Reed Switches

			71	71	71	71	71	71	7	71	7	
Specifications												
			ORD213	ORD213S-1	ORD211	ORD219	ORD221	0RD2221	ORD228VL	ORD228S-1	0RD2220	Notes
Electrical Characteristics	Contact		1A	1A	1A	1A	1A(OFF SET)	1A(OFF SET)	1 A	1A	1A	
	Pull-in	[AT]	10~40	$10 \sim 40^{*}$	10~40	10~30	10~30	10~70	10~50	10~50*	08~40	
	Drop-out	[AT]	5 min	$5 \mathrm{~min}^{*}$	5 min	$5 \mathrm{~min}^{*}$	3 min	1				
	Contact resistance(Initial) [m]		200 max	200 max *	100max	100max	100max	100max	100max	100 max *	100max	2
	Breakdown voltage [DCV]		150 min	150 max	150 min	$200 \mathrm{~min}(\mathrm{P}$ I $\geqq 20)$	$200 \mathrm{~min}(\mathrm{P}$ I $\geqq 20)$	$200 \mathrm{~min}(\mathrm{P} \mathrm{I} \geqq 20)$	$200 \mathrm{~min}(\mathrm{Pl}$ ²0)	$200 \mathrm{~min}(\mathrm{P} \mid \geqq 20)$	200 min	3
	Insulation resistance [Ω]		$10^{\circ} \mathrm{min}$	$10^{\circ} \mathrm{min}$	$10^{\prime \prime} \mathrm{min}$	$10^{\circ} \mathrm{min}$	$10^{\circ} \mathrm{min}$	$10^{\circ} \mathrm{min}$	$10^{\prime \prime} \mathrm{min}$	$10^{\circ} \mathrm{min}$	$10^{\circ} \mathrm{min}$	4
	Electrostatic capacitance [pF]		0.4 max	0.4 max	$0.2 \max$	0.3 max	5					
	Contact rating [VA, W]		1.0	1.0	1.0	10	10	10	10	10	16	
	Maximum carry current [A]		0.3	0.3	0.3	1.0	1.0	1.0	1.0	1.0	0.7	6
	Maximum switching voltage [V]		DC24/AC24	DC24/AC24	DC24/AC24	DC100/AC100	DC 100/AC100	DC100/AC100	DC100/AC100	DC100/AC100	DC40/AC40	
	Maximum switching current [A]		DC0. 1	DC0.1	DC0.1	DC0.5	DC0.3	DC0.3	DC0.5	DC0.5	DC0.4	
Operating Characteristics	Operate time	[ms]	0.3 max	0.3 max	0.3 max	0.4 max	0.4 max	1.0 max	0.4 max	0.4 max	0.4 max	7
	Bounce time	[ms]	0.3 max	0.3 max	0.3 max	0.3 max	0.5 max	1.0max	0.3 max	0.3 max	0.3 max	8
	Release time	[ms]	0.05 max	9								
	Resonant frequency [Hz]		11000 ± 2000	11000 ± 2000	7500 ± 500	5900 ± 400	2750 ± 250	2750 ± 400	5000 ± 400	5000 ± 400	4400 ± 400	10
	Maximum operating frequency [Hz$]$		500	500	500	500	500	500	500	500	500	
Standard coil Type No.			8	8	8	6	6	6	6	6	6	
Contact material Rh: Rhodium Ir: Iridium			Rh									
Features			Super ultra-miniature	Super ultra-miniature	Ultra-miniature	Miniature highperformance	Miniature offset-type	$\begin{aligned} & \text { Miniature offset-type } \\ & \text { long reed } \\ & \hline \end{aligned}$	Miniature highperformance	$\begin{aligned} & \text { Miniature high- } \\ & \text { performance SMD } \end{aligned}$	Miniature wide difterential differential	

Environmental Characteristics

Table 2			
	Characteristics (Common to All Types)	Test Conditions	Remarks
Shock	Shall not misoperate with shock of $30 \mathrm{G}(11 \mathrm{msec})$ applied	MIL-STD-202G METHOD 213B-J	(a)
Vibration	Shall not misoperate with max. $20 \mathrm{G}(10-1000 \mathrm{~Hz})$	MLL-STD-202G METHOD 204D-D	(b)
Temperature range	Shall be operational in the range of -40 to $125^{\circ} \mathrm{C}$		(c)
Lead tensile strength	Shall withstand against 2 kg static load	MLL-STD-202G METHOD 211A	

$$
\begin{aligned}
& \begin{array}{l}
\text { (a) If a shock of more than } 30 G \text { is applied to a reed switch, the pull-in } \\
\text { value of the switch will be often caused to change from the standard }
\end{array} \\
& \text { specification. Therefore it is recommended not to use the reed switch } \\
& \text { which has been given such a shock. } \\
& \text { (b) If a vibration of more than } 1 \mathrm{KHz} \text { is applied to a reed switch, even a } \\
& \text { (c) In practice the reed switch can operate beyond the specified range. } \\
& \begin{array}{l}
\text { In case of magnet driving, however, some magnets show decrease } \\
\text { of magnetic flux even at the lowest temperature of the rang }
\end{array} \\
& \begin{array}{l}
\text { of magnetic flux even at the lowest temperature of the range } \\
\text { depending on their temperature characteristics. Therefore, it is }
\end{array} \\
& \text { recommended to consider the range as a general guide line. }
\end{aligned}
$$ to close due to its resonant frequency. ($10-1000 \mathrm{~Hz}$).

TIUL recognition number is E70063

Reed Switches

													71	
Specific	ations													
			ORD229	ORD2210	ORD2210V	ORD2211	ORD2212	ORD234	ORD9215	ORD9216	ORT551	ORD311	ORD312	Notes
Electrical Characteristics	Contact		1A	1 C	1A	1A								
	Pull-in	[AT]	20~60	15~60	20~60	20~60	15~45	15~50	10~50	10~50	10~30	10~30	10~30	
	Drop-out	[AT]	6 min	7 min	7 min	8 min	DO/P1>0.8(P) >20)	6 min	4 min	5 min	4 min	5 min	5 min	
	Contact resista	ce(Initial) $[\mathrm{m} \Omega$]	100max	1000max	100 max	100 max	100max	100max	100 max	100 max	100max	200 max	100 max	2
	Breakdown vo	ge [DCV]	$600 \mathrm{~min}(\mathrm{P} \mathrm{I} \geqq 35)$	$250 \mathrm{~min}(\mathrm{P} \mathrm{I} \geqq 20)$	1000 min	$200 \mathrm{~min}(\mathrm{P} \mid \geqq 20)$	$150 \mathrm{~min}(\mathrm{P} \mathrm{P}$ $\geqq 20)$	$250 \mathrm{~min}(\mathrm{P} \gg 20)$	150 min	150 min	$200 \mathrm{~min}(\mathrm{P} \gg 20)$	250 min	250 min	3
	Insulation resis	ance [Ω]	$10^{11} \mathrm{~min}$	$10^{10} \mathrm{~min}$	$10^{10} \mathrm{~min}$	$10^{\circ} \mathrm{min}$	4							
	Electrostatic c	acitance [pF]	0.5 max	0.5 max	0.5 max	0.3 max	0.5 max	0.5 max	0.3 max	0.3 max	1.5 max	0.4 max	0.3 max	5
	Contact rating	[VA,W]	DC50(W)/AC70(VA)	DC50(W)/AC70(VA)	100	50(12V-3.4WLamp)	10	10	10	10	3	10	30	
	Maximum carr	current [A]	2.5	2.5	2.5	2.5	0.5	2.0	1.0	1.0	0.5	1.0	1.0	6
	Maximum swit	ing voltage [V]	DC350/AC300	DC200/AC150	DC350/AC300	DC100/AC100	DC100/AC100	DC200/AC100	DC100/AC100	DC100/AC100	DC30/AC30	DC100/AC100	DC200/AC100	
	Maximum swit	ing current [A]	DC0.7/AC0.5	DC1.0/AC0.7	DC1.0	0.5 ln rush 3A	DC0.2	DC0.5	DC0.4	DC0.5	DC0. 2	DC0.5	DC0.5	
Operating Characteristics	Operate time	[ms]	0.6 max	0.6 max	0.6 max	0.6 max	0.4 max	0.5 max	0.4 max	0.4 max	1.0 max	0.3 max	0.4 max	7
	Bounce time	[ms]	0.5 max	0.5 max	0.5 max	0.4 max	1.0max	0.5 max	0.4 max	0.3 max	NO1.0,NC1.5max	0.3 max	0.3 max	8
	Release time	[ms]	0.05 max	0.5 max	0.05 max	0.05 max	9							
	Resonant freq	ncy [Hz]	2500 ± 250	2500 ± 250	2500 ± 250	4600 ± 500	3900 ± 500	2200 ± 300	3700 ± 300	5000 ± 400	6000 ± 4000	13000 ± 2000	5900 ± 400	10
	Maximum ope	ting frequency [Hz]	500	500	500	500	500	500	500	500	200	500	500	
Standard coil	Type No.		3	3	3	6	6	3	6	6	10	8	6	
Contact material Rh: Rhodium Ir: Iridium			Rh	Ir	「									
Features			High breakdown voltage	High power	Vacuum High power	Lamp load	Closed differential type, Low sound	Long life	General purpose miniature-type	General purpose miniature-type	$\begin{aligned} & \text { Ultra-miniature } \\ & \text { transfer } \end{aligned}$	Super ultraminiature long-life	$\begin{aligned} & \text { High-power } \\ & \text { long-life } \\ & \hline \end{aligned}$	

Installation of reed switches

An ordinary soldering iron can be used (at 250 to 300 degrees Celsius) on the lead, as they are processed with tin-plating. Please make sure that the soldering is performed at least 1 mm
away from the edge of the glass. Please try to minimize the amount of processing time, as prolonged application of heat by the soldering iron may cause abnormalities at the lead seals. When installing on a printed circuit board, either lift the reed switch above the board surface, as shown in Fig.5, or drill holes on the board to ensure that the glass on the reed switch does

Dropping reed switches
It is absolutely imperative that reed switches are not dropped.
Dropping a reed switch onto a hard surface, from a height of 30 cm or more, can result in the fatal deterioration of its features, so please be careful when handling reed switches. Further care should also be taken when machine processing the reed switches, as an impact arising
from such processes, can cause harm as well.

