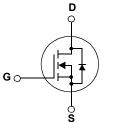


FDP036N10A N-Channel PowerTrench[®] MOSFET 100V, 176A, 3.6mΩ

Features

- $R_{DS(on)} = 3.2m\Omega$ (Typ.)@ $V_{GS} = 10V$, $I_D = 75A$
- · Fast Switching Speed
- Low Gate Charge
- High Performance Trench Technology for Extremely Low $R_{\text{DS}(\text{on})}$
- High Power and Current Handling Capability
- RoHS Compliant

Description


This N-Channel MOSFET is produced using Fairchild Semiconductor's advanced PowerTrench process that has been especially tailored to minimize the on-state resistance and yet maintain superior switching performance.

Application

• DC to DC Convertors / Synchronous Rectification

FDP Series

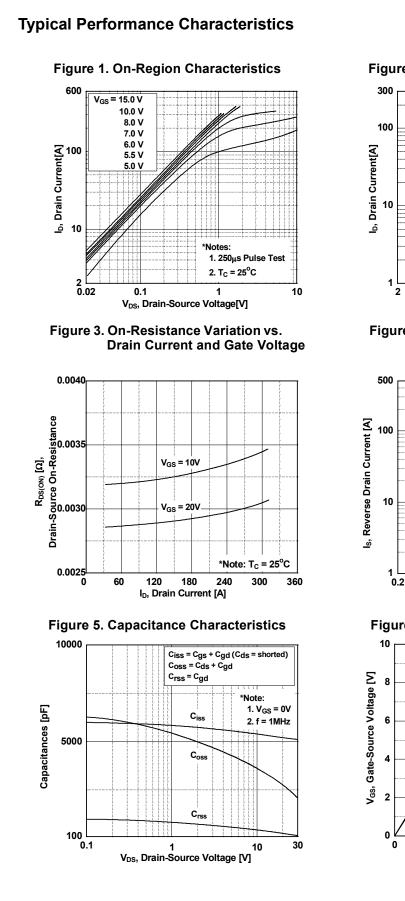
MOSFET Maximum Ratings T_C = 25°C unless otherwise noted

Symbol		Parameter		Ratings	Units	
V _{DSS}	Drain to Source Voltage	Source Voltage			V	
V _{GSS}	Gate to Source Voltage	Gate to Source Voltage		±20	V	
ID		- Continuous (T _C = 25 ^o C, Silicor	n Limited)	176*		
	Drain Current	- Continuous (T _C = 100°C, Silice	on Limited)	125*	Α	
		- Continuous (T _C = 25 ^o C, Packa	age Limited)	120		
I _{DM}	Drain Current	- Pulsed	(Note 1)	704	A	
E _{AS}	Single Pulsed Avalanche Energy (Note 2)		(Note 2)	558	mJ	
dv/dt	Peak Diode Recovery dv/dt (Note 3)		(Note 3)	6.0	V/ns	
P _D	Dewer Dissignation	$(T_{C} = 25^{\circ}C)$		227	W	
	Power Dissipation	- Derate above 25 ^o C		1.5	W/ºC	
T _J , T _{STG}	Operating and Storage Temperature Range			-55 to +175	°C	
TL	Maximum Lead Temperature for Soldering Purpose, 1/8" from Case for 5 Seconds			300	°C	

*Calculated continuous current based on maximum allowable junction temperature. Package limitation current is 120A.

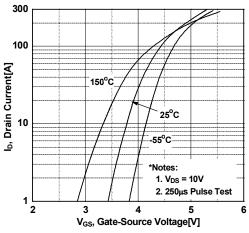
Thermal Characteristics

Symbol	Parameter Rati		Units
$R_{ extsf{ heta}JC}$	Thermal Resistance, Junction to Case	0.66	°C/W
R_{\thetaJA}	Thermal Resistance, Junction to Ambient	62.5	°C/W

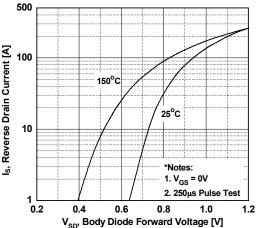

©2010 Fairchild Semiconductor Corporation FDP036N10A Rev. A1

1

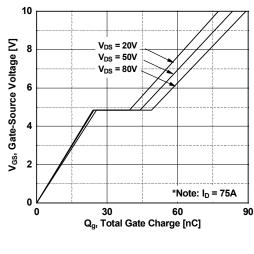
July 2010

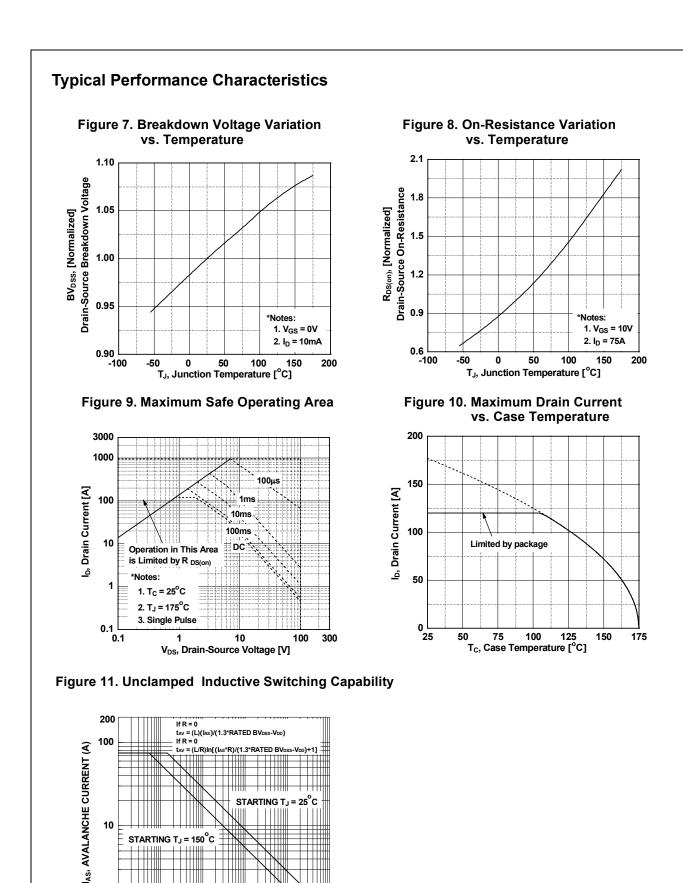

Device wi	Device Marking Devi		Packag	e	Reel Size	Тар	e Width	Quantity		у
		TO-220)	-		-		50		
Electrica	l Char	acteristics T _c =	25°C unless	otherwise	noted					
Symbol		Parameter		Test Conditions		Min.	Тур.	Max.	Units	
Off Charac	cteristic	s								
BV _{DSS}		Source Breakdown V	oltage	lp = 250	$A V_{00} = 0 V T_0$	= 25°C	100	-	-	V
ABV _{DSS}		own Voltage Temperati	0	$I_D = 250 \mu A, V_{GS} = 0V, T_C = 25^{\circ}C$					-	
ΔT_{J}	Coefficie			$I_{\rm D} = 250$	uA, Referenced to	25°C	-	0.07	-	V/°C
1	Zero Gate Voltage Drain Current		ont	V _{DS} = 80V, V _{GS} = 0V		-	-	1		
DSS			ent	V _{DS} = 80)V, T _C = 150 ^o C		-	-	500	μA
GSS	Gate to	Body Leakage Curren	ıt	$V_{GS} = \pm 2$	20V, V _{DS} = 0V		-	-	±100	nA
On Charac	teristic	S								
V _{GS(th)}	1	nreshold Voltage		$V_{CS} = V$	_{DS} , I _D = 250μA		2.0	3.0	4.0	V
R _{DS(on)}		rain to Source On Res	sistance		DV, I _D = 75A		-	3.2	3.6	mΩ
9 _{FS}		d Transconductance)V, I _D = 75A	(Note 4)	-	167	-	S
	haracte	rictice		00						
	Amic Characteristics						5485	7295	۳E	
C _{iss}	-	Capacitance				-	2430	3230	pF pF	
C _{oss}		e Transfer Capacitance		f = 1MH:	MHz		-	2430	3230	pF pF
C _{rss}			;				-	89	116	nC
Q _{g(tot)}		ate Charge at 10V Source Gate Charge					-	24	110	nC
Q _{gs}		harge Threshold to Pla	toou		V _{DS} = 80V, I _D = 75A V _{GS} = 10V		-	8	-	nC
Q _{gs2}		\$	leau	VGS - 10V		-	25	-	nC	
Q _{gd}		Drain "Miller" Charge					-	25	-	ne
Switching				1					1	
d(on)		n Delay Time		$V_{DD} = 50V, I_D = 75A$ 			-	22	54	ns
t _r		n Rise Time				-	54	118	ns	
d(off)		f Delay Time				-	37	84	ns	
f		f Fall Time				-	11	32	ns	
ESR	Equivale	ent Series Resistance	(G-S)			-	1.2	-	Ω	
Drain-Sou	rce Dioc	de Characteristic	S							
s	Maximu	m Continuous Drain to	Source Diode	de Forward Current		-	-	176	Α	
SM	Maximu	m Pulsed Drain to Sou	rce Diode For	orward Current		-	-	704	Α	
V _{SD}	Drain to	Source Diode Forward	d Voltage	$V_{GS} = 0$	/, I _{SD} = 75A		-	-	1.25	V
		Recovery Time			/, I _{SD} = 75A		-	72	-	ns
n 2 _{rr}	Reverse	se Recovery Charge		dI _F /dt = 100A/μs		-	129	-	nC	

FDP036N10A Rev. A1



FDP036N10A Rev. A1

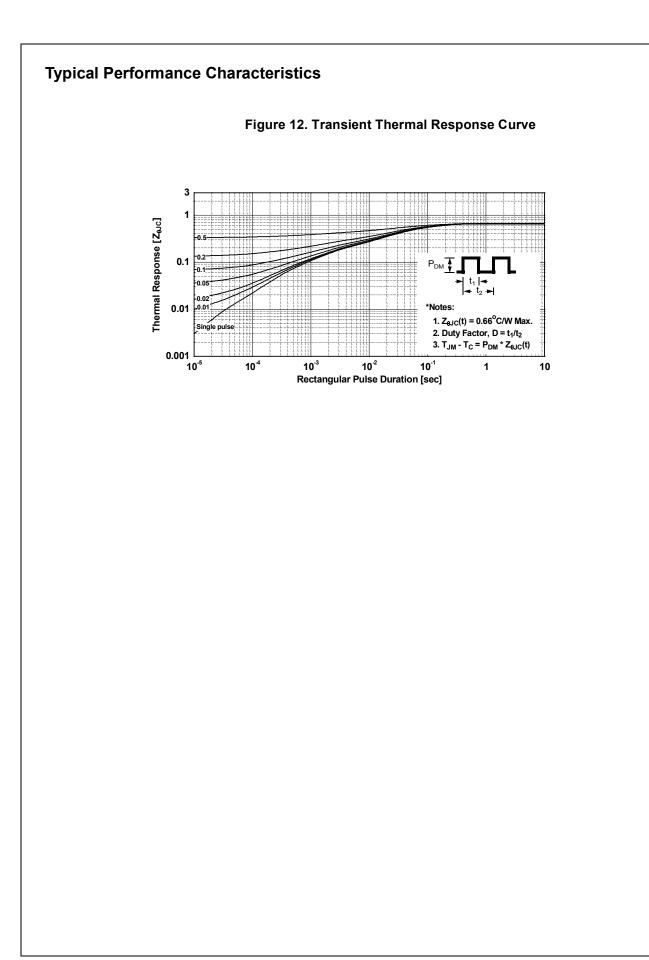

Figure 2. Transfer Characteristics

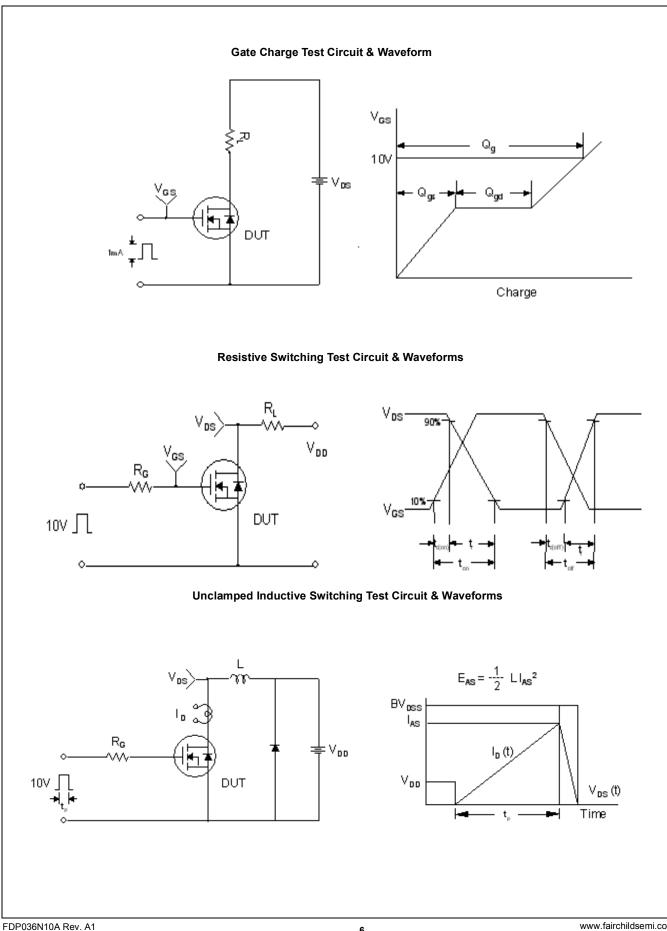


FDP036N10A N-Channel PowerTrench[®] MOSFET

FDP036N10A Rev. A1

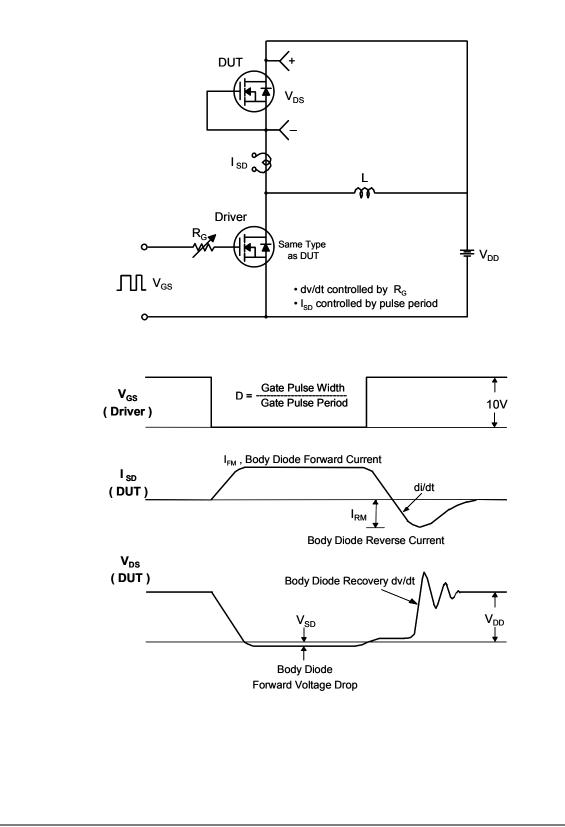
1 └─ 0.01

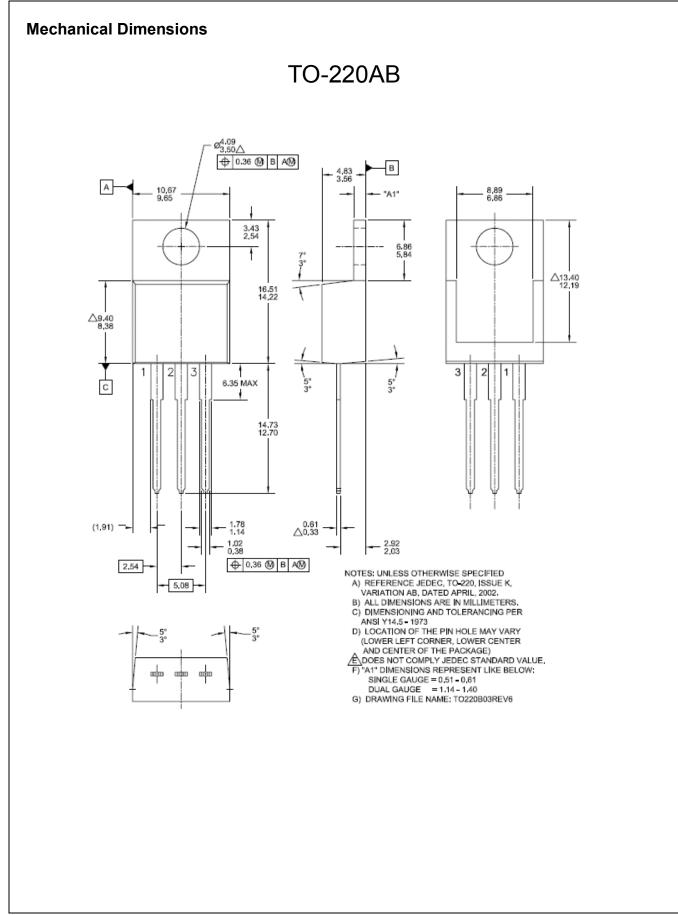

0.1


1 t_{AV}, TIME IN AVALANCHE (ms)

10

100


1000


FDP036N10A N-Channel PowerTrench[®] MOSFET

Peak Diode Recovery dv/dt Test Circuit & Waveforms

FDP036N10A Rev. A1

FDP036N10A N-Channel PowerTrench[®] MOSFET

FDP036N10A Rev. A1

SEMICONDUCTOR

TRADEMARKS The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks

intended to be an exhaustive list of a	il such trademarks.		
AccuPower TM Auto-SPM TM Build it Now TM CorePOWER TM CorePOWER TM COREPOWER TM CORECTION CORECTION COLLENCE CONSTRUCTION CUTTING CUTTI	F-PFS™ FRFET® Global Power Resource SM Green FPS™ e-Series™ Green FPS™ e-Series™ GTO™ IntelliMAX™ ISOPLANAR™ MegaBuck™ MICROCOUPLER™ MicroPak™ MicroPak™ MicroPak™ MicroPak™ MicroPak™ MicroPak™ Motion-SPM™ OptiHiT™ OPTOLOGIC® OPTOPLANAR®	Power-SPM™ PowerTrench® PowerXS™ Programmable Active Droop™ QET® QS™ Quiet Series™ RapidConfigure™ T T Saving our world, 1mW/W/kW at a time™ SignalWise™ SmartMax™ SMART START™ SignalWise™ SMART START™ SMART START™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-6 SuperSOT™-8 SupreMOS™ Sync-Lock™	ESERCE The Power Franchise® The Power Franchise® Pranchise TinyBoost™ TinyBuck™ TinyCalc™ TinyCogic® TINYOPTO™ TinyPower™ TinyPower™ TinyPWIre™ TriFault Detect™ TRUECURRENT™* µSerDes™ SerDes™ UHC® Ultra FRFET™ VCX™ VisualMax™ XS™

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCI AIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used here in:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS Definition of Terms

Product Status	Definition
Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.
	Formative / In Design First Production Full Production

FDP036N10A Rev. A1

9

[:]DP036N10A N-Channel PowerTrench[®] MOSFE[:]