
RoHS

COMPLIANT

Vishay Semiconductors

Transmissive Optical Sensor with Phototransistor Output

DESCRIPTION

The TCST1230 is a transmissive sensor that includes an infrared emitter and phototransistor, located face-to-face on the optical axes in a leaded package which blocks visible light.

FEATURES

- Package type: leaded
- Detector type: phototransistor
- Dimensions (L x W x H in mm): 9.2 x 4.8 x 5.4
- Gap (in mm): 2.8
- Aperture (in mm): 0.5
- Typical output current under test: I_C = 2 mA
- · Daylight blocking filter
- Emitter wavelength: 950 nm
- Lead (Pb)-free soldering released
- Compliant to RoHS directive 2002/95/EC and in accordance to WEEE 2002/96/EC

APPLICATIONS

- Optical switch
- Shaft encoder
- · Detection of opaque material such as paper
- · Detection of magnetic tapes

PRODUCT SUMMARY					
PART NUMBER	GAP WIDTH (mm)	APERTURE WIDTH (mm)	TYPICAL OUTPUT CURRENT UNDER TEST ⁽¹⁾ (mA)	DAYLIGHT BLOCKING FILTER INTEGRATED	
TCST1230	2.8	0.5	2	Yes	

Note

(1) Conditions like in table basic characteristics/coupler

ORDERING INFORMATION

ORDERING CODE	PACKAGING	VOLUME ⁽¹⁾	REMARKS		
TCST1230	Tube	MOQ: 4860 pcs, 60 pcs/tube	-		

Note

⁽¹⁾ MOQ: minimum order quantity

ABSOLUTE MAXIMUM RATINGS ⁽¹⁾					
PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT	
COUPLER			· · ·		
Total power dissipation	$T_{amb} \le 25 \ ^{\circ}C$	P _{tot}	250	mW	
Ambient temperature range		T _{amb}	- 25 to + 85	°C	
Storage temperature range		T _{stg}	- 40 to + 100	°C	
Soldering temperature	Distance to package 1.6 mm, t \leq 5 s	T _{sd}	260	°C	
INPUT (EMITTER)					
Reverse voltage		V _R	6	V	
Forward current		I _F	60	mA	
Forward surge current	$t_p \le 10 \ \mu s$	I _{FSM}	3	А	
Power dissipation	$T_{amb} \le 25 \ ^{\circ}C$	Pv	100	mW	
Junction temperature		Т _і	100	°C	

Document Number: 83765 Rev. 1.8, 17-Aug-09

Downloaded from Elcodis.com electronic components distributor

Vishay Semiconductors

Transmissive Optical Sensor with Phototransistor Output

ABSOLUTE MAXIMUM RATINGS ⁽¹⁾					
PARAMETER	TEST CONDITION	SYMBOL VALUE		UNIT	
OUTPUT (DETECTOR)					
Collector emitter voltage		V _{CEO}	70	V	
Emitter collector voltage		V _{ECO}	7	V	
Collector current		Ι _C	100	mA	
Power dissipation	$T_{amb} \le 25 \ ^{\circ}C$	Pv	150	mW	
Junction temperature		Tj	100	°C	

Note

 $^{(1)}$ T_{amb} = 25 °C, unless otherwise specified

ABSOLUTE MAXIMUM RATINGS

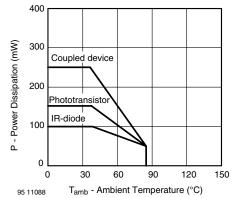


Fig. 1 - Power Dissipation Limit vs. Ambient Temperature

BASIC CHARACTERISTICS ⁽¹⁾						
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT
COUPLER	-					
Collector current	$V_{CE} = 10 \text{ V}, I_F = 20 \text{ mA}$	Ι _C	0.5		14	mA
Collector emitter saturation voltage	$I_{\rm F} = 20 \text{ mA}, I_{\rm C} = 0.2 \text{ mA}$	V _{CEsat}			0.4	V
INPUT (EMITTER)	-					
Forward voltage	I _F = 60 mA	V _F		1.25	1.5	V
Junction capacitance	V _R = 0 V, f = 1 MHz	Cj		50		pF
OUTPUT (DETECTOR)						
Collector emitter voltage	$I_{\rm C} = 1 \rm{mA}$	V _{CEO}	70			V
Emitter collector voltage	I _E = 10 μA	V _{ECO}	7			V
Collector dark current	$V_{CE} = 25 \text{ V}, I_F = 0 \text{ A}, E = 0 \text{ Ix}$	I _{CEO}		10	100	nA
SWITCHING CHARACTERISTI	CS					
Turn-on time	$I_{C} = 1 \text{ mA}, V_{CE} = 5 \text{ V},$ R _L = 100 Ω (see figure 2)	t _{on}		15		μs
Turn-off time	$I_C = 1 \text{ mA}, V_{CE} = 5 \text{ V},$ $R_L = 100 \Omega \text{ (see figure 2)}$	t _{off}		10		μs

Note

⁽¹⁾ $T_{amb} = 25 \degree C$, unless otherwise specified

TCST1230

Transmissive Optical Sensor with Phototransistor Output

Vishay Semiconductors

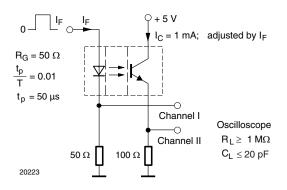


Fig. 2 - Test Circuit for t_{on} and t_{off}

BASIC CHARACTERISTICS

 $T_{amb} = 25 \ ^{\circ}C$, unless otherwise specified

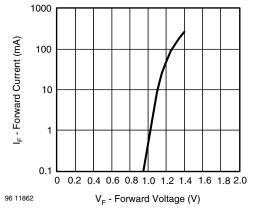


Fig. 4 - Forward Current vs. Forward Voltage

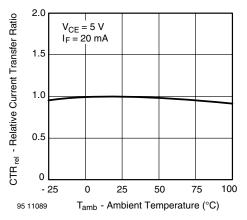


Fig. 5 - Relative Current Transfer Ratio vs. Ambient Temperature

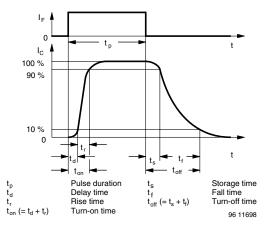


Fig. 3 - Switching Times

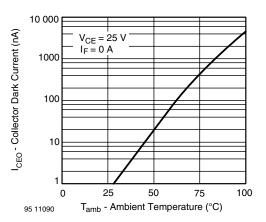


Fig. 6 - Collector Dark Current vs. Ambient Temperature

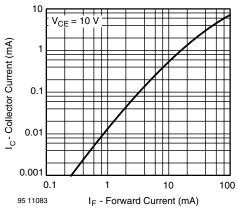


Fig. 7 - Collector Current vs. Forward Current

Document Number: 83765 Rev. 1.8, 17-Aug-09

TCST1230

Vishay Semiconductors

Transmissive Optical Sensor with Phototransistor Output

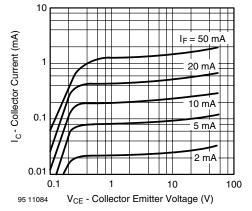


Fig. 8 - Collector Current vs. Collector Emitter Voltage

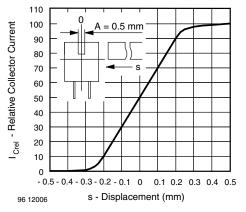


Fig. 11 - Relative Collector Current vs. Displacement

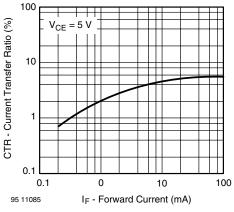


Fig. 9 - Current Transfer Ratio vs. Forward Current

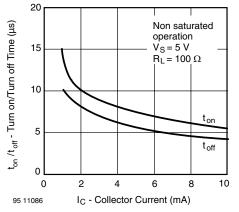
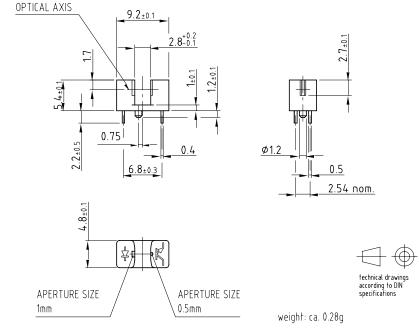
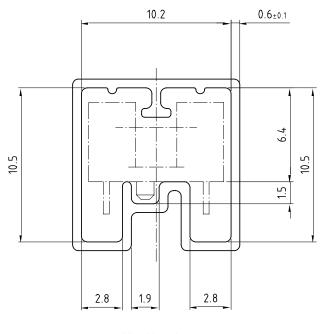


Fig. 10 - Turn-on/Turn-off Time vs. Collector Current



TCST1230

Transmissive Optical Sensor with Phototransistor Output


Vishay Semiconductors

PACKAGE DIMENSIONS in millimeters

Drawing-No.: 6.550-5123.01-4 Issue: 5; 30.01.06 96 12083

TUBE DIMENSIONS in millimeters

Drawing-No.: 9.700-5245.01-4 Issue: 1; 25.02.00 20256 With rubber stopper Tolerance: ±0.5mm Length: 575±1mm

Document Number: 83765 Rev. 1.8, 17-Aug-09

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk and agree to fully indemnify and hold Vishay and its distributors harmless from and against any and all claims, liabilities, expenses and damages arising or resulting in connection with such use or sale, including attorneys fees, even if such claim alleges that Vishay or its distributor was negligent regarding the design or manufacture of the part. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.