} = V_{LCD} \times (0.53 \times (1 + CONLEV/(2^5 - 1)))$	CONLEV = 0 => V _{LCD_OUT} = 0.53V _{LCD}
			CONLEV = 31 => V _{LCD_OUT} = V _{LCD}
10	00000-11111	V _{LCD_OUT} = V _{LCD} x (0.61 x (1 + CONLEV/(2 ⁵ - 1)))	CONLEV = 0 => V _{LCD_OUT} = 0.61V _{LCD}
			CONLEV = 31 => V _{LCD_OUT} = V _{LCD}
11	00000-11111	V _{LCD_OUT} = V _{LCD} x (0.61 x (1 + CONLEV/(2 ⁵ - 1)))	CONLEV = 0 => V _{LCD_OUT} = 0.61V _{LCD}
			CONLEV = 31 => V _{LCD_OUT} = V _{LCD}

Note

Reset value is maximum contrast

Table 29.5. LCD Contrast Function

CONCONF	Function
0	Contrast is adjusted relative to V _{DD} (V _{LCD})
1	Contrast is adjusted relative to Ground

Contrast adjustment relative to V_{DD} (V_{LC} (CONCONF = 0) relative to GND (CONCONF = 1) (CONLEV = 11111) 1/4 bias V_{LCD} V_{LCD} V_{LCD} Rx R0 R0 V_{LC1} V_{LC1} R0 R1 R1 V_{LC1} V_{LC2} V_{LCD_OUT} R1 $V_{LC2} | V_{LCD_OUT}$ V_{LCD_OUT} R2 R2 V_{LC2} R2 V_{LC3} V_{LC3} R3 R3 V_{LC4} R3 Rx 1/3 bias V_{LCD} V_{LCD} V_{LCD} Rx R0 V_{LC1} V_{LC1} R0 R1 R1 $V_{\text{LCD_OUT}}$ V_{LCD_OUT} V_{LC1} V_{LCD_OUT} R2 R2 V_{LC2} R2 Rx V_{LC3} 1/2 bias V_{LCD} V_{LCD} V_{LCD} Rx R0 R0 $V_{\text{LCD_OUT}}$ R0 V_{LC1} $V_{\mathsf{LCD_OUT}}$ R1 R1 V_{LCD_OUT} R1 Rx V_{LC3} Static V_{LCD} Vicn V_{LC0} R0 $V_{\mathsf{LCD_OUT}}$ V_{LCD_OUT} R0 V_{LCD_OUT} Rx

Table 29.6. LCD Principle of Contrast Adjustment for Different Bias Settings.

R0 = R1 = R2 = R3 in the figure, while Rx is adjusted by changing the CONLEV bits.

29.3.5 V_{LCD} Selection

By default, the LCD driver runs on main external power ($V_{LCD} = V_{DD}$), see Table 29.7 (p. 488). An internal boost circuit can be enabled by setting VBOOSTEN in CMU_LCDCTRL and selecting the boosted voltage by setting VLCDSEL in LCD_DISPCTRL. This will boosts V_{LCD} to V_{BOOST} . V_{BOOST} can be selected in the range of 3.0 V – 3.6 V by configuring VBLEV in LCD_DISPCTRL. Note that the boost circuit is not designed to operate with the selected boost voltage, V_{BOOST} , smaller than V_{DD} . The boost circuit can boost the V_{LCD} up to 3.6 V when V_{DD} is as low as 2.0 V.

When using the voltage booster, the LCD_BEXT pin must be connected through a 1 µF capacitor to VSS, and the LCD_BCAP_P and LCD_BCAP_N pins must be connected to each other through a 22 nF capacitor.

It is also possible to connect a dedicated power supply to the LCD module. The LCD external power supply must be connected to the LCD_BEXT pin and VLCDSEL in LCD_DISPCTRL must be set. In this mode, the voltage booster should be disabled.

Table 29.7. LCD V_{LCD}

VLCDSEL	Mode	V _{LCD}
0	VDD	V _{DD} (same as main external power)
1	VBOOST	Voltage booster/External V _{DD}

29.3.6 VBOOST Control

The boost voltage is configurable. By programming the VBLEV bits in LCD_DISPCTRL, the boost voltage level can be adjusted between 3.0V and 3.6V.

The boost circuit will use an update frequency given by the VBFREQ bits in CMU_LCDCTRL, see Table 29.8 (p. 488)). It is possible to adjust the frequency to optimize performance for all kinds of LCD panels (large capacitors may require less frequent updates, while small capacitors may require more frequent updates). A lower update frequency would in general lead to smaller current consumption.

Table 29.8. LCD V_{BOOST} Frequency

VBFREQ	V _{BOOST} Update Frequency
000	LFACLK
001	LFACLK/2
010	LFACLK/4
011	LFACLK/8
100	LFACLK/16
101	LFACLK/32
110	LFACLK/64
111	LFACLK/128

29.3.7 Framerate

It is important to choose the correct framerate for the LCD display. Normally, the framerate should be between 30 and 100 Hz. A framerate below 30 Hz may lead to flickering, while a framerate above 100 Hz may lead to ghostering and unnecessarily high power consumption.

29.3.7.1 Clock Selection and Prescaler

The LFACLK is prescaled to LFACLK_{LCDpre}in the CMU. The available prescaler settings are:

- LFCLK16: LFACLK_{LCDpre} = LFACLK/16
- LFCLK32: LFACLK_{LCDpre} = LFACLK/32
- LFCLK64: LFACLK_{LCDpre} = LFACLK/64
- LFCLK128: LFACLK_{LCDpre} = LFACLK/128

In addition to selecting the correct prescaling, the clock source can be selected in the CMU.

To use this module, the LE interface clock must be enabled in CMU_HFCORECLKEN0, in addition to the module clock.

29.3.7.2 Framerate Division Register

The framerate is set in the CMU by programming the framerate division bits FDIV in CMU_LCDCTRL. This setting should not be changed while the LCD driver is running. The equation for calculating the resulting framerate is given from Equation 29.1 (p. 489)

LCD Framerate Calculation

$$LFACLK_{LCD} = LFACLK_{LCDpre}/(1 + FDIV)$$
 (29.1)

Table 29.9. LCD Framerate Conversion Table

		Resulting Framerate, CLK _{FRAME} (Hz)										
MUX Mode	Frame- rate formula	LFACLK kHz	LCDpre = 2	LFACLK kHz	LCDpre = 1	LFACLK _L 0.5 kHz	.CDpre =	LFACLK _{LCDpre} = 0.25 kHz				
		Min	Max	Min	Max	Min	Max	Min	Max			
Static	LFACLK _{LCD} /2	128	1024	64	512	32	256	16	128			
Duplex	LFACLK _{LCD} /4	64	512	32	256	16	128	8	64			
Triplex	LFACLK _{LCD} /6	43	341	21	171	11	85	5	43			
Quadruplex	LFACLK _{LCD} /8	32	256	16	128	8	64	4	32			
Sextaplex	LFACLK _{LCD} /12	21.33	170.67	10.67	85.33	5.33	42.67	2.67	21.33			
Octaplex	LFACLK _{LCD} /16	16	128	8	64	4	32	2	16			

Table settings: Min: FDIV = 7, Max: FDIV = 0

29.3.8 Data Update

The LCD Driver logic that controls the output waveforms is clocked on LFACLK_{LCDpre}. The LCD data and Control Registers are clocked on the HFCORECLK. To avoid metastability and unpredictable behavior, the data in the Segment Data (SEGDn) registers must be synchronized to the LCD driver logic. Also, it is important that data is updated at the beginning of an LCD frame since the segment waveform depends on the segment data and a change in the middle of a frame may lead to a DC-component in that frame. The LCD driver has dedicated functionality to synchronize data transfer to the LCD frames. The synchronization logic is applied to all data that need to be updated at the beginning of the LCD frames:

- LCD_SEGDn
- LCD AREGA
- LCD_AREGB
- LCD_BACTRL

The different methods to update data are controlled by the UDCTRL bits in LCD_CTRL.

Table 29.10. LCD Update Data Control (UDCTRL) Bits

UDCTRL	Mode	Description
00	REGULAR	The data transfer is controlled by SW and data synchronization is initiated by writing data to the buffers. Data is transferred as soon as possible, possibly creating a frame with a DC component on the LCD.
01	FCEVENT	The data transfer is done at the next event triggered by the Frame Counter (FC). See Section 29.3.10 (p. 490) for details on how to configure the Frame Counter. Optionally, the Frame Counter can also generate an interrupt at every event.
10	FRAMESTART	The data transfer is done at frame-start.

29.3.9 Direct Segment Control

It is possible to gain direct control over the bias levels for each SEG/COM line by setting DSC in LCD_CTRL. The SEG lines bias levels can be set in SEG0-SEG2, while the COM line bias levels can be set in SEG3.

29.3.10 Frame Counter (FC)

The Frame Counter is synchronized to the LCD frame start and will generate an event after a programmable number of frames. An FC event can trigger:

- LCD ready interrupt
- Blink (controlling the blink frequency)
- · Next state in the Animation State Machine
- Data update if UDCTRL = 01

The Frame Counter is a down counter. It is enabled by writing FCEN in LCD_BACTRL. Optionally, the Frame Counter can be prescaled so that the Frame Counter is decremented at:

- · Every frame
- · Every second frame
- · Every fourth frame
- Every eight frame

This is controlled by the FCPRESC in LCD_BACTRL, see Table 29.11 (p. 490)

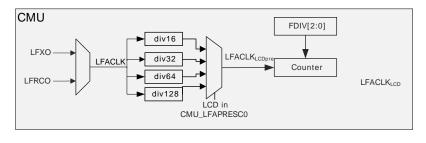
Table 29.11. FCPRESC

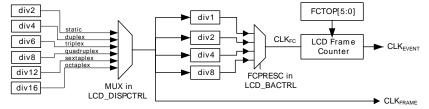
FCPRESC	Mode	Description	General equation
00	Div1	CLK _{FRAME} /1	
01	Div2	CLK _{FRAME} /2	CLK _{FC} = CLK _{FRAME} /2 ^{FCPRESC}
10	Div4	CLK _{FRAME} /4	GLNFC = GLNFRAME/2
11	Div8	CLK _{FRAME} /8	

The top value for the Frame Counter is set by FCTOP in LCD_BACTRL. Every time the frame counter reaches zero, it is reloaded with the top value, and at the same time an event, which can cause an interrupt, data update, blink, or an animation state transition is triggered.

$$CLK_{EVENT} = CLK_{FC}/(1 + FCTOP[5:0]) Hz$$
 (29.2)

The above equation shows how to set-up the LCD event frequency. In this example, the framerate is 64Hz, and the LCD event frequency should be set-up to 2 seconds.


Example 29.1. LCD Event Frequency Example


- Write FCPRESC to 3 => CLK_{FC} = 8Hz (0.125 seconds)
- Write FCTOP to 15 => CLK_{EVENT} = 0.5Hz (2 seconds)

If higher resolution is required, configure a lower prescaler value and increase the FCPRESC in LCD_BACTRL accordingly (e.g. FCPRESC = 2, FCTOP = 31).

Figure 29.43. LCD Clock System in LCD Driver

29.3.11 LCD Interrupt

The LCD interrupt can be used to synchronize data update. The FC interrupt flag is set at every LCD Frame Counter Event, which must be set-up separately. The interrupt is enabled by setting FC bit in LCD_IEN.

29.3.12 Blink, Blank, and Animation Features

29.3.12.1 Blink

The LCD driver can be configured to blink, alternating all enabled segments between on and off. The blink frequency is given by the CLK_{EVENT} frequency, see Section 29.3.10 (p. 490). See Section 29.3.8 (p. 489) for details regarding synchronization of the blink feature. The FC must be on for blink to work.

29.3.12.2 Blank

Setting BLANK in LCD BACTRL will output the "OFF" waveform on all enabled segments, effectively blanking the entire display. Writing the BLANK bit to zero disables the blanking and segment data will be output as normal. See Section 29.3.8 (p. 489) for details regarding synchronization of blank.

29.3.12.3 Animation State Machine

The Animation State Machine makes it possible to enable different animations without updating the data registers, allowing specialized patterns running on the LCD panel while the microcontroller remains in Low Energy Mode and thus saving power consumption. The animation feature is available on segment 0 to 7 multiplexed with LCD_COM0. The animation is implemented as two programmable 8 bits registers that are shifted left or right every other Animation state for a total of 16 states.

The shift operations applied to the shift registers are controlled by AREGASC and AREGBSC in LCD_BACTRL as shown in the table below. Note also that the FC must be on for animation to work, as it is the FC event that drives the animation state machine.

Table 29.12. LCD Animation Shift Register

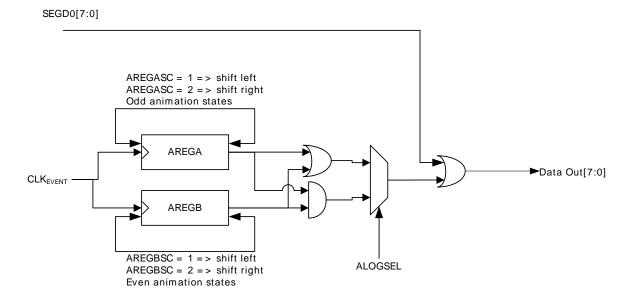
AREGNSC, n = A or B	Mode	Description
00	NOSHIFT	No Shift operation
01	SHIFTLEFT	Animation register is shifted left (LCD_AREGA is shifted every odd state, LCD_AREGB is shifted every even state)
10	SHIFTRIGHT	Animation register is shifted right (LCD_AREGA is shifted every odd state, LCD_AREGB is shifted every even state)
11	Reserved	Reserved

The two registers are either OR'ed or AND'ed to achieve the displayed animation pattern. This is controlled by ALOGSEL in LCD_BACTRL as shown in Table 29.13 (p. 492). In addition, the regular segment data SEGD0[7:0] is OR'ed with the animation pattern to generate the resulting output.

Table 29.13. LCD Animation Pattern

ALOGSEL	Mode	Description
0	AND	LCD_AREGA and LCD_AREGB are AND'ed together
1	OR	LCD_AREGA and LCD_AREGB are OR'ed together

Each state is displayed one CLK_{EVENT} period, see Section 29.3.10 (p. 490). By reading ASTATE in LCD_STATUS, software can identify which state that is currently active in the state sequence. Note that the shifting operation is performed on internal registers that are not accessible in SW (when reading LCD_AREGA and LCD_AREGB, the data that was original written will also be read back). The SW must utilize the knowledge about the current state (ASTATE) to calculate what is currently output. ASTATE is cleared when LCD_AREGA or LCD_AREGB are updated with new values. See Table 29.14 (p. 492) for an example.


Table 29.14. LCD Animation Example

ASTATE	LCD_AREGA	LCD_AREGB	Resulting Data
0	11000000	11000000	11000000
1	01100000	11000000	11100000
2	01100000	01100000	01100000
3	00110000	01100000	01110000
4	00110000	00110000	00110000
5	00011000	00110000	00111000
6	00011000	00011000	00011000
7	00001100	00011000	00011100
8	00001100	00001100	00001100
9	00000110	00001100	00001110
10	00000110	00000110	00000110
11	00000011	00000110	00000111
12	00000011	0000011	00000011
13	10000001	0000011	10000011
14	10000001	10000001	10000001
15	11000000	10000001	11000001

In the table, AREGASC = 10, AREGBSC = 10, ALOGSEL = 1 and the resulting data is be displayed on segment lines 7-0 multiplexed with LCD_COM0.

Figure 29.44. LCD Block Diagram of the Animation Circuit

Example 29.2. LCD Animation Enable Example

- Write data into the animation registers LCD_AREGA, LCD_AREGB
- Enable the correct shift direction (if any)
- Decide which logical function to perform on the registers
 - ALOGSEL = 0: Data out = LCD AREGA & LCD AREGB
 - ALOGSEL = 1:Data out = LCD AREGA | LCD AREGB
- Configure the right animation period (CLK_{EVENT})
- Enable the animation pattern and frame counter (AEN = 1, FCEN = 1)

For updating data in the LCD while it is running an animation, and the new animation data depends on the pattern visible on the LCD, see the following example.

Example 29.3. LCD Animation Dependence Example

- Enable the LCD interrupt (the interrupt will be triggered simultaneously as the Animation State machine changes state)
- In the interrupt handler, read back the current state (ASTATE)
- · Knowing the current state of the Animation State Machine makes it possible to calculate what data that is currently output
- Modify data as required (Data will be updated at the next Frame Counter Event). It is important that new data is written before the next Frame Counter Event.

29.3.13 LCD in Low Energy Modes

As long as the LFACLK is running (EM0-EM2), the LCD controller continues to output LCD waveforms according to the data that is currently synchronized to the LCD Driver logic. In addition, the following features are still active if enabled:

- · Animation State Machine
- Blink
- LCD Event Interrupt

29.3.14 Register access

Since this module is a Low Energy Peripheral, and runs off a clock which is asynchronous to the HFCORECLK, special considerations must be taken when accessing registers. Please refer to Section 5.3 (p. 18) for a description on how to perform register accesses to Low Energy Peripherals.

Downloaded from Heads com 2010-12-21 - d0034_Rev0.90 494 www.energymicro.com

29.4 Register Map

The offset register address is relative to the registers base address.

Offset	Name	Туре	Description
0x000	LCD_CTRL	RW	Control Register
0x004	LCD_DISPCTRL	RW	Display Control Register
0x008	LCD_SEGEN	RW	Segment Enable Register
0x00C	LCD_BACTRL	RW	Blink and Animation Control Register
0x010	LCD_STATUS	R	Status Register
0x014	LCD_AREGA	RW	Animation Register A
0x018	LCD_AREGB	RW	Animation Register B
0x01C	LCD_IF	R	Interrupt Flag Register
0x020	LCD_IFS	W1	Interrupt Flag Set Register
0x024	LCD_IFC	W1	Interrupt Flag Clear Register
0x028	LCD_IEN	RW	Interrupt Enable Register
0x040	LCD_SEGD0L	RW	Segment Data Low Register 0
0x044	LCD_SEGD1L	RW	Segment Data Low Register 1
0x048	LCD_SEGD2L	RW	Segment Data Low Register 2
0x04C	LCD_SEGD3L	RW	Segment Data Low Register 3
0x060	LCD_FREEZE	RW	Freeze Register
0x064	LCD_SYNCBUSY	R	Synchronization Busy Register
0x0CC	LCD_SEGD4L	RW	Segment Data Low Register 4
0x0D0	LCD_SEGD5L	RW	Segment Data Low Register 5
0x0D4	LCD_SEGD6L	RW	Segment Data Low Register 6
0x0D8	LCD_SEGD7L	RW	Segment Data Low Register 7

29.5 Register Description

29.5.1 LCD_CTRL - Control Register (Async Reg)

For more information about Asynchronous Registers please see Section 5.3 (p. 18).

Offset															Bi	t Po	siti	on														
0x000	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	œ	7	9	2	4	ю	2 4	-	0
Reset									0																					0×0		0
Access									₩ W																					RW W		X M
Name									DSC																					UDCTRL		Ä

Bit	Name	Reset	Access	Description
31:24	Reserved	To ensure comp	atibility with fut	ure devices, always write bits to 0. More information in Section 2.1 (p. 3)
23	DSC	0	RW	Direct Segment Control

This bit enables direct control over bias levels for each SEG/COM line.

Value	Description
0	DSC disable

Bit	Name	Reset	Acces	s Description
	Value	Description		
	1	DSC enable		
22:3	Reserved	To ensure c	ompatibility wit	h future devices, always write bits to 0. More information in Section 2.1 (p. 3)
2:1	UDCTRL	0x0	RW	Update Data Control
	These bits cor	ntrol how data from the SEC	GDn registers a	are transferred to the LCD driver.
	Value	Mode		Description
	0	REGULAR		The data transfer is controlled by SW. Transfer is performed as soon as possible
	1	FCEVENT		The data transfer is done at the next event triggered by the Frame Counter
	2	FRAMESTART		The data transfer is done continously at every LCD frame start
0	EN	0	RW	LCD Enable
	When this bit	is set, the LCD driver is ena	abled and the d	Iriver will start outputting waveforms on the com/segment lines.

29.5.2 LCD_DISPCTRL - Display Control Register

Offset																Bi	t Pc	siti	on														
0x004	2	ر ا	3 8	3	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	ი	8	7	9	2	4	е	2	-	0
Reset											0			0x3			0	0					0x1F						0		0×0	()	
Access											W.			M			R M	₩ M					RW						₩ N		¥ §	Š	 }
Name											MUXE			VBLEV			VLCDSEL	CONCONF					CONLEV						WAVE		BIAS	>	Y 000
Bit		Nam	е						Re	eset			A	\CC€	ess	;	De	scr	iptic	on													
31:23	F	Resei	ved						То	ensi	ure c	ютр	atibi	ility ı	with	n futu	ire de	evice	es, a	lwa	уѕ и	rite .	bits	to 0.	Mor	e in	forn	natio	n in	Sec	tion 2	2.1 (p	o. 3)
22	Ν	/UXE							0				R	W			Ext	end	ed N	lux	Со	nfig	ırat	ion									
	This bit redefines the meaning of the MUX field. Value Mode Description																																
	Value Mode Description																																
	0 MUX Muliplex mode determined by MUX field.																																
	L	1				ا	MUX	Έ							١	Mux e	xtend	ded n	node.	Ex	tend	s the	mea	ning	of the	e ML	JX fi	eld.					
21	F	Resei	ved						То	ensi	ure c	omp	atibi	ility ı	y with future devices, always write bits to 0. More information in Section 2.1 (p													o. 3)					
20:18	\	/BLE	V						0x3	3			R	W			Vol	tage	Во	ost	Lev	/el											
	Т	hese	bits	c	onti	rol \	/olta	age l	Boos	t lev	el. P	lease	e ref	er to	o da	atash	eet f	or fu	ırthe	r de	etails	s of t	he l	0005	t lev	els.							
	F	Value					Mode	е							[Descr	iption	ı															
	Ī)				T	EVI	EL0							N	Minim	um b	oost	level														
		1					_EVI	EL1																									
	╌	2				\rightarrow	_EVI								4																		
	- -	3				\rightarrow	_EVI								+																		
	H	4 5		_		-	_EVI								+																		
	- -	3 3				\rightarrow	_EVI								+																		
	- -	7				-	EVI								N	Maxin	num b	oost	leve														
17	F	Resei	ved						То	ensi	ure c	отр	atibi	ility ı	with	n futu	ire de	evice	es, a	lwa	уѕ и	rite .	bits	to 0.	Mor	e in	forn	natio	n in	Sec	tion 2	2.1 (p	o. 3)
16	\	/LCD	SEL						0				R	W			V _{LC}	D Se	elect	ior	1												
	Т	his b	it cc	ntr	rols	wh	ich '	Volt	age s	ourc	e th	at is	coni	nect	ed	to V _L	CD-																

Mode

VDD

VEXTBOOST

Description

Voltage Booster/External VDD

VDD

Bit	Name	Reset	Acces	ss Description	
15	CONCONF	0	RW	Contrast Configurati	on
	This bit selects	whether the contrast adju	ustment is done	e relative to V _{LCD} or Ground.	
	Value	Mode		Description	
	0	VLCD		Contrast is adjusted relative to V	LCD
	1	GND		Contrast is adjusted relative to G	Ground
14:13	Reserved	To ensure	compatibility wi	ith future devices, always write	e bits to 0. More information in Section 2.1 (p. 3)
12:8	CONLEV	0x1F	RW	Contrast Level	
	These bits conti	rol the contrast setting ac	cording to this	formula: $V_{LCD_OUT} = V_{LCD} \times 0$	0.5(1+CONLEV/31).
	Value	Mode		Description	
	0	MIN		Minimum contrast	
	31	MAX		Maximum contrast	
7:5	Reserved	To ensure	compatibility wi	ith future devices, always write	e bits to 0. More information in Section 2.1 (p. 3)
4	WAVE	0	RW	Waveform Selection	
	This bit configur	es the output waveform.			
	Value	Mode		Description	
	0	LOWPOWER		Low power waveform	
	1	NORMAL		Normal waveform	
3:2	BIAS	0x0	RW	Bias Configuration	
	These bits set the	ne bias mode for the LCI	Driver.		
	Value	Mode		Description	
	0	STATIC		Static	
	1	ONEHALF		1/2 Bias	
	2	ONETHIRD		1/3 Bias	
	3	ONEFOURTH		1/4 Bias	
1:0	MUX	0x0	RW	Mux Configuration	
	These bits set the	ne multiplexing mode for	the LCD Drive	r. The field is dependent on the	ne value of MUXE field
	MUX	MUXE		Mode	Description
	0	0		STATIC	Static. Uses com line LCD_COM0.
	1	0		DUPLEX	Duplex. Uses com lines LCD_COM0-LCD_COM1.
	2	0		TRIPLEX	Triplex. Uses com lines LCD_COM0-LCD_COM2.
	3	0		QUADRUPLEX	Quadruplex. Uses com lines LCD_COM0-LCD_COM3.
	1	1		SEXTAPLEX	Sextaplex. Uses com lines LCD_COM0-LCD_COM5.
	3	1		OCTAPLEX	Octaplex. Uses com lines LCD_COM0-LCD_COM7.

29.5.3 LCD_SEGEN - Segment Enable Register

Offset															Bi	t Po	siti	on														
0x008	33	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	41	13	12	7	10	6	8	7	9	2	4	က	2	-	0
Reset																												000×0				
Access																												X N				
Name																												SEGEN				

Bit	Name	Reset	Access	Description
31:10	Reserved	To ensure comp	atibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
0.0	OFOFN		DW	
9:0	SEGEN	0x000	RW	Segment Enable

29.5.4 LCD_BACTRL - Blink and Animation Control Register (Async Reg)

For more information about Asynchronous Registers please see Section 5.3 (p. 18)

Offset								Bit	Positi	on													
0x00C	30 29 28	27 26 25 25	24	23	7 6	50 2	6 2	7 7 9	15	4	13	12	7	10	6	∞	7	9 5	,	4	က	7	-
Reset						00×0		0x0								0	0	0x0		0×0		0	0
Access						RW		RW O							_	W W	RW	RW	+	- W		ΜM	RW
				_		<u>~</u>		<u>«</u>							-	2	~	<u>~</u>		<u>~</u>		∝	~
Name						FCTOP		FCPRESC								FCEN	ALOGSEL	AREGBSC		AREGASC		AEN	BLANK
Bit	Name		Res	et			Acces	ss [Descr	ipti	on												
31:24	Reserved		То е	nsure	e cor	npatil	bility w	ith future	devic	es, a	alwaj	уѕ и	rite	bits	to 0.	More	e inf	ormati	ion	in S	ectic	n 2	.1 (p
23:18	FCTOP		0x00)		F	RW	F	rame	Cou	ınte	r To	р۷	alue									
	These bits conta	ain the Top	Value	for th	ne Fr	ame (Counte	er: CLK _{E\}	/ENT =	CL	K _{FC} /	(1	+ F(TO	P[5:0]).							
17:16	FCPRESC		0x0			F	RW	F	rame	Coı	ınte	r Pr	esc	aler									
	These bits contr	ols the pre	scaling	valu	e for	the F	rame	Counter	input (clock	Κ.												
	Value	Mode						Descripti	ion														
	0	DIV1						CLK _{FC} =															
	1	DIV2						CLK _{FC} =															
	3	DIV4 DIV8						CLK _{FC} =															
15:9	Reserved	12.10		nour	0.001	mnotil	hilityyy					10.14	vito	hito	to 0	Mor	n inf	ormoti	ion	inC	ootic	n 2	1 /2
			0	risure	e cor			ith future							10 0.	IVIOT	e Irii	ormati	Ori	11113	ecuc) r i Z .	. I (L
8	FCEN	cat the fra	-	ıntor	ic or		4 SW		rame	COL	ınte	r Er	labi	3									
-	When this bit is	set, the ha		ınter	is ei							-		6									
7	ALOGSEL When this bit is:	set, the anir	0 mation	regis	ters		RW ND'ed		nima . Whe		-						ion	registe	ers	are	OR'e	ed to	oget
	Value	Mode						Descripti	ion														
	0	AND						AREGA	and AF	REGE	3 ANI	D'ed											
	1	OR						AREGA	and AF	REGE	3 OR	'ed											
6:5	AREGBSC		0x0			F	₹W	Α	nima	te R	egis	ter	ВЅ	hift (Con	rol							
	These bits conti	ols the shif	t opera	ation 1	that i	is per	formed	d on Anin	nation	regi	ister	B.											
		Marila						Descripti	ion														
	Value	Mode						No Shift	operati	on o	- A		on E	enist	er B								
	Value 0	NOSHIF ⁻	Τ					140 Shift	оролан	011 0	n Ani	ımat	OII I	ogio									
	0	NOSHIF*	FT					Animatio	n Regi	ster l	B is s	hifte	d lef	t									
	0 1 2	NOSHIF	FT						n Regi	ster l	B is s	hifte	d lef	t									
4:3	0 1 2 AREGASC	NOSHIFT SHIFTLE SHIFTRI	GHT 0x0	ation t	that i		RW formed	Animation Animation	n Regi	ster I	B is s B is s egis	shifte shifte ster	d lef	t ht		rol							
4:3	0 1 2 AREGASC These bits contr	SHIFTLE SHIFTRI	GHT 0x0	ation 1	that i			Animatio Animatio	n Regi	ster I	B is s B is s egis	shifte shifte ster	d lef	t ht		rol							
4:3	0 1 2 AREGASC	NOSHIFT SHIFTLE SHIFTRI	GHT 0x0 t opera	ation 1	that i			Animation Animation	n Reginal Regi	ster l ster l te R	B is s B is s egis ister	shifte shifte ter A.	ed lef	ht hift	Cont	rol							

SHIFTLEFT

Animation Register A is shifted left

Bit	Name	Reset	Acces	ss Description
	Value	Mode		Description
	2	SHIFTRIGHT		Animation Register A is shifted right
2	AEN	0	RW	Animation Enable
	When this bit is	s set, the animate function	is enabled.	
1	BLANK	0	RW	Blank Display
	When this bit is affected when		vaveforms are	e configured to blank the LCD display. The Segment Data Registers are not
	Value	Description		
	0	Display is not "bl	anked"	
	1	Display is "blank	ed"	
0	BLINKEN	0	RW	Blink Enable
	When this bit is	set, the Blink function is en	abled. Every '	"ON" segment will alternate between on and off at every Frame Counter Event.

29.5.5 LCD_STATUS - Status Register

Offset															Bi	t Pc	siti	on														
0x010	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	თ	8	7	9	2	4	8	2	-	0
Reset																								0						000		
Access																								2						~		
Name																								BLINK						ASTATE		

Bit	Name	Reset	Access	Description
31:9	Reserved	To ensure c	compatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
8	BLINK	0	R	Blink State
	This bits indicates the bli to 1 are on.	ink status. If this	s bit is 1, all segme	ents are off. If this bit is 0, the segments(LCD_SEGDxn) which are set
7:4	Reserved	To ensure o	compatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
3:0	ASTATE	0x0	R	Current Animation State
	Contains the current anin	nation state (0-1	5).	

29.5.6 LCD_AREGA - Animation Register A (Async Reg)

For more information about Asynchronous Registers please see Section 5.3 (p. 18).

Offset															Bi	t Po	sitio	on														
0x014	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	ω	7	9	2	4	3	7	- 0	>
Reset																												d	oxo			
Access																												i	≩ Ƴ			_
Name																												C L	AREGA			_

Bit	Name	Reset	Access	Description
31:8	Reserved	To ensure compa	atibility with futu	ure devices, always write bits to 0. More information in Section 2.1 (p. 3)

Downloaded from Headlescom 2010-12-21 - d0034_Rev0.90 499 www.energymicro.com

Bit	Name	Reset	Access	Description
7:0	AREGA	0x00	RW	Animation Register A Data
	This register contains the A	A data for generatin	ng animation pa	attern.

29.5.7 LCD_AREGB - Animation Register B (Async Reg)

For more information about Asynchronous Registers please see Section 5.3 (p. 18) .

Offset															Bi	t Po	siti	on														
0x018	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	41	13	12	1	10	6	8	7	9	2	4	က	2	-	0
Reset																													0x00			
Access																													≷			
Name																												1	AREGB			
Bit	Na	me						Re	set			A	CC	ess	;	De	scr	iptic	on													

Bit	Name	Reset	Access	Description
31:8	Reserved	To ensure compa	atibility with fut	ure devices, always write bits to 0. More information in Section 2.1 (p. 3)
7:0	AREGB	0x00	RW	Animation Register B Data
	This register contains the E	data for generatin	g animation pa	attern.

29.5.8 LCD_IF - Interrupt Flag Register

Offset															Bi	t Po	siti	on														
0x01C	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	8	7	9	2	4	က	7	-	0
Reset																																0
Access																																~
Name																																5

Bit	Name	Reset	Access	Description
31:1	Reserved	To ensure comp	atibility with fut	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
0	FC	0	R	Frame Counter Interrupt Flag
	Set when Frame Counter i	s zero.		

29.5.9 LCD_IFS - Interrupt Flag Set Register

Offset															Bi	t Po	ositi	ion														
0x020	31	30	29	28	27	56	25	24	23	22	21	20	19	18	17	16	15	4	13	12	1	10	6	8	7	9	2	4	က	2	-	0
Reset													•										•									0
Access																																×
Name																																5

Downloaded from Heads, com 2010-12-21 - d0034_Rev0.90 500 www.energymicro.com

Bit	Name	Reset	Access	Description
31:1	Reserved	To ensure comp	patibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
0	FC	0	W1	Frame Counter Interrupt Flag Set
	Write to 1 to set FC interru	ıpt flag.		

29.5.10 LCD_IFC - Interrupt Flag Clear Register

Offset															Bi	t Po	ositi	on														
0x024	31	30	29	28	27	56	22	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	6	∞	7	9	2	4	က	2	-	0
Reset																																0
Access																																N N
Name																																5

Bit	Name	Reset	Access	Description
31:1	Reserved	To ensure co	mpatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
0	FC	0	W1	Frame Counter Interrupt Flag Clear
	Write to 1 to clear FC in	terrupt flag.		

29.5.11 LCD_IEN - Interrupt Enable Register

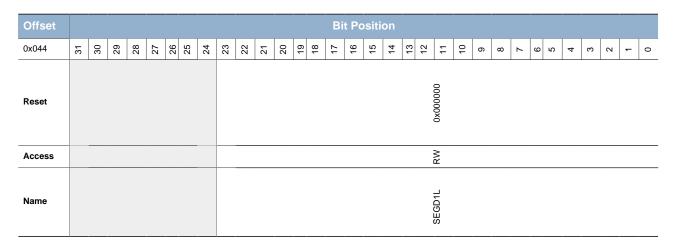
Offset															Bi	t Po	ositi	on														
0x028	31	30	29	28	27	26	22	24	23	22	21	20	19	18	17	16	15	4	13	12	=	10	6	8	7	9	2	4	က	7	-	0
Reset																																0
Access																																R ≷
Name																																5

Bit	Name	Reset	Access	Description
31:1	Reserved	To ensure compa	atibility with fut	rure devices, always write bits to 0. More information in Section 2.1 (p. 3)
0	FC	0	RW	Frame Counter Interrupt Enable
	Set to enable interrupt on f	rame counter interr	upt flag.	

29.5.12 LCD_SEGD0L - Segment Data Low Register 0 (Async Reg)

For more information about Asynchronous Registers please see Section 5.3 (p. 18).

2010-12-21 - d0034_Rev0.90 www.energymicro.com



Offset															Bit	Pos	itic	on														
0x040	31	30	29	28	27	26	25	24	23	22	21	20	19	2	17	16	15	4	13	12	7	10	6	8	7	9	2	4	က	2	-	0
Reset																					000000x0											
Access																					X N											
Name																					SEGDOL											

Bit	Name	Reset	Access	Description
31:24	Reserved	To ensure comp	patibility with fur	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
23:0	SEGD0L	0x000000	RW	COM0 Segment Data Low
	This register contains segn	nent data for segm	ent lines 0-23	for COM0.

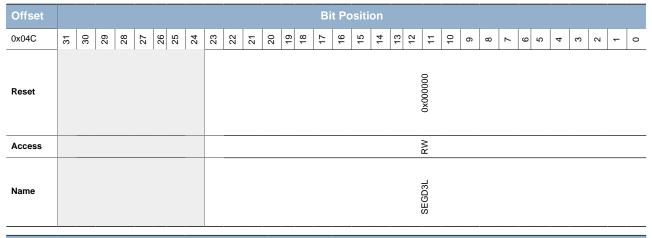
29.5.13 LCD_SEGD1L - Segment Data Low Register 1 (Async Reg)

For more information about Asynchronous Registers please see Section 5.3 (p. 18).

Bit	Name	Reset	Access	Description
31:24	Reserved	To ensure compa	atibility with futu	ure devices, always write bits to 0. More information in Section 2.1 (p. 3)
23:0	SEGD1L	0x000000	RW	COM1 Segment Data Low
	This register contains segm	ent data for segme	ent lines 0-23 fo	or COM1.

29.5.14 LCD_SEGD2L - Segment Data Low Register 2 (Async Reg)

For more information about Asynchronous Registers please see Section 5.3 (p. 18).


2010-12-21 - d0034_Rev0.90 www.energymicro.com

Offset															Bi	t Pc	siti	on														
0x048	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	=	10	ი	∞	7	9	2	4	က	7	-	0
Reset																					0x000000											
Access		\text{\tin}\text{\tetx{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\ti}\tint{\text{\text{\text{\text{\text{\text{\text{\ti}\tint{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\texi}\text{\text{\text{\texi}\text{\text{\texi}\text{\text{\texi}\til\titt{\text{\text{\texi}\text{\text{\text{\texi}\text{\text{																														
Name																					SEGD2L		-									
Bit	Na	ıme						Re	set			A	CC	ess		De	scri	iptic	on													
31:24	Re	serv	ed					То	ensi	ıre (сотр	atib	ility	with	futu	re de	evice	es, a	lwa _.	ys v	vrite	bits	to 0.	Mor	e in	form	atio	n in	Sect	ion 2	.1 (p	. 3)
23:0	SE	GD2	L					0x0	0000	00		R	W			СО	M2 \$	Segr	ner	nt D	ata l	Low										
	Thi	s reg	giste	r co	ntain	IS S	egm	ent o	data	for s	segm	ent	line	s 0-2	23 fo	or CC)M2.															

29.5.15 LCD_SEGD3L - Segment Data Low Register 3 (Async Reg)

For more information about Asynchronous Registers please see Section 5.3 (p. 18).

Bit	Name	Reset	Access	Description
31:24	Reserved	To ensure comp	atibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
23:0	SEGD3L	0x000000	RW	COM3 Segment Data Low
	This register contains segr	ment data for segm	ent lines 0-23	for COM3.

29.5.16 LCD_FREEZE - Freeze Register

Offset															Bi	it Po	siti	on										,	,		,	
0x060	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	41	13	12	1	10	6	8	7	9	5	4	က	7	-	0
Reset																	•												•		•	0
Access																																R≷
Name																																REGFREEZE

Bit	Name	Reset	Access	Description								
31:1	Reserved	To ensure co	ompatibility with fu	h future devices, always write bits to 0. More information in Section 2.1 (p. 3,								
0	REGFREEZE	0	RW	Register Update Freeze								
	When set, the upo	date of the LCD is postp	oned until this bit	is cleared. Use this bit to update several registers simultaneously.								
	Value	Mode	Des	Description Each write access to an LCD register is updated into the Low Frequency domain as soon as possible.								
	0	UPDATE										
	1 FREEZE		The	he LCD is not updated with the new written value.								

29.5.17 LCD_SYNCBUSY - Synchronization Busy Register

Offset	Bit Position																															
0x064	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	41	13	12	7	10	6	8	7	9	2	4	က	2	-	0
Reset										0	0	0	0									0	0	0	0	0	0	0	0			
Access								-	~	œ	œ	œ									22	~	œ	œ	œ	œ	œ	~				
Name													SEGD7L	SEGD6L	SEGD5L	SEGD4L									SEGD3L	SEGD2L	SEGD1L	SEGDOL	AREGB	AREGA	BACTRL	CTRL

Bit	Name	Reset	Access	Description									
31:20	Reserved	To ensure co	ompatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)									
19	SEGD7L	0	R	LCD_SEGD7L Register Busy									
	Set when the value written to LCD_SEGD7L is being synchronized.												
18	SEGD6L	0	R	LCD_SEGD6L Register Busy									
	Set when the value written to LCD_SEGD6L is being synchronized.												
17	SEGD5L	0	R	LCD_SEGD5L Register Busy									
	Set when the value	written to LCD_SEGD	5L is being synch	ronized.									
16	SEGD4L	0	R	LCD_SEGD4L Register Busy									
	Set when the value written to LCD_SEGD4L is being synchronized.												
15:8	Reserved	To ensure co	ompatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)									
7	SEGD3L	0	R	LCD_SEGD3L Register Busy									
	Set when the value written to LCD_SEGD3L is being synchronized.												
6	SEGD2L	0	R	LCD_SEGD2L Register Busy									
	Set when the value written to LCD_SEGD2L is being synchronized.												
5	SEGD1L	0	R	LCD_SEGD1L Register Busy									
	Set when the value	written to LCD_SEGD	1L is being synch	ronized.									
4	SEGD0L	0	R	LCD_SEGD0L Register Busy									
	Set when the value	written to LCD_SEGD	OL is being synch	ronized.									
3	AREGB	0	R	LCD_AREGB Register Busy									
	Set when the value	written to LCD_AREG	B is being synchr	onized.									
2	AREGA	0	R	LCD_AREGA Register Busy									
	Set when the value	written to LCD_AREG	A is being synchr	onized.									
1	BACTRL	0	R	LCD_BACTRL Register Busy									
	Set when the value written to LCD_BACTRL is being synchronized.												
0	CTRL	0	R	LCD_CTRL Register Busy									
	Set when the value	written to LCD_CTRL	is being synchron	nized.									

Downloaded from Hoods, com 2010-12-21 - d0034_Rev0.90 504 www.energymicro.com

29.5.18 LCD_SEGD4L - Segment Data Low Register 4 (Async Reg)

For more information about Asynchronous Registers please see Section 5.3 (p. 18).

Offset															Bi	t Po	siti	on														
0x0CC	31	30	29	28	27	26	25	24	23	22	21	20	19	20	17	16	15	41	13	12	1	10	0	8	7	9	2	4	က	2	-	0
Reset																					0x000000											
Access																					RΝ											
Name																					SEGD4L											

Bit	Name	Reset	Access	Description
31:24	Reserved	To ensure comp	atibility with fut	ure devices, always write bits to 0. More information in Section 2.1 (p. 3)
23:0	SEGD4L	0x000000	RW	COM4 Segment Data
	This register contains segn	nent data for segme	ent lines 0-23 f	or COM4.

29.5.19 LCD_SEGD5L - Segment Data Low Register 5 (Async Reg)

For more information about Asynchronous Registers please see Section 5.3 (p. 18).

Offset															Bit	Ро	siti	on								•						
0x0D0	31	30	29	28	27	26	25	24	23	22	21	20	19	<u>o</u>	17	16	15	14	13	12	7	10	6	8	7	9	2	4	က	2	_	0
Reset																					0x000000											
Access																					RΜ											
Name																					SEGD5L											

Bit	Name	Reset	Access	Description
31:24	Reserved	To ensure com	npatibility with fu	ture devices, always write bits to 0. More information in Section 2.1 (p. 3)
23:0	SEGD5L	0x000000	RW	COM5 Segment Data
	This register contains segr	ment data for seg	ment lines 0-23	for COM5.

29.5.20 LCD_SEGD6L - Segment Data Low Register 6 (Async Reg)

For more information about Asynchronous Registers please see Section 5.3 (p. 18).

Downloaded from H couls com 505 www.energymicro.com

Offset															Bit	t Po	siti	on														
0x0D4	31	30	29	78	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	7	10	0	∞	7	9	2	4	က	7	-	0
Reset																					0x000000											
Access								\rightarrow \righ																								
Name																					SEGDGL											
Bit	Name Reset Access Description																															
31:24	Re	serve	ed					То	ensi	ure c	omp	atibi	ility v	vith	futu	re de	vice	s, a	lwa	ays u	/rite	bits	to 0.	Mor	e in	forn	natio	n in	Sect	ion 2	.1 (p	. 3)
23:0	SE	GD6	L					0x0	0000	00		R	W			CO	VI6 S	Segr	ne	nt D	ata											
	Thi	s reg	giste	r coi	ntain	s se	egm	ent o	lata	for s	egm	ent l	ines	0-2	3 fo	r CO	M6.															

29.5.21 LCD_SEGD7L - Segment Data Low Register 7 (Async Reg)

For more information about Asynchronous Registers please see Section 5.3 (p. 18).

Offset			,		,										Bi	t Pc	siti	on						,								
0x0D8	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	7	10	6	8	7	9	2	4	က	7	-	0
Reset																					0x000000											
Access		. Σ ×																														
Name																					SEGD7L			-								
Bit	Na	lame Reset Access Description																														
31:24	Reserved To ensure compatibility with future devices, always write bits to 0. More information in Section 2.1 (p. 3)																															
23:0	SE	GD7	'L					0x0	0000	00		R	W			СО	М7 9	Segr	nei	nt D	ata											
	Thi	is re	giste	r co	ontain	s se	egm	ent o	data	for s	segm	ent l	line	s 0-	23 fc	or CC	DM7.															

Downloaded from Houles com 2010-12-21 - d0034_Rev0.90 506 www.energymicro.com

30 Revision History

30.1 Revision 0.90

Major updates to all chapters, December 21th, 2010

30.2 Revision 0.80

Initial preliminary revision, October 1st, 2010

Downloaded from Headles com 2010-12-21 - d0034_Rev0.90 507 www.energymicro.com

A Abbreviations

A.1 Abbreviations

This section lists abbreviations used in this document.

Table A.1. Abbreviations

Abbreviation	Description
ACMP	Analog Comparator
ADC	Analog to Digital Converter
АНВ	AMBA Advanced High-performance Bus. AMBA is short for "Advanced Microcontroller Bus Architecture".
APB	AMBA Advanced Peripheral Bus. AMBA is short for "Advanced Microcontroller Bus Architecture".
ALE	Address Latch Enable
AUXHFRCO	Auxiliary High Frequency RC Oscillator.
CC	Compare / Capture
CLK	Clock
CMD	Command
CMU	Clock Management Unit
CTRL	Control
DAC	Digital to Analog Converter
DBG	Debug
DMA	Direct Memory Access
EFM	Energy Friendly Microcontroller
EM	Energy Mode
ЕМО	Energy Mode 0 (also called active mode)
EM1 to EM4	Energy Mode 1 to Energy Mode 4 (also called low energy modes)
EMU	Energy Management Unit
ENOB	Effective Number of Bits
GPIO	General Purpose Input / Output
HFRCO	High Frequency RC Oscillator
HFXO	High Frequency Crystal Oscillator
HW	Hardware
l ² C	Inter-Integrated Circuit interface
LCD	Liquid Crystal Display
LESENSE	Low Energy Sensor
LETIMER	Low Energy Timer
LEUART	Low Energy Universal Asynchronous Receiver Transmitter
LFRCO	Low Frequency RC Oscillator
LFXO	Low Frequency Crystal Oscillator

Abbreviation	Description
NVIC	Nested Vector Interrupt Controller
OPA/OPAMP	Operational Amplifier
OSR	Oversampling Ratio
PCNT	Pulse Counter
PGA	Programmable Gain Array
PRS	Peripheral Reflex System
PSRR	Power Supply Rejection Ratio
PWM	Pulse Width Modulation
RC	Resistance and Capacitance
RMU	Reset Management Unit
RTC	Real Time Clock
SAR	Successive Approximation Register
SPI	Serial Peripheral Interface
SW	Software
THD	Total Harmonic Distortion
USART	Universal Synchronous Asynchronous Receiver Transmitter
VCMP	Voltage supply Comparator
WDOG	Watchdog timer
XTAL	Crystal

B Disclaimer and Trademarks

B.1 Disclaimer

Energy Micro AS intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Energy Micro products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Energy Micro reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Energy Micro shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products must not be used within any Life Support System without the specific written consent of Energy Micro. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Energy Micro products are generally not intended for military applications. Energy Micro products shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.

B.2 Trademark Information

Energy Micro, EFM32, EFR, logo and combinations thereof, and others are the registered trademarks or trademarks of Energy Micro AS. ARM, CORTEX, THUMB are the registered trademarks of ARM Limited. Other terms and product names may be trademarks of others.

Downloaded from E 2010-12-21 - d0034_Rev0.90 510 www.energymicro.com

C Contact Information

C.1 Energy Micro Corporate Headquarters

Postal Address	Visitor Address	Technical Support
Energy Micro AS P.O. Box 4633 Nydalen N-0405 Oslo NORWAY	Energy Micro AS Sandakerveien 118 N-0484 Oslo NORWAY	support.energymicro.com Phone: +47 40 10 03 01

www.energymicro.com

Phone: +47 23 00 98 00 Fax: +47 23 00 98 01

C.2 Global Contacts

Visit **www.energymicro.com** for information on global distributors and representatives or contact **sales@energymicro.com** for additional information.

Americas	Europe, Middle East and Africa	Asia and Pacific
www.energymicro.com/americas	www.energymicro.com/emea	www.energymicro.com/asia

Downloaded from Hoods, com 2010-12-21 - d0034_Rev0.90 511 www.energymicro.com

Table of Contents

1.	Energy	Friendly Microcontrollers	2
	1.1.	EFM32TG Typical Applications EFM32TG Development	. 2
2		This Document	
۷.		Conventions	
	2.2.	Related Documentation	. 4
3.	System	Overview	5
	3.1.	Introduction	. 5
		Features	
		Block Diagram	
	3.4.	Energy Modes	. 7
4	3.5.	Product Overview	8
4.		n Processor	
		Features	
		Functional Description	
5.	Memor	y and Bus System	13
		Introduction	
	5.2.	Functional Description	13
	5.3.	Access to Low Energy Peripherals (Asynchronous Registers)	18
	5.4.	Flash	20
	5.5.	SRAM	21
6	5.6.	Device Information (DI) Page	21
0.		Introduction	
		Features	
		Functional Description	
	6.4.	Debug Lock and Device Erase	23
		Register Map	
_	6.6.	Register Description	25
7.	MSC -	Memory System Controller	27
		Introduction Features	
		Functional Description	
		Register Map	
	7.5.	Register Description	34
8.		DMA Controller	
		Introduction	
		Features	
		Block Diagram	
		Examples	
		Register Map	
	8.7.	Register Description	65
9.		Reset Management Unit	
		Introduction	
	-	Features	
		Functional Description	
		Register Description	
10		- Energy Management Unit	
		I. Introduction	
		2. Features	
		3. Functional Description	
		1. Register Map	
11		5. Register Description	
		I. Introduction	
		2. Features	
		3. Functional Description	
		1. Register Map	
		5. Register Description	
12		G - Watchdog Timer	
		I. Introduction	
		2. Features 1 3. Functional Description 1	25
		1. Register Map	
		5. Register Description	
13		- Peripheral Reflex System	
	13.1	I. Introduction	30
	13.2	2. Features	30

Downloaded from H

	13.3.	Functional Description	130
	13.4.	Register Map	135
	₂ 13.5.	Register Description	135
14.	I ^c C - In	ter-Integrated Circuit Interface	140
		Introduction	
		Features	
		Functional Description	
		Register Map	
4-	14.5.	Register Description	161
15.	USARI	- Universal Synchronous Asynchronous Receiver/Transmitter	173
		Introduction Features	
		Functional Description	
		Register Map	
		Register Description	
16	I FI ΙΔR	T- Low Energy Universal Asynchronous Receiver/Transmitter	218
10.	16.1	Introduction	218
		Features	
		Functional Description	
		Register Map	
		Register Description	
17.	TIMER	- Timer/Counter	244
		Introduction	
	17.2.	Features	244
	17.3.	Functional Description	245
	17.4.	Register Map	258
	17.5.	Register Description	258
18.		Real Time Counter	
		Introduction	
		Features	
		Functional Description	
		Register Map	
	18.5.	Register Description	275
19.	LETIME	ER - Low Energy Timer	280
		Introduction	
		Features	
		Functional Description	
		Register Map	
20		- Pulse Counter	
20.		Introduction	
		Features	
		Functional Description	
		Register Map	
	20.5.	Register Description	308
21.	LESEN	ISE - Low Energy Sensor Interface	317
		Introduction	
			317
	21.3.	Functional description	318
		Register Map	
		Register Description	
22.	ACMP	- Analog Comparator	363
	22.1.	Introduction	363
		Features	363
		Functional Description	364
		Register Map	368
		Register Description	
23.		- Voltage Comparator	
		Introduction	
		Features	374
		Functional Description	375
		Register Map	378
24		Register Description	
∠4.		Introduction	
		Features	382
		Functional Description	383
		Register Map	392
			392
25		Digital to Analog Converter	
_0.		Introduction	
		Features	405
		Functional Description	
		Register Map	

25.5. Register Description	
26. OPAMP - Operational Amplifier	
26.1. Introduction	
26.2. Features	
26.3. Functional Description	
26.4. Register Description	
26.5. Register Map	434
27. AES - Advanced Encryption Standard Accelerator	. 435
27.1. Introduction	
27.2. Features	
27.3. Functional Description	
27.4. Register Map	
27.5. Register Description	
28. GPIO - General Purpose Input/Output	
28.1. Introduction	. 447
28.2. Features	
28.3. Functional Description	
28.4. Register Map	
28.5. Register Description	
29. LCD - Liquid Crystal Display Driver	472
29.1. Introduction	. 472
29.2. Features	472
29.3. Functional Description	473
29.4. Register Map	495
29.5. Register Description	495
30. Revision History	. 507
30.1. Revision 0.90	
30.2. Revision 0.80	. 507
A. Abbreviations	. 508
A.1. Abbreviations	
B. Disclaimer and Trademarks	. 510
B.1. Disclaimer	. 510
B.2. Trademark Information	510
C. Contact Information	. 511
C.1. Energy Micro Corporate Headquarters	511
C.2. Global Contacts	

Downloaded from I

List of Figures

3.1. Diagram of EFM32TG	7
3.2. Energy Mode indicator	7
4.1. Interrupt Operation	
5.1. System Address Space	. 14 10
5.3. Read operation form Low Energy Peripherals	20
6.1. AAP - Authentication Access Port	24
7.1. Revision Number Extraction	
7.2. Instruction Cache	
8.1. DMA Block Diagram	
8.2. Polling flowchart	
8.3. Ping-pong example	. 49
8.4. Memory scatter-gather example	. 52
8.6. Memory map for 8 channels, including the alternate data structure	. 54 56
8.7. Detailed memory map for the 8 channels, including the alternate data structure	57
8.8. channel_cfg bit assignments	. 58
9.1. RMU Reset Input Sources and Connections.	. 81
9.2. RMU Power-on Reset Operation	. 82
9.3. RMU Brown-out Detector Operation	
10.1. EMU Overview	. 87
10.2. EMU Energy Mode Transitions	
11.1. CMU Overview	
11.2. CMU Switching from HFRCO to HFXO before HFXO is ready	100
11.4. HFXO Pin Connection	100
11.5. LFXO Pin Connection	
11.6. HW-support for RC Oscillator Calibration	
11.7. Single Calibration (CONT=0)	102
11.8. Continuous Calibration (CONT=1)	102
13.1. PRS Overview	131
13.2. TIMER0 overflow starting ADC0 single conversions through PRS channel 5.	134
14.1. I ² C Overview	
14.2. I ² C-Bus Example	141
14.4. I ² C Bit Transfer on I ² C-Bus	142
14.5. I ² C Single Byte Write to Slave	143
14.6. I ² C Double Byte Read from Slave	143
14.7. I ² C Single Byte Write, then Repeated Start and Single Byte Read	143
14.8. I ² C Master Transmitter/Slave Receiver with 10-bit Address	144
14.9. I ² C Master Receiver/Slave Transmitter with 10-bit Address	144
14.10. I ² C Master State Machine	147
15.1. USART Overview	
15.2. USART Asynchronous Frame Format	
15.3. USART Transmit Buffer Operation	179
15.4. USART Receive Buffer Operation	181
15.5. USART Sampling of Start and Data Bits	182
15.6. USART Sampling of Stop Bits when Number of Stop Bits are 1 or More	
15.7. USART Local Loopback	183
15.8. USART Half Duplex Communication with External Driver	184
15.10. USART Transmission of Large Frames, MSBF	
15.10. USART Transmission of Large Frames	
15.12. USART ISO 7816 Data Frame Without Error	
15.13. USART ISO 7816 Data Frame With Error	
15.14. USART SmartCard Stop Bit Sampling	189
15.15. USART SPI Timing	
15.16. USART Standard I2S waveform	
15.17. USART Standard I2S waveform (reduced accuracy)	193
15.18. USART Left-justified I2S waveform	193
15.20. USART Mono I2S waveform	
15.21. USART Example RZI Signal for a given Asynchronous USART Frame	
16.1. LEUART Overview	219
16.2. LEUART Asynchronous Frame Format	220
16.3. LEUART Transmitter Overview	
16.4. LEUART Receiver Overview	
16.5. LEUART Local Loopback	227
16.7. LEUART Hair Duplex Communication with External Driver	
10.1. EE 0.11.1. 111.E 10. 11.E.	3

17.1. TIMER Block Overview	246
17.2. TIMER Hardware Timer/Counter Control	247
17.3. TIMER Clock Selection	
17.4. TIMER Connections	248
17.5. TIMER TOP Value Update Functionality	248
17.6. TIMER Quadrature Encoded Inputs	249
17.7. TIMER Quadrature Decoder Configuration	249
17.9. TIMER X2 Decoding Mode	250
17.10. TIMER Input Pin Logic	250
17.11. TIMER Input Capture Buffer Functionality	251
17.12. TIMER Output Compare/PWM Buffer Functionality	252
17.13. TIMER Input Capture	252
17.14. TIMER Period and/or Pulse width Capture	253
17.15. TIMER Block Diagram Showing Comparison Functionality	253
17.16. TIMER Output Logic	254
17.16. TIMER Output Logic	254
17.18. TIMER Up-count PWM Generation	254
17.19. TIMER CC out in 2x mode	255
17.20. TIMER Up/Down-count PWM Generation	256
17.21. TIMER CC out in 2x mode	256
18.1. RTC Overview	272
19.1. LETIMER Overview	281
19.2. LETIMER State Machine for Free-running Mode	283
19.3. LETIMER One-shot Repeat State Machine	284
19.4. LETIMER Buffered Repeat State Machine	
19.5. LETIMER Double Repeat State Machine	286
19.6. LETIMER Simple Waveforms Output	288
19.7. LETIMER Repeated Counting	288
19.8. LETIMER Dual Output	200
19.10. LETIMER Continuous Operation	
19.11. LETIMER LETIMERn_CNT Not Initialized to 0	290
20.1. PCNT Overview	303
20.2. PCNT Quadrature Coding	304
20.3. PCNT Direction Change Interrupt (DIRCNG) Generation	307
21.1. LESENSE block diagram	318
21.1. LESENSE block diagram 21.2. Scan sequence	320
21.3. Timing diagram, short excitation	320
21.4. Pin sequencing	322
21.5. Scan result and interrupt generation	323
21.6. Sensor scan and decode sequence	323
21.7. Decoder state transition evaluation	324
21.8. Decoder hysteresis	325
21.9. Circular result buffer	326
21.10. Capacitive sense setup	328
21.11. LC sensor setup	328
21.12. LC sensor oscillations	329
21.13. FSM example 1	329
22.1. ACMP Overview	
22.2. 20 mV Hysteresis Selected	
22.3. Capacitive Sensing Set-up	
23.2. VCMP 20 mV Hysteresis Enabled	
24.1. ADC Overview	384
24.3. ADC RC Input Filter Configuration	
24.4. ADC Bias Programming	387
24.5. ADC Conversion Tailgating	
25.1. DAC Overview	406
25.2. DAC Bias Programming	408
the state of the s	
26.2. OPAMP Overview	
26.4. Inverting input PGA Overview	430
26.6. Cascaded Inverting PGA Overview	431
26.7. Cascaded Non-inverting PGA Overview	
26.8. Two Op-amp Differential Amplifier Overview	
26.10. Dual Buffer ADC Driver Overview	434
27.1. AES Key and Data Definitions	436

27.2. AES Data and Key Orientation as Defined in the Advanced Encryption Standard	436
27.3. AES Data and Key Register Operation	437
27.3. AES Data and Key Register Operation	449
28.2. Tristated Output with Optional Pull-up or Pull-down	450
28.3. Push-Pull Configuration	451
28.4. Open-drain	451
28.5. EM4 Wake-up Logic	452
28.6. Pin n Interrupt Generation	
29.1. LCD Block Diagram	473
29.2. LCD Low-power Waveform for LCD_COM0 in Quadruples Multiplex Mode, 1/3 Bias	475
29.3. LCD Normal Waveform for LCD_COM0 in Quadruples Multiplex Mode, 1/3 Bias	475
29.4. LCD Static Bias and Multiplexing - LCD_COM0	475
29.5 LCD 1/2 Rigs and Duploy Multiploying LCD COM0	476
29.5. LCD 1/2 Bias and Duplex Multiplexing - LCD_COM0	476
29.7. LCD 1/2 Bias and Duplex Multiplexing - LCD_SEG0	470
29.8. LCD 1/2 Bias and Duplex Multiplexing - LCD_SEG0 Connection	470
29.8. LCD 1/2 Bias and Duplex Multiplexing - LCD_SEGU Connection	4/0
29.9. LCD 1/2 Bias and Duplex Multiplexing - LCD_SEG0-LCD_COM0	4//
29.10. LCD 1/2 Bias and Duplex Multiplexing - LCD_SEG0-LCD_COM1	4//
29.11. LCD 1/3 Bias and Duplex Multiplexing - LCD_COM0	4//
29.12. LCD 1/3 Bias and Duplex Multiplexing - LCD_COM1	477
29.13. LCD 1/3 Bias and Duplex Multiplexing - LCD_SEG0	478
29.14. LCD 1/3 Bias and Duplex Multiplexing - LCD_SEG0 Connection	478
29.15. LCD 1/3 Bias and Duplex Multiplexing - LCD_SEG0-LCD_COM0	478
29.16. LCD 1/3 Bias and Duplex Multiplexing - LCD_SEG0-LCD_COM1	479
29.17. LCD 1/2 Bias and Triplex Multiplexing - LCD COM0	479
29.18. LCD 1/2 Bias and Triplex Multiplexing - LCD_COM1	479
29.19. LCD 1/2 Bias and Triplex Multiplexing - LCD_COM2	479
29.20. LCD 1/2 Bias and Triplex Multiplexing - LCD_SEG0	480
29.21. LCD 1/2 Bias and Triplex Multiplexing - LCD_SEG0 Connection	480
29.22. LCD 1/2 Bias and Triplex Multiplexing - LCD SEG0-LCD COM0	480
29.23. LCD 1/2 Bias and Triplex Multiplexing - LCD_SEG0-LCD_COM1	480
29.24. LCD 1/2 Bias and Triplex Multiplexing - LCD SEG0-LCD COM2	481
29.25. LCD 1/3 Bias and Triplex Multiplexing - LCD_COM0	481
29.26. LCD 1/3 Bias and Triplex Multiplexing - LCD_COM1	481
29.27. LCD 1/3 Bias and Triplex Multiplexing - LCD_COM2	481
29.28. LCD 1/3 Bias and Triplex Multiplexing - LCD_SEG0	482
29.29. LCD 1/3 Bias and Triplex Multiplexing - LCD_SEG0 Connection	482
29.30. LCD 1/3 Bias and Triplex Multiplexing - LCD_SEG0-LCD_COM0	482
29.31. LCD 1/3 Bias and Triplex Multiplexing - LCD_SEG0-LCD_COM1	482
29.32. LCD 1/3 Bias and Triplex Multiplexing - LCD_SEG0-LCD_COM2	483
29.33. LCD 1/3 Bias and Quadruplex Multiplexing - LCD_COM0	403
29.34. LCD 1/3 Bias and Quadruplex Multiplexing - LCD_COM1	403
29.35. LCD 1/3 Bias and Quadruplex Multiplexing - LCD_COM2	400
29.36. LCD 1/3 Bias and Quadruplex Multiplexing - LCD_COM2	403
29.30. LCD 1/3 Bias and Quadruplex Multiplexing - LCD_COMS	404
29.37. LCD 1/3 Bias and Quadruplex Multiplexing - LCD_SEG0	404
29.38. LCD 1/3 Bias and Quadruplex Multiplexing - LCD_SEG0 Connection	484
29.39. LCD 1/3 Bias and Quadruplex Multiplexing - LCD_SEG0-LCD_COM0	484
29.40. LCD 1/3 Bias and Quadruplex Multiplexing - LCD_SEG0-LCD_COM1	485
29.41. LCD 1/3 Bias and Quadruplex Multiplexing - LCD_SEG0-LCD_COM2	485
29.42. LCD 1/3 Bias and Quadruplex Multiplexing- LCD_SEG0-LCD_COM3	485
29.43. LCD Clock System in LCD Driver	
20.44 LCD Block Diagram of the Animation Circuit	402

List of Tables

2.1. Register Access Types	3
3.1. Energy Mode Description	8
3.2. EFM32TG Microcontroller Family	
4.1. Interrupt Request Lines (IRQ)	. 12
5.1. Memory System Core Peripherals	. 15
5.2. Memory System Low Energy Peripherals	16
5.3. Memory System Peripherals	. 17
5.4. Device Information Table	. 21
7.1. MSC Flash Memory Mapping	. 29
7.2. Lock Bits Page Structure	. 29
7.3. Revision Number Interpretation	30
8.1. AHB bus transfer arbitration interval	46
8.2. DMA channel priority	46
8.3. DMA cycle types	
8.4. channel_cfg for a primary data structure, in memory scatter-gather mode	. 1 0
8.5. channel_cfg for a primary data structure, in peripheral scatter-gather mode	JI
8.6. Address bit settings for the channel control data structure	. 55
6.6. Address bit settings for the chaining control data structure	. 50
8.7. src_data_end_ptr bit assignments	. 5/
8.8. dst_data_end_ptr bit assignments	. 58
8.9. channel_cfg bit assignments	. 58
8.10. DMA cycle of six words using a word increment	. 61
8.11. DMA cycle of 12 bytes using a halfword increment	. 62
9.1. RMU Reset Cause Register Interpretation	. 82
10.1. EMU Energy Mode Overview	. 89
10.2. EMU Entering a Low Energy Mode	. 90
10.3. EMU Wakeup Triggers from Low Energy Modes	. 91
13.1. Reflex Producers	132
13.2. Reflex Consumers	133
14.1. I ² C Reserved I ² C Addresses	143
14.2. I ² C Clock Modes	145
14.3. I ² C Interactions in Prioritized Order	148
14.4. I ² C Master Transmitter	150
14.5. I ² C Master Receiver	152
14.6. I ² C STATE Values	
14.7. I ² C Transmission Status	153
14.8. I ² C Slave Transmitter	
14.9. I ² Ç - Slave Receiver	
14.10. I ² C Bus Error Response	175
15.1. USART Asynchronous vs. Synchronous wiode	1/5
15.2. USART Pin Usage	1/5
15.3. USART Data Bits	
15.4. USART Stop Bits	
15.5. USART Parity Bits	
15.6. USART Oversampling	177
15.7. USART Baud Rates @ 4MHz Peripheral Clock	178
15.8. USART SPI Modes	190
15.9. USART I2S Modes	192
15.10. USART IrDA Pulse Widths	197
16.1. LEUART Parity Bit	220
	221
17.1. TIMER Counter Response in X2 Decoding Mode	250
17.2. TIMER Counter Response in X4 Decoding Mode	250
17.3. TIMER Events	
	273
19.1. LETIMER Repeat Modes	_
	305
	319
	321
	330
22.1. Bias Configuration	
23.1. Bias Configuration	
	389
	389
24.4. ADC Results Representation	
	391
26.1. General Opamp Mode Configuration	
26.2. Voltage Follower Unity Gain Configuration	
26.3. Inverting input PGA Configuration	400

26.4. Non-inverting PGA Configuration	431
26.5. Cascaded Inverting PGA Configuration	
26.6. Cascaded Non-inverting PGA Configuration	
26.7. Two Opamp Differential Amplifier Configuration	
26.8. Three Op-amp Differential Amplifier Configuration	434
26.9. Dual Buffer ADC Driver Configuration	434
28.1. Pin Configuration	449
28.2. EM4 WU Register bits to pin mapping	452
29.1. LCD Mux Settings	
29.2. LCD BIAS Settings	474
29.3. LCD Wave Settings	475
29.4. LCD Contrast	486
29.5. LCD Contrast Function	486
29.6. LCD Principle of Contrast Adjustment for Different Bias Settings.	487
29.7. LCD V _{LCD}	
29.8. LCD V _{BOOST} Frequency	
29.9. LCD Framerate Conversion Table	489
29.10. LCD Update Data Control (UDCTRL) Bits	489
29.11. FCPRESC	
29.12. LCD Animation Shift Register	492
29.13. LCD Animation Pattern	
29.14. LCD Animation Example	492
A.1. Abbreviations	508

List of Examples

8.1. DMA Transfer	. 63
15.1. USART Multi-processor Mode Example	187
19.1. LETIMER Triggered Output Generation	289
19.2. LETIMER Continuous Output Generation	290
19.3. LETIMER PWM Output	291
19.4. LETIMER PWM Output	291
27.1. AES Cipher Block Chaining	438
28.1. Interrupt Example	454
29.1. LCD Event Frequency Example	490
29.2. LCD Animation Enable Example	493
29.3. LCD Animation Dependence Example	

List of Equations

5.1. Memory SRAM Area Set/Clear Bit	14
5.2. Memory Peripheral Area Bit Modification	. 15
5.3. Memory Wait Cycles with Clock Equal or Faster than the HFCORECLK	. 18
5.4. Memory Wait Cycles with Clock Slower than the CPU	18
12.1. WDOG Timeout Equation	126
14.1. I ² C Pull-up Resistor Equation	141
14.2. IC Maximum Transmission Rate	145
14.3. I ² C High and Low Cycles Equations	145
15.1. USART Baud Rate	
15.2. USART Desired Baud Rate	177
15.3. USART Synchronous Mode Bit Rate	189
15.4. USART Synchronous Mode Clock Division Factor	189
16.1. LEUART Baud Rate Equation	
16.2. LEUART CLKDIV Equation	221
16.3. LEUART Optimal Sampling Point	224
16.4. LEUART Actual Sampling Point	225
17.1. TIMER Rotational Position Equation	250
17.2. TIMER Up-count Frequency Generation Equation	254
17.3. TIMER Up-count PWM Resolution Equation	254
17.4. TIMER Up-count PWM Frequency Equation	255
17.5. TIMER Up-count Duty Cycle Equation	255
17.6. TIMER 2x PWM Resolution Equation	255
17.7. TIMER 2x Mode PWM Frequency Equation(Up-count)	255
17.8. TIMER 2x Mode Duty Cycle Equation	255
17.9. TIMER Up/Down-count PWM Resolution Equation	
17.10. TIMER Up/Down-count PWM Frequency Equation	256
17.11. TIMER Up/Down-count Duty Cycle Equation	
17.12. TIMER 2x PWM Resolution Equation	
17.13. TIMER 2x Mode PWM Frequency Equation(Up/Down-count)	257
17.14. TIMER 2x Mode Duty Cycle Equation	
18.1. RTC Frequency Equation	
19.1. LETIMER Clock Frequency	
20.1. Absolute position with hysteresis and even TOP value	
20.2. Absolute position with hysteresis and odd TOP value	
21.1. Scan frequency	
22.1. V _{DD} Scaled	366
23.1. VCMP V _{DD} Trigger Level	376
24.1. ADC Total Conversion Time (in ADC_CLK cycles) Per Output	384
24.2. ADC Temperature Measurement	
25.1. DAC Clock Prescaling	
25.2. DAC Single Ended Output Voltage	408
25.3. DAC Differential Output Voltage	
25.4. DAC Sine Generation	
29.1. LCD Framerate Calculation	
29.2. LCD Event Frequency Equation	490

Energy Micro AS Sandakerveien 118 P.O. Box 4633 Nydalen N-0405 Oslo Norway

www.energymicro.com