Snap Action Switch V

Miniature Snap Action Switch

- Compact snap action switch with low force operation
- Wide variation extends from microload to 5 A switching current, with shapes identical to those of the V-series Miniature Basic Snap Action Switch.
- Internal hinge lever mechanism assures outstanding contact reliability
- RoHS Compliant

메(ㅏ)

Ordering Information

Actuator	Terminal Style	OF max.	Rated current	
			5 A	0.1 A
Pin plunger	A	25 gf	VX-5-1A2	VX-01-1A2
		50 gf	VX-5-1A3	VX-01-1A3
	C2	25 gf	VX-5-1C22	VX-01-1C22
		50 gf	VX-5-1C23	VX-01-1C23
Short hinge lever	A	50 gf	VX-51-1A3	VX-011-1A3
	C2		VX-51-1C23	VX-011-1C23
Hinge lever	A	30 gf	VX-52-1A3	VX-012-1A3
	C2		VX-52-1C23	VX-012-1C23
Long hinge lever	A	20 gf	VX-53-1A3	VX-013-1A3
	C2		VX-53-1C23	VX-013-1C23
Simulated roller lever	A	30 gf	VX-54-1A3	VX-014-1A3
	C2		VX-54-1C23	VX-014-1C23
Short hinge roller lever	A	60 gf	VX-55-1A3	VX-015-1A3
	C2		VX-55-1C23	VX-015-1C23
	A	30 gf	VX-56-1A3	VX-016-1A3
	C2		VX-56-1C23	VX-016-1C23

Model Number Legend

1. Ratings
5: $\quad 5 \mathrm{~A}$ at 250 VAC
01: $\quad 0.1 \mathrm{~A}$ at 30 VDC
2. Actuator

None: Pin plunger
1: \quad Short hinge lever
Hinge lever
Long hinge lever
Simulated roller lever
Short hinge roller lever
Hinge roller lever
3. Contact Form

1: SPDT
2: SPST-NC
3: SPST-NO
4. Terminals

A: Solder terminals
C2: Quick-connect terminals (\#187)

Specifications

■Characteristics

Note: 1. Data shown are of initial value.
2. The dielectric strength shown is measured using a separator between the switch and metal mounting plate.
3. For the pin plunger models, the above values apply for use at the free position and total travel position. For lever models, they apply at the total travel position. Contact separation time is within 1 ms .

Ratings (reference values)

Type	Rated voltage	Resistive load			Lamp load		Inductive load	
		NC		NO	NC	NO	NC	NO
5 A	250 VAC	5			---		---	
	125 VAC	5			0.5		4	
	8 VDC	5			3		4	
	30 VDC	5			3		4	
	125 VDC	0.4			0.1		0.4	
	250 VDC	0.3			0.05		0.2	
0.1 A	125 VAC	0.1			---		---	
	8 VDC	0.1			---		---	
	30 VDC	0.1			---		---	

Note: 1. Inductive load has a power factor of 0.4 min . AC) and a time constant of 7 milliseconds max. (DC).
2. Lamp load has an inrush current of 10 times the steady-state current
3. The electrical rating applies under the following test conditions:

Ambient Temperature $=20 \pm 2^{\circ} \mathrm{C}$, Ambient Humidity $=65 \pm 5 \%$, Operating frequency $=30$ operations $/$ minute

Approved Standards

UL Recognized (File No. E41515)
CSA Certified (File No. LR21642)

Rated Voltage	VX-5	VX-01
125 VAC	5 A	0.1 A
250 VAC	5 A	---
30 VDC	---	0.1 A

EN61058-1 - - VDE approval (File No. 124761)

Rated Voltage	VX-5	VX-01
125 VAC	5 A	0.1 A
250 VAC	5 A	---

Testing conditions: 5E4 (50,000 operations), T105 $\left(0^{\circ} \mathrm{C}\right.$ to $\left.105^{\circ} \mathrm{C}\right)$

Contact Specifications

Item	VX-5	VX-01
Specification	Rivet	Crossbar
Material	Silver alloy	
0.5 mm		
Gap (standard value)		
Inrush current	NC: 15 A max. NO:	---
Minimum applicable load (see note)	160 mA at 5 VDC	1 mA at 5 VDC

Note: Minimum applicable loads are indicated by N standard reference values. This value represents the failure rate at a 60% (λ_{60}) reliability level (JIS C5003).
The equation $\lambda_{60}=0.5 \times 10^{-6}$ / operations indicates that a failure rate of $1 / 2,000,000$ operations can be expected at a reliability level of 60%

Engineering Data

\square Mechanical service life

VX-5

Electrical service life

Mounting

Panel Mounting
All switches may be panel mounted using M3 mounting screws with plane washers or spring washers to securely mount the switch. Tighten the screws to a torque of 0.39 to $0.59 \mathrm{~N} \cdot \mathrm{~m}$.

VX-01

Dimensions

Terminals

Note: 1. Unless otherwise specified, all units are in millimeters and a tolerance of $\pm 0.4 \mathrm{~mm}$ applies to all dimensions
2. The following illustrates the SPDT contact form
Solder terminals (A)

Dimensions and Operating Characteristics

Note: 1. Unless otherwise specified, all units are in millimeters and a tolerance of $\pm 0.4 \mathrm{~mm}$ applies to all dimensions
2. The following illustrations and dimensions are for solder terminal models. Refer to "Terminals" for models with quick-connect terminals (\#187).
3. The \square in the model number is for the terminal code. ($\mathrm{A}=$ Solder Terminal, $\mathrm{C} 2=\# 187$ quick-connect terminal)
4. The operating characteristics are for operation in the A direction(

Short Hinge Lever Models

Characteristics	VX-51-1 $\square \mathbf{3}$
OF max.	VX11-1 $\square \mathbf{3}$
RF min.	40 gf (reference value)
PT max.	1.6 mm
OT min.	0.8 mm
MD max.	0.5 mm
OP	$15.2 \pm 0.5 \mathrm{~mm}$

Note: The reference value applies for cases when the installation direction is such that the lever weight is not applied to the plunger

Hinge Lever Models

Characteristics	VX-52-1 $\square \mathbf{3} \quad$ VX-012-1 $\square \mathbf{3}$
OF max.	30 gf
RF min.	---
PT max.	4.0 mm
OT min.	1.6 mm
MD max.	0.8 mm
OP	$15.2 \pm 1.2 \mathrm{~mm}$

Note: 1. Unless otherwise specified, all units are in millimeters and a tolerance of $\pm 0.4 \mathrm{~mm}$ applies to all dimensions
2. The following illustrations and dimensions are for solder terminal models. Refer to "Terminals" for models with quick-connect terminals (\#187).
3. The \square in the model number is for the terminal code. ($\mathrm{A}=$ Solder Terminal, $\mathrm{C} 2=\# 187$ quick-connect terminal)
4. The operating characteristics are for operation in the A direction($\sqrt{ }$)

Long Hinge Lever Models

Simulated Roller Lever Models

Short Hinge Roller Lever Models

Hinge Roller Lever Models

Characteristics	VX-55-1 $\square \mathbf{3}$	VX-015-1 $\square \mathbf{3}$
OF max.	60 gf (reference value)	
RF min.	4 gf (reference value)	
PT max.	1.6 mm	
OT min.	0.8 mm	
MD max.	0.5 mm	
OP	$20.7 \pm 0.6 \mathrm{~mm}$	

Note: The reference value applies for cases when the installation direction is such that the lever weight is not applied to the plunger

Characteristics	VX-56-1 $\square \mathbf{3}$
VX-016-1 $\square \mathbf{3}$	
OF max.	30 gf
RF min.	---
PT max.	4.0 mm
OT min.	1.6 mm
MD max.	0.8 mm
OP	$20.7 \pm 1.2 \mathrm{~mm}$

Precautions

Correct Use

Mounting Direction

For a switch with an actuator, mount the switch in a direction where the actuator weight will not be applied to the switch.
Since the switch is designed for a small load, its resetting force is small. Therefore, resetting failure may occur if unnecessary load is applied to the switch.

Operation

Keep the operation control completely separate from the actuator of the switch, and push it down fully when starting operation. Do not displace the operating position of the actuator when machining.
Consult OMRON in advance if the operating speed is to be extremely slow, or if the pushbutton is to be set somewhere between the free position and operating position.
Mount pin pushbutton switches so that stroke of the pushbutton and the stroke of the operating control overlap on a vertical line. The stroke of the switch, after operation, should be set to 60-90\% that of standard OT (MIN operation).

Using Microloads

Using a model for ordinary loads to switch microloads may result in faulty operation. Instead, use the models that are designed for microloads and that operate in the following range;

However, even when using microload models within the operating range shown above, if inrush current or inductive voltage spikes occur when the contact is opened or closed, it may increase contact wear and so decrease the service life. Therefore, insert a contact protection circuit where necessary.

Cautions

Handling

Be careful not to drop the switch. Doing so may cause damage to the switch's internal components because it is designed for a small load.

Solder Terminal Connection

Quickly finish the soldering of the lead wire to its terminal. Use a soldering iron rated at 60 W and preferably complete the soldering within 5 seconds.
Excess wattage or prolonged heating can deteriorate the characteristics of the switch.

Insulation Distance

When mounting, make sure there is sufficient insulation distance between the switch and its mounting panel. If it is insufficient, install an insulation guard or separator. Always install an insulation guard or separator when mounting the microswitch on a metallic body. Contact your OMRON representative for information about insulation guards and separators.

Application Environment

Do not use the Switch in locations that are subject to toxic gas, silicon, excessive dust, excessive dirt, high temperatures, high humidity, sudden temperature changes, water splashes, or oil splashes.
Otherwise, damage resulting by faulty contact of the Switch contacts, corrosion, or other causes, or other functional faults may occur.
Depending on environmental conditions, the switch should be rechecked about 3 to 6 months after it has been assembled.

\qquad
\qquad

All sales are subject to Omron Electronic Components LLC standard terms and conditions of sale, which can be found at http://www.components.omron.com/components/web/webfiles.nsf/sales_terms.html

ALL DIMENSIONS SHOWN ARE IN MILLIMETERS.

To convert millimeters into inches, multiply by 0.03937 . To convert grams into ounces, multiply by 0.03527 .

OmROn

OMRON ELECTRONIC COMPONENTS LLC
55 E. Commerce Drive, Suite B
Schaumburg, IL 60173

847-882-2288

OMRON ON-LINE

Global - http://www.omron.com
USA - http://www.components.omron.com

