Power MOSFET

–20 V, –2.1 A, μCool[™] Dual P–Channel, ESD, 1.6x1.6x0.55 mm UDFN Package

Features

- UDFN Package with Exposed Drain Pads for Excellent Thermal Conduction
- Low Profile UDFN 1.6x1.6x0.55 mm for Board Space Saving
- ESD Protected
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

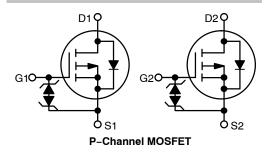
Applications

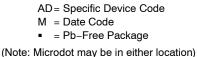
- High Side Load Switch
- PA Switch
- Optimized for Power Management Applications for Portable Products, such as Cell Phones, PMP, DSC, GPS, and others

MAXIMUM RATINGS (T_J = 25° C unless otherwise stated)

Parameter			Symbol	Value	Units
Drain-to-Source Voltage			V _{DSS}	-20	V
Gate-to-Source Voltage			V _{GS}	±8.0	V
Continuous Drain	Steady	$T_A = 25^{\circ}C$	I _D	-1.7	А
Current (Note 1)	State	$T_A = 85^{\circ}C$		-1.2	
	t ≤ 5 s	T _A = 25°C		-2.1	
Power Dissipa- tion (Note 1)	Steady State	T _A = 25°C	PD	0.8	W
	t ≤ 5 s	$T_A = 25^{\circ}C$		1.3	
Continuous Drain	Steady	T _A = 25°C	Ι _D	-1.3	А
Current (Note 2)	State	T _A = 85°C	1	-0.9	
Power Dissipation (Note 2)		$T_A = 25^{\circ}C$	PD	0.5	W
Pulsed Drain Current $tp = 10 \ \mu s$			I _{DM}	-8.0	А
Operating Junction and Storage Temperature			T _J , T _{STG}	-55 to 150	°C
Source Current (Body Diode) (Note 2)			I _S	-0.6	А
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)			ΤL	260	°C

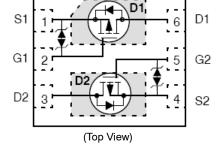
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.


- Surface Mounted on FR4 Board using 1 in sq pad size (Cu area = 1.127 in sq [2 oz] including traces).
- Surface-mounted on FR4 board using the minimum recommended pad size of 30 mm², 2 oz. Cu.


ON Semiconductor®

http://onsemi.com

MOSFET				
V _{(BR)DSS}	R _{DS(on)} MAX	I _D MAX		
	200 mΩ @ -4.5 V			
–20 V	290 mΩ @ –2.5 V	-2.1 A		
	390 mΩ @ −1.8 V	2.17		
	650 mΩ @ –1.5 V			



lote: Microdot may be in either location

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet.

Semiconductor Components Industries, LLC, 2010 September, 2010 – Rev. 1

THERMAL RESISTANCE RATINGS

Parameter		Max	Units
Junction-to-Ambient – Steady State (Note 3)	R _{θJA}	155	°C/W
Junction-to-Ambient $- t \le 5 s$ (Note 3)	R _{θJA}	100	
Junction-to-Ambient – Steady State min Pad (Note 4)	R _{θJA}	245	

ELECTRICAL CHARACTERISTICS (T₁ = 25°C unless otherwise specified)

Parameter	Symbol	Test Condition		Min	Тур	Max	Units
OFF CHARACTERISTICS							
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V_{GS} = 0 V, I_D = -250 μ A		-20			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J	$I_D = -250 \ \mu\text{A}$, ref to 25°C			-10		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	$V_{GS} = 0 V$, $T_J = 25^{\circ}C$				-1.0	μΑ
		$V_{\rm DS} = -20$ V	$T_J = 125^{\circ}C$			-10	
Gate-to-Source Leakage Current	I _{GSS}	V_{DS} = 0 V, V_{GS} = ±8.0 V				±10	μΑ
ON CHARACTERISTICS (Note 5)							
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS},$	I _D = -250 μA	-0.4		-1.0	V
Negative Threshold Temp. Coefficient	V _{GS(TH)} /T _J				2.8		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	$V_{GS} = -4.5 \text{ V}, \text{ I}_{D} = -2.0 \text{ A}$			160	200	mΩ
		V _{GS} = -2.5	V, I _D = -1.2 A		226	290	1
		V_{GS} = -1.8 V, I _D = -0.24 A V_{GS} = -1.5 V, I _D = -0.18 A			300	390	-
					390	650	
Forward Transconductance	9fs	V _{DS} = -10 V, I _D = -1.5 A			3.7		S
CHARGES, CAPACITANCES & GATE	RESISTANCE				-		•
Input Capacitance	C _{ISS}	V _{GS} = 0 V, f = 1 MHz, V _{DS} = -10 V			300		pF
Output Capacitance	C _{OSS}				34		
Reverse Transfer Capacitance	C _{RSS}				29		
Total Gate Charge	Q _{G(TOT)}	V _{GS} = -4.5 V, V _{DS} = -10 V; I _D = -1.7 A			4.2		nC
Threshold Gate Charge	Q _{G(TH)}				0.3		
Gate-to-Source Charge	Q _{GS}				0.7		
Gate-to-Drain Charge	Q _{GD}				1.1		
SWITCHING CHARACTERISTICS, VG	S = 4.5 V (Note 6)	_			-	-	
Turn-On Delay Time	t _{d(ON)}	V_{GS} = -4.5 V, V_{DD} = -10 V, I _D = -1.5 A, R _G = 1 Ω			17.4		ns
Rise Time	t _r				32.3		
Turn-Off Delay Time	t _{d(OFF)}				149		
Fall Time	t _f				74		1
DRAIN-SOURCE DIODE CHARACTER	RISTICS	-		-	-	-	-
Forward Diode Voltage	VSD	V _{GS} = 0 V,	$T_J = 25^{\circ}C$		0.8	1.2	V
-		$I_{\rm S} = -0.6 \rm{A}$	T _J = 125°C		0.68		1
Reverse Recovery Time	t _{RR}		<u> </u>		10.6		ns
Charge Time	t _a	$V_{GS} = 0 V$, dis/dt = 100 A/µs,			8.7		1
Disaharan Tirra	+				10		1

3. Surface-mounted on FR4 board using 1 in sq pad size (Cu area = 1.127 in sq [2 oz] including traces). 4. Surface-mounted on FR4 board using the minimum recommended pad size of 30 mm², 2 oz. Cu. 5. Pulse Test: pulse width \leq 300 μ s, duty cycle \leq 2%.

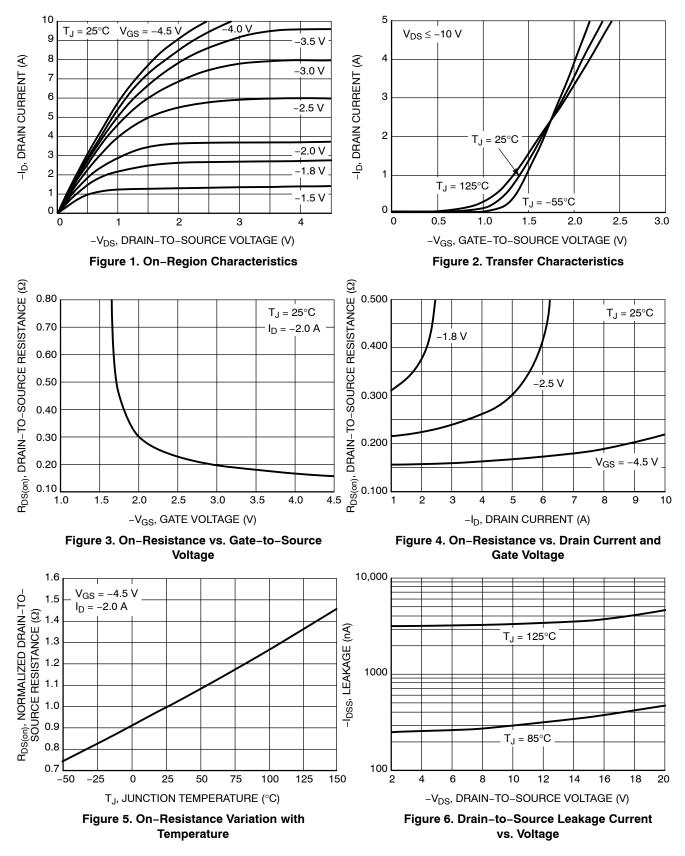
t_b

 $\mathsf{Q}_{\mathsf{R}\mathsf{R}}$

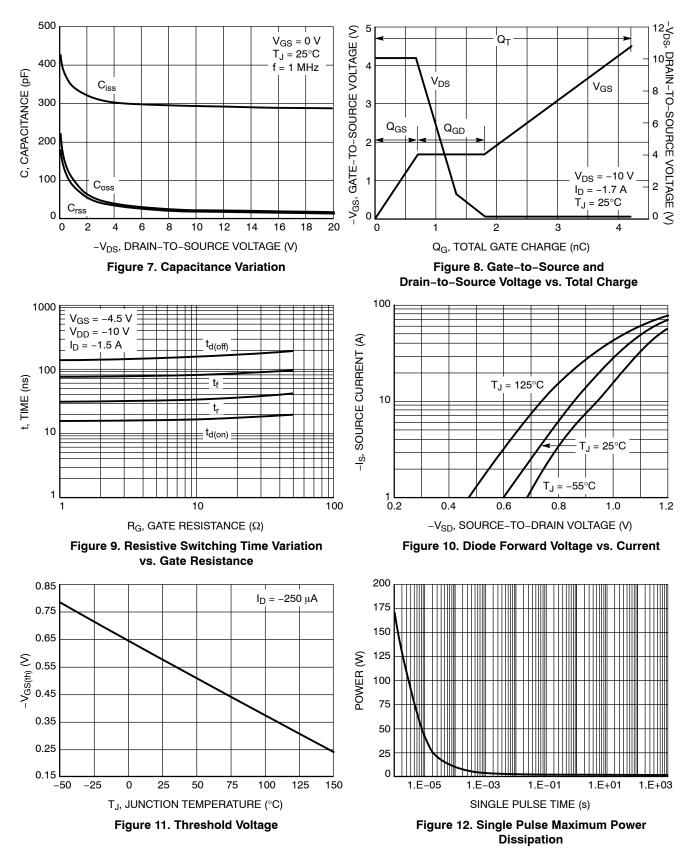
6. Switching characteristics are independent of operating junction temperatures.

 $I_{S} = -1.0 \text{ A}$

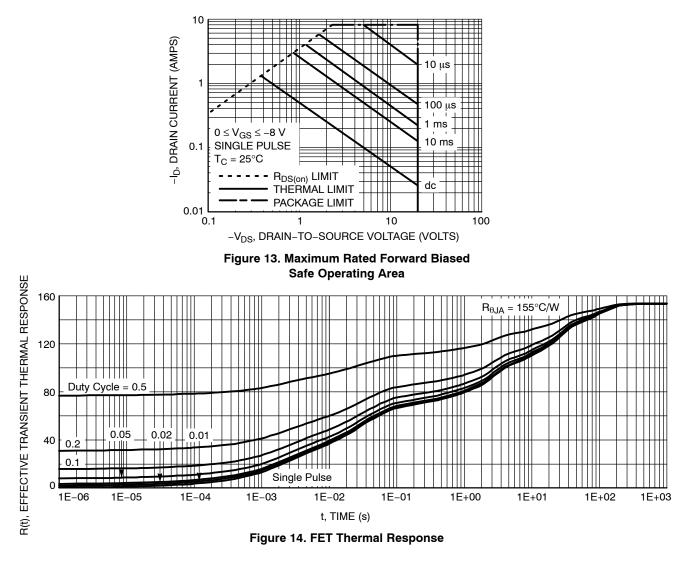
1.9


5.1

nC

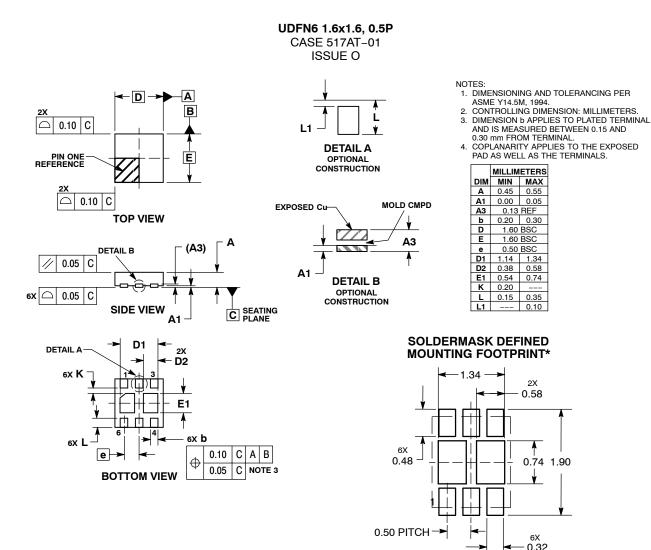

Discharge Time

Reverse Recovery Charge


TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS



DEVICE ORDERING INFORMATION

Device	Package	${\sf Shipping}^{\dagger}$
NTLUD3A260PZTAG	UDFN6 (Pb-Free)	3000 / Tape & Reel
NTLUD3A260PZTBG	UDFN6 (Pb-Free)	3000 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PACKAGE DIMENSIONS

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

DIMENSIONS: MILLIMETERS

μCool is a trademark of Semiconductor Components Industries, LLC (SCILLC).

ON Semiconductor and use registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other application in which the failure of the SCILLC product create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use personal and solut to ward in solit. C was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunit//Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

Phone: 421 33 790 2910

Phone: 81-3-5773-3850

Japan Customer Focus Center

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative