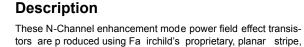
Downloaded from Elcodis.com electronic components distributor

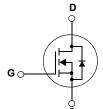
November 2009


UniFET™

FAIRCHILD SEMICONDUCTOR®

FDP10N50U / FDPF10N50UT N-Channel MOSFET 500V, 8A, 1.05 Ω

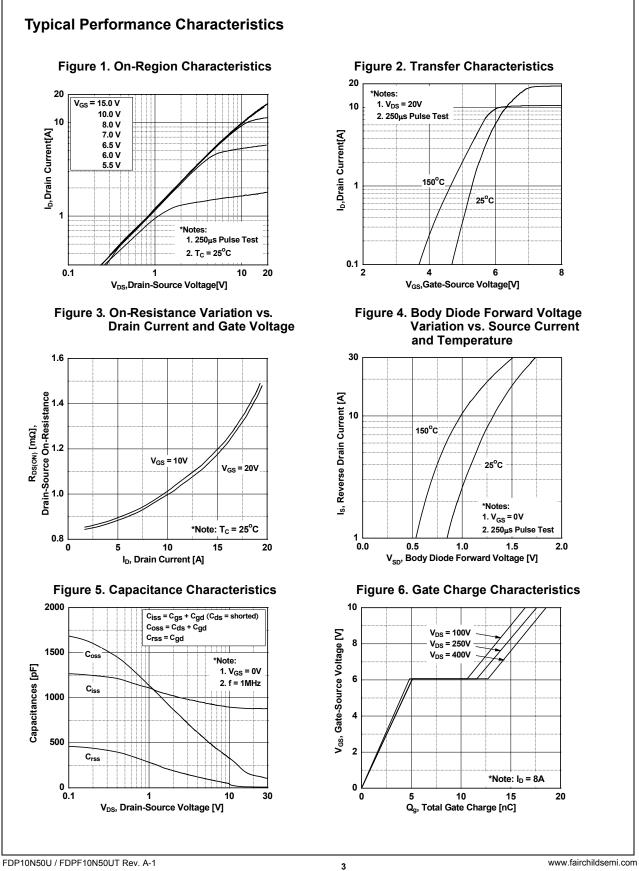
Features

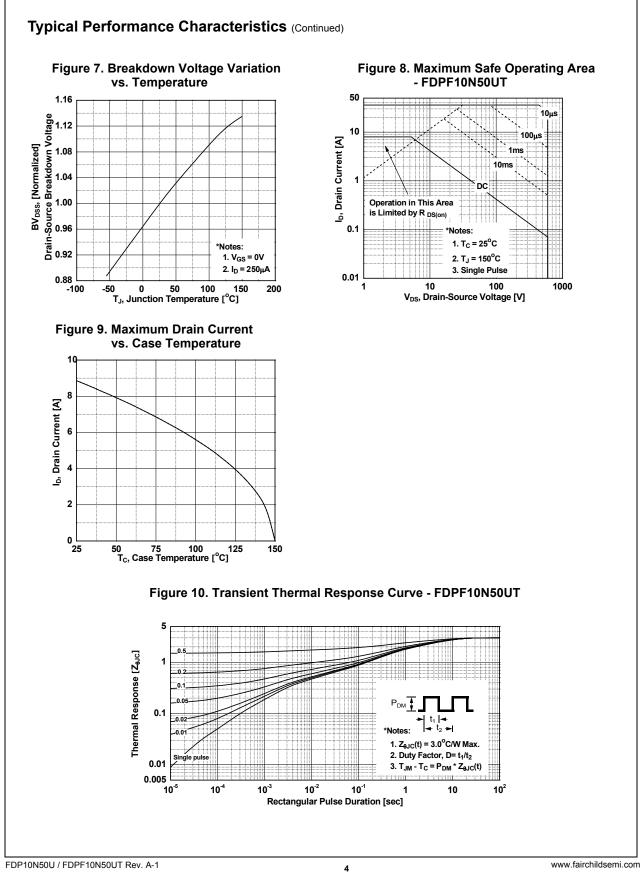

- + $R_{DS(on)}$ = 0.85 Ω (Typ.) @ V_{GS} = 10V, I_D = 4A
- Low Gate Charge (Typ. 18nC)
- Low C_{rss} (Typ. 9pF)
- Fast Switching
- 100% Avalanche Tested
- Improved dv/dt Capability
- RoHS Compliant

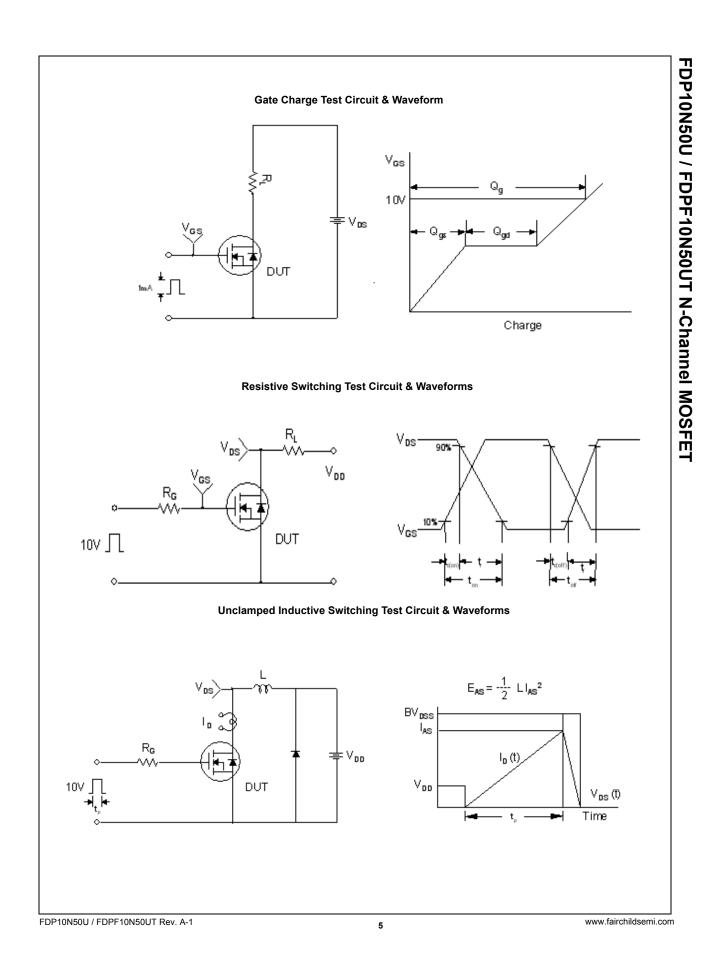
DMOS technology. This advance technology has been especially tailored to minimize on-state r esistance, provide superior switching per formance and wit bstand high energy pulse in the avalanche and

mize on-state r esistance, prov ide sup erior switching per formance, and wit hstand high energy pulse in the avalanche an d commutation mode. T hese devices are well suited for high efficient switching mode power supplies and active power factor correction.

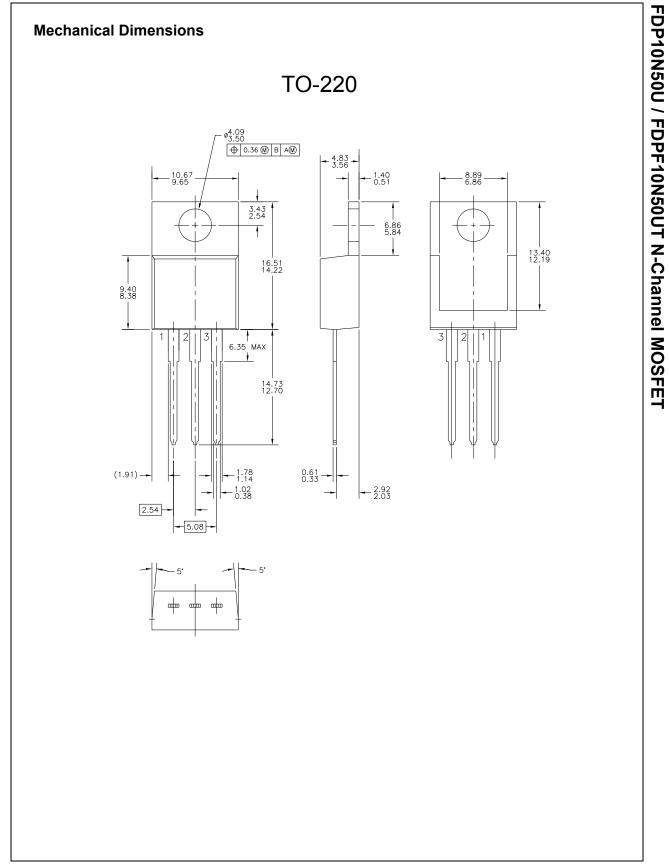
MOSFET Maximum Ratings T_C = 25°C unless otherwise noted*

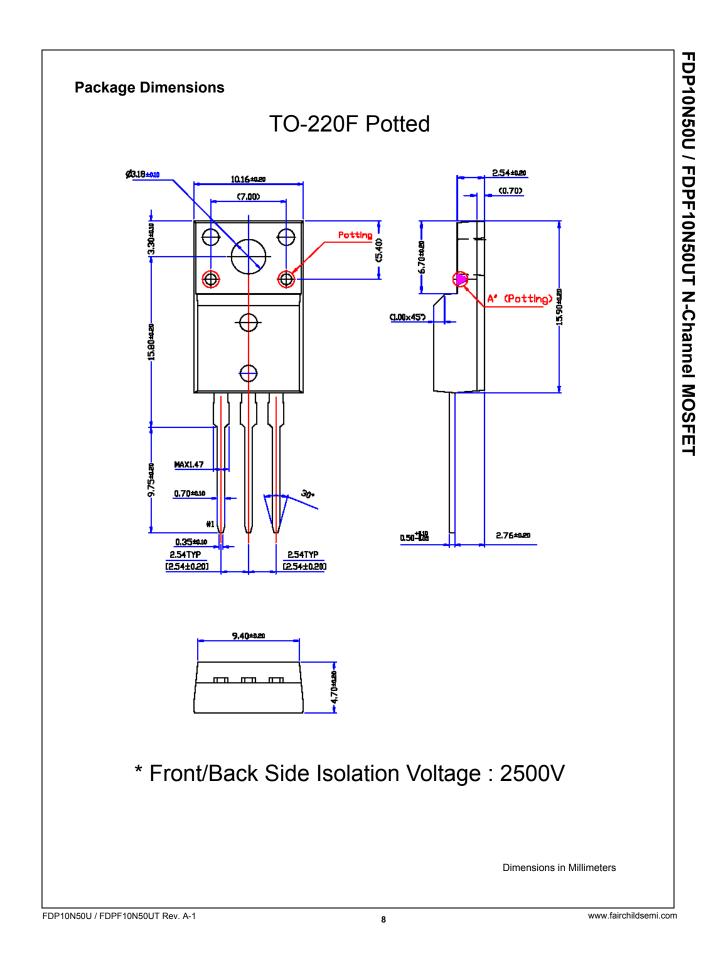

Symbol	Parameter			FDP10N50U	FDPF10N50UT	Units	
V _{DSS}	Drain to Source Voltage			500		V	
V _{GSS}	Gate to Source Voltage			±30		V	
ID	Drain Current	-Continuous ($T_C = 25^{\circ}C$)		8	8*		
		-Continuous (T _C = 100 ^o C)		4.8	4.8*	A	
I _{DM}	Drain Current	- Pulsed	(Note 1)	32	32*	Α	
E _{AS}	Single Pulsed Avalanche Energy		(Note 2)	320		mJ	
I _{AR}	Avalanche Current		(Note 1)	8		Α	
E _{AR}	Repetitive Avalanche Energy		(Note 1)	12.5		mJ	
dv/dt	Peak Diode Recovery dv/dt		(Note 3)	20		V/ns	
P _D	Power Dissipation	(T _C = 25 ^o C)		125	42	W	
		- Derate above 25°C		1.0	0.33	W/ºC	
T _J , T _{STG}	Operating and Storage Temperature Range		-55 to +150		°C		
TL	Maximum Lead Temperature for Soldering Purpose, 1/8" from Case for 5 Seconds			3	00	°C	


Thermal Characteristics


Symbol	Parameter	FDP10N50U	FDPF10N50UT	Units
$R_{ ext{ heta}JC}$	Thermal Resistance, Junction to Case	1.0	3.0	°C/W
R_{\thetaJA}	Thermal Resistance, Junction to Ambient	62.5	62.5	C/vv

©2008 Fairchild Semiconductor Corporation FDP10N50U / FDPF10N50UT Rev. A-1


Device Marking		Device Packag		ge Reel Size Tape		e Width		Quantity	
FDP10N50U FDP10N50U TO-22		FDP10N50U	TO-220	-		-		50	
		TO-220F	-		-		50		
Electrica	I Chai	racteristics							
Symbol		Parameter		Test Conditions		Min.	Тур.	Max.	Units
Off Charac	teristic	s							
BV _{DSS}	Drain t	o Source Breakdown V	oltage I _D = 2	250μA, V _{GS} = 0V, T _J =	= 25°C	500	-	-	V
$\frac{\Delta BV_{DSS}}{\Delta T_J}$	Breakd	Breakdown Voltage Temperature		$I_D = 250 \mu A$, Referenced to $25^{\circ}C$		-	0.6	-	V/ºC
Δij	Coemic	Jent	V _D e :	V _{DS} = 500V, V _{GS} = 0V		-	-	25	
I _{DSS}	Zero G	ate Voltage Drain Curre		= 400V, T _C = 125°C		-	-	250	μA
I _{GSS}	Gate to	Body Leakage Curren		$V_{GS} = \pm 30V, V_{DS} = 0V$			-	±100	nA
On Charac	teristic	s							
V _{GS(th)}	T	hreshold Voltage	Vce	V _{GS} = V _{DS} , I _D = 250μA			-	5.0	V
R _{DS(on)}		Drain to Source On Res		= 10V, I _D = 4A		3.0	0.85	1.05	Ω
9FS	Forwar	rd Transconductance		$V_{DS} = 20V, I_D = 4A \qquad (Note 4)$			8.5	-	S
Dynamic C	haract	orietice	·						
	1					-	850	1130	pF
C _{oss}		put Capacitance verse Transfer Capacitance		−V _{DS} = 25V, V _{GS} = 0V − f = 1MHz		-	115	155	pF
C _{rss}						-	9	13.5	pF
Q _g		I Gate Charge at 10V e to Source Gate Charge e to Drain "Miller" Charge		$V_{DS} = 400V, I_D = 10A$ $V_{GS} = 10V$ (Note 4, 5)		-	18	24	nC
Q _{gs}						-	5	-	nC
Q _{gd}	Gate to					-	7.5	-	nC
Switching	Charac	toriction			(
-	1	n Delay Time				_	15	40	ns
t _{d(on)} t _r		n Rise Time	Vnn	V _{DD} = 250V, I _D = 10A		_	38	86	ns
t _{d(off)}		Irn-Off Delay Time		$R_{G} = 25\Omega, V_{GS} = 10V$			46	102	ns
t _f		ff Fall Time		(Note 4, 5)			33	76	ns
Drein Cour		de Chevesterietie	•			ļ		Į	1
	-	de Characteristic	_	and Current				0	٨
I _S	Maximum Continuous Drain to Source Dioo Maximum Pulsed Drain to Source Diode Fo					-	-	8 32	A
I _{SM} V _{SD}		Source Diode Forward				-	-	1.6	V
<u>vs</u> t _{rr}		e Recovery Time		$\begin{array}{c c} tage & V_{GS} = 0V, \ I_{SD} = 8A \\ \hline & V_{GS} = 0V, \ I_{SD} = 8A \\ \hline & dI_{F}/dt = 100A/\mu s & (Note 4) \end{array}$		-	44	-	ns
Q _{rr}		e Recovery Charge				-	45	-	nC
2: L = 10mH, I _{AS} : 3: I _{SD} ≤ 8A, di/dt 4: Pulse Test: Pul	= 8A, V _{DD} = ≤ 200A/μs, \ lse width ≤ 3	dth limited by maximum junctio 50V, R_G = 25 Ω , Starting T_J = 2 $f_{DD} \leq BV_{DSS}$, Starting T_J = 25° Odµs, Duty Cycle $\leq 2\%$ Operating Temperature Typica	25°C C						



7

FDP10N50U / FDPF10N50UT Rev. A-1

www.fairchildsemi.com

SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AccuPower™	FPS™	PowerTrench [®]	The Power Franchise [®]
Auto-SPM™	F-PFS™	PowerXS™	
Build it Now™	FRFET®	Programmable Active Droop™	puwer [®]
CorePLUS™	Global Power Resource SM	QFET®	franchise
CorePOWER™	Green FPS™	QS™	TinyBoost™
CROSSVOLT™	Green FPS™ e-Series™	Quiet Series™	TinyBuck™
CTL™	Gmax™	RapidConfigure™	TinyCalc™
Current Transfer Logic™	GTO™		TinyLogic®
EcoSPARK [®]	IntelliMAX™		TINYOPTO™
EfficentMax™	ISOPLANAR™	Saving our world, 1mW /W /kW at a time™	TinyPower™
EZSWITCH™*	MegaBuck™	SmartMax™	TinyPWM™
TM *	MICROCOUPLER™	SMART START™	TinyWire™
Eĩ	MicroFET™	SPM®	TriFault Detect™
R	MicroPak™	STEALTH™	TRUECURRENT™*
F	MillerDrive™	SuperFET™	
Fairchild [®]	MotionMax™	SuperSOT™-3	SerDes"
Fairchild Semiconductor®	Motion-SPM™	SuperSOT™-6	UHC®
FACT Quiet Series™	OPTOLOGIC®	SuperSOT™-8	Ultra FRFET™
FACT®	OPTOPLANAR®	SupreMOS™	UniFET™
FAST [®]	®	SyncFET™	VCX™
FastvCore™	()	Sync-Lock™	VisualMax™
FETBench™	PDP SPM™	SYSTEM ®*	XS™
FlashWriter [®] *	PDP SPM™ Power-SPM™	GENERAL	
	FUWEI-SFINI"	GENERAL	
*Trademarks of System General Corpora	ation, used under license by Fairchild	Semiconductor.	

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, O R DESI GN. FAIRCHILD DOES N OT ASSUME ANY LIABILITY AR ISING OUT OF THE APPL ICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use pr ovided in t he labe ling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in an y component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness

ANTI-COUNTERFEITING POLICY

DRODUCT STATUS DESINITIONS

Fairchild Semicon ductor Corpor ation's Ant i-Counterfeiting Poli cy. Fairchild's An ti-Counterfeiting Policy is also st ated on our external websit e, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will st and behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time withou notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

FDP10N50U / FDPF10N50UT Rev. A-1