Slotted Optical Switch OPB660N, OPB660T

\qquad

Features:

- Non-contact switching
- Printed circuit board mounting
- Enhanced signal to noise ratio
- Gap $0.125^{\prime \prime}$ (3.18 mm) wide and $0.345^{\prime \prime}$ (8.76 mm) deep slot
- Emitter Aperture $0.05^{\prime \prime} \times 0.06$ " (1.27mm X 1.52mm),

Sensor Aperture 0.01" X 0.06" (0.25mm X 1.52mm)

Description:

Each OPB660 slotted optical switch consists of an infrared emitting diode and a NPN silicon phototransistor, combined with an enhanced low current roll-off that improves contrast ratio and provides immunity to background irradiance. Housings are made from an opaque grade of injection-molded plastic to minimize sensitivity to both visible and near-infrared light.

Custom electrical, wire, cabling and PCBoard mounted designs are available. Contact your local representative or OPTEK for more information.

Applications:

- Non-contact transmissive object sensor
- Assembly line automation
- Machine automation
- Machine safety

Part Number	LED Peak Wavelength	Sensor	Slot Width / Depth	Aperture Emitter/Sensor	Lead Length / Spacing
OPB660N	890 nm	Rbe Transistor	0.125" / 0.345"	0.05" / 0.01"	$\begin{gathered} 0.100 \text { " } 0.320 " \\ \text { (MIN) } \end{gathered}$
OPB660T					

- End of travel sensor
- Door sensor

Pin \#	LED	Pin \#	Transistor
1	Anode	3	Collector
2	Cathode	4	Emitter

[MILLIMETERS]
DIMENSIONS ARE IN:
INCHES

RoHS
OPTEK reserves the right to make changes at any time in order to improve design and to supply the best product possible.

Slotted Optical Switch OPB660N, OPB660T

Absolute Maximum Ratings ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Storage \& Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$
Lead Soldering Temperature [1/16 inch $(1.6 \mathrm{~mm})$ from the case for 5 sec. with soldering iron] ${ }^{(1)}$	$260^{\circ} \mathrm{C}$

Forward DC Current	50 mA
Peak Forward Current $(1 \mu$ s pulse width, 300 pps$)$	1 A
Reverse DC Voltage	3 V
Power Dissipation $^{(2)}$	100 mW

Output Phototransistor

Collector-Emitter Voltage	24 V
Collector DC Current	30 mA
Power Dissipation ${ }^{(3)}$	200 mW

Electrical Characteristics ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

| SYMBOL | PARAMETER | MIN | TYP | MAX | UNITS | TEST CONDITIONS |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | Input Diode

V_{F}	Forward Voltage	-	-	1.6	V	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$
I_{R}	Reverse Current	-	-	100	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{R}}=3 \mathrm{~V}$

Output Phototransistor

$\mathrm{V}_{\text {(BR)CEO }}$	Collector-Emitter Breakdown Voltage	24	-	-	V	$\mathrm{I}_{\mathrm{CE}}=100 \mu \mathrm{~A}$
$\mathrm{BV}_{\text {ECO }}$	Emitter Reverse Breakdown Voltage	0.4	-	-	V	$\mathrm{I}_{\mathrm{EC}}=100 \mu \mathrm{~A}$
$\mathrm{I}_{\text {CEO }}$	Collector-Emitter Dark Current	-	-	100	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}$

Combined

$\mathrm{V}_{\mathrm{SAT}}$	Collector-Emitter Saturation Voltage	-	-	0.4	V	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{I}_{\mathrm{C}}=100 \mu \mathrm{~A}$, (gap unblocked)
$\mathrm{I}_{\mathrm{C}(\mathrm{ON})}$	On-State Collector Current	600	-	-	$\mu \mathrm{A}$	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}$

Notes:
(1) RMA flux is recommended. Duration can be extended to 10 seconds maximum when flow soldering. A maximum of 20 grams force may be applied to leads when soldering.
(2) Derate linearly $1.33 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.
(3) Derate linearly $2.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.

OPTEK reserves the right to make changes at any time in order to improve design and to supply the best product possible.

