
GREEN

(5-2008)

Vishay Semiconductors

Subminiature Dual Channel Transmissive Optical Sensor with Phototransistor Outputs

DESCRIPTION

The TCUT1300X01 is a compact transmissive sensor that includes an infrared emitter and two phototransistor detectors, located face-to-face in a surface mount package.

FEATURES

• Package type: surface mount

• Detector type: phototransistor

• Dimensions (L x W x H in mm): 5.5 x 4 x 4

• AEC-Q101 qualified

• Gap (in mm): 3

• Aperture (in mm): 0.3

• Channel distance (center to center): 0.8 mm

• Typical output current under test: I_C = 0.6 mA

• Emitter wavelength: 950 nm

Lead (Pb)-free soldering released

• Moisture sensitivity level (MSL): 1

 Compliant to RoHS Directive 2002/95/EC and in accordance to WEEE 2002/96/EC

- · Automotive optical sensors
- · Accurate position sensor for encoder
- · Sensor for motion, speed and direction

	PART NUMBER	GAP WIDTH (mm)	APERTURE WIDTH (mm)	TYPICAL OUTPUT CURRENT UNDER TEST ⁽¹⁾ (mA)	DAYLIGHT BLOCKING FILTER INTEGRATED
Ī	TCUT1300X01	3	0.3	0.6	No

Note

⁽¹⁾ Conditions like in table basic characteristics/coupler

ORDERING INFORMATION					
ORDERING CODE	PACKAGING	VOLUME (1)	REMARKS		
TCUT1300X01	Tape and reel	MOQ: 2000 pcs, 2000 pcs/reel	Drypack, MSL 1		

Note

(1) MOQ: minimum order quantity

** Please see document "Vishay Material Category Policy": www.vishay.com/doc?99902

Vishay Semiconductors Subminiature Dual Channel Transmissive Optical Sensor with Phototransistor Outputs

ABSOLUTE MAXIMUM RATINGS (T _{amb} = 25 °C, unless otherwise specified)				
PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT
COUPLER			· ·	
Total power dissipation	T _{amb} ≤ 25 °C	P _{tot}	37.5	mW
Junction temperature		Tj	110	°C
Ambient temperature range		T _{amb}	- 40 to + 105	°C
Storage temperature range		T _{stg}	- 40 to + 125	°C
Soldering temperature	In accordance with fig. 16	T _{sd}	260	°C
INPUT (EMITTER)			<u>.</u>	
Reverse voltage		V_{R}	5	V
Forward current	T _{amb} ≤ 95 °C	I _F	25	mA
Forward surge current	t _p ≤ 10 μs	I _{FSM}	200	mA
Power dissipation	T _{amb} ≤ 25 °C	P _V	37.5	mW
OUTPUT (DETECTOR)				
Collector emitter voltage		V_{CEO}	20	V
Emitter collector voltage		V _{ECO}	7	V
Collector current		Ic	20	mA
Collector dark current	$T_{amb} = 85 ^{\circ}\text{C}, V_{CE} = 5 \text{V}$	I _{CEO}	3.3	μΑ

ABSOLUTE MAXIMUM RATINGS

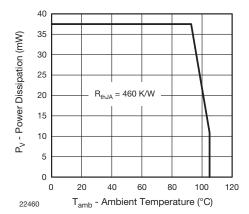


Fig. 1 - Power Dissipation Limit vs. Ambient Temperature

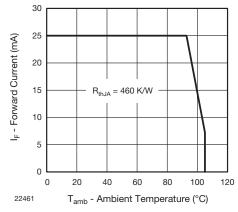


Fig. 2 - Forward Current Limit vs. Ambient Temperature

Subminiature Dual Channel Transmissive Vishay Semiconductors Optical Sensor with Phototransistor Outputs

ELECTRICAL CHARACTERISTICS (T _{amb} = 25 °C, unless otherwise specified)						
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT
COUPLER						
Collector current per channel	$V_{CE} = 5 \text{ V}, I_F = 15 \text{ mA}$	I _C	300	600		μA
Collector emitter saturation voltage	I _F = 15 mA, I _C = 0.05 mA	V _{CEsat}			0.4	V
INPUT (EMITTER)						
Forward voltage	I _F = 15 mA	V _F	1	1.2	1.4	V
Reverse current	V _R = 5 V	I _R			10	μA
Junction capacitance	$V_R = 0 V, f = 1 MHz$	Cj		25		pF
OUTPUT (DETECTOR)						
Collector emitter voltage I _C	I _C = 1 mA	V _{CEO}	20			V
Emitter collector voltage	I _E = 100 μA	V _{ECO}	7			V
Collector dark current	$V_{CE} = 25 \text{ V}, I_F = 0 \text{ A}, E = 0 \text{ Ix}$	I _{CEO}		1	100	nA
SWITCHING CHARACTERISTICS						
Rise time	I_C = 0.3 mA, V_{CE} = 5 V, R_L = 100 Ω (see fig. 2)	t _r		20	150	μs
Fall time	I_C = 0.3 mA, V_{CE} = 5 V, R_L = 100 Ω (see fig. 2)	t _f		30	150	μs

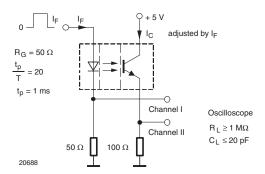


Fig. 3 - Test Circuit for t_r and t_f

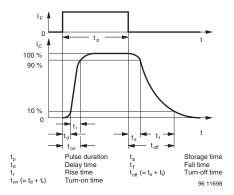


Fig. 4 - Switching Times

BASIC CHARACTERISTICS (T_{amb} = 25 °C, unless otherwise specified)

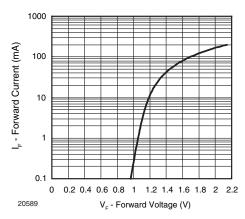


Fig. 5 - Forward Current vs. Forward Voltage

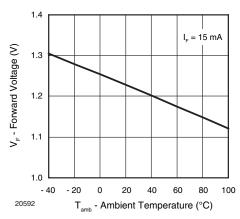


Fig. 6 - Forward Voltage vs. Ambient Temperature

Vishay Semiconductors Subminiature Dual Channel Transmissive Optical Sensor with Phototransistor Outputs

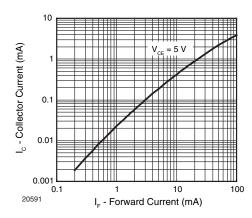


Fig. 7 - Collector Current vs. Forward Current

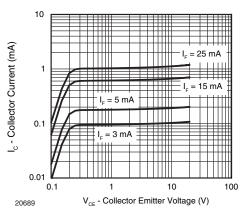


Fig. 8 - Collector Current vs. Collector Emitter Voltage



Fig. 9 - Collector Emitter Saturation Voltage vs.
Ambient Temperature

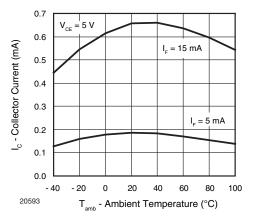


Fig. 10 - Collector Current vs. Ambient Temperature

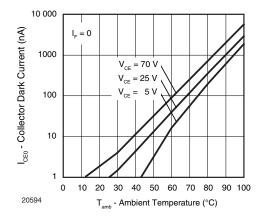


Fig. 11 - Collector Dark Current vs. Ambient Temperature

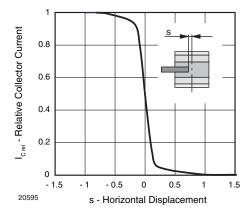


Fig. 12 - Relative Collector Current vs. Horizontal Displacement

Subminiature Dual Channel Transmissive Vishay Semiconductors Optical Sensor with Phototransistor Outputs

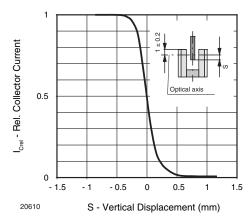


Fig. 13 - Relative Collector Current vs. Vertical Displacement

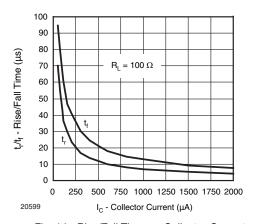


Fig. 14 - Rise/Fall Time vs. Collector Current

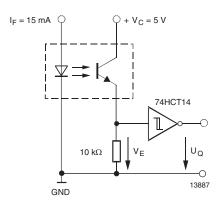


Fig. 15 - Application example

REFLOW SOLDER PROFILE

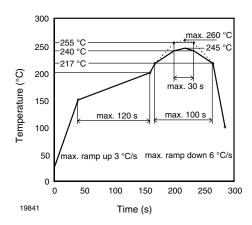


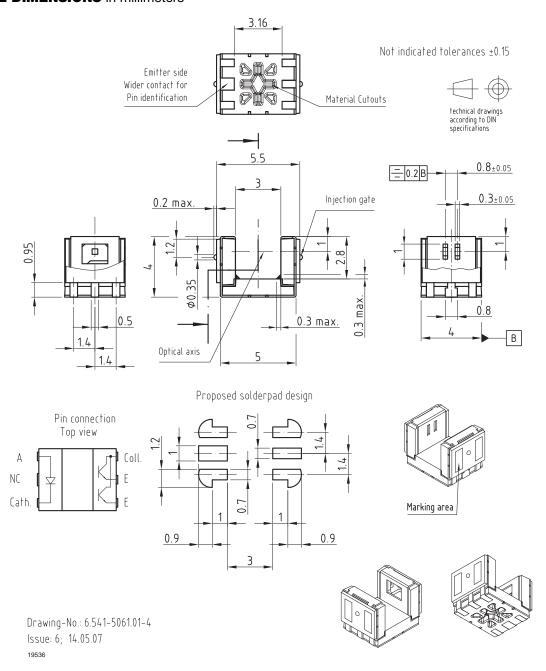
Fig. 16 - Lead (Pb)-free Reflow Solder Profile acc. J-STD-020

FLOOR LIFE

Level 1, acc. JEDEC, J-STD-020. No time limit.

RELIABILITY TESTS IN REFERENCE TO AEC-Q101 RELEASE						
TEST	CONDITION	DURATION	LOT SIZE - REJECTS			
High temperature storage	High temperature storage $T_{\text{stg (max.)}} = 100 ^{\circ}\text{C}$		3 x 50 pcs - 0 pcs			
Low temperature storage	T _{stg (min.)} = - 40 °C	1000 h	3 x 50 pcs - 0 pcs			
Temperature cycling	- 40 °C/+ 100 °C	1000 x	3 x 77 pcs - 0 pcs			
H3TRB	85 °C/85 % RH, emitters: $V_R = 4 \text{ V}$, detectors: $V_{CEO} = 5 \text{ V}$	1000 h	3 x 77 pcs - 0 pcs			
Intermittent operational life	Emitters: $I_F = 80$ mA DC, detectors: $V_{CE} = 16$ V, duty cycle: 2 min on, 2 min off, $T_{amb} = 25$ °C	1000 h (15 000 cycles)	3 x 77 pcs - 0 pcs			

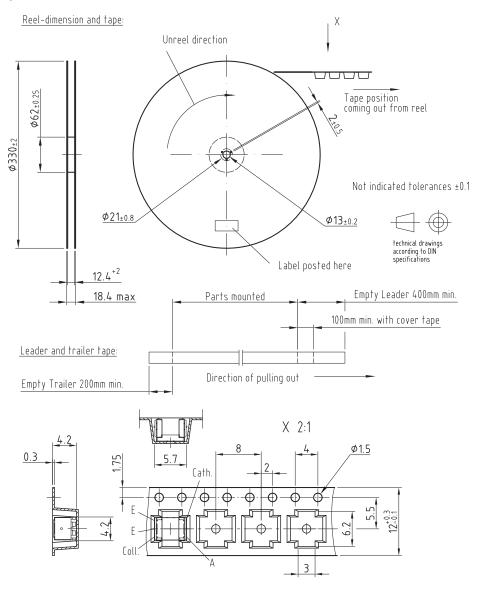
RELIABILITY TESTS IN REFERENCE TO ENHANCED TEMPERATURE RELEASE ACC. AEC-Q101						
TEST	CONDITION		LOT SIZE - REJECTS			
High temperature storage	T _{stg(max.)} = 125 °C	1000 h	1 x 50 pcs - 0 pcs			
Temperature cycling	rature cycling - 40 °C/+ 150 °C		1 x 77 pcs - 0 pcs			
Power temperature cycle	- 25 °C/+ 85 °C, I _F = 50 mA, V _{CE} = 16 V, 2 min. on, 2 min. off	1000 h (15 000 cycles)	1 x 77 pcs - 0 pcs			


Document Number: 84756 Rev. 2.6, 28-Mar-11

For technical questions, contact: sensorstechsupport@vishay.com

Vishay Semiconductors Subminiature Dual Channel Transmissive Optical Sensor with Phototransistor Outputs

PACKAGE DIMENSIONS in millimeters



Subminiature Dual Channel Transmissive Vishay Semiconductors Optical Sensor with Phototransistor Outputs

PACKAGE DIMENSIONS in millimeters

Volume/reel = 2000 pcs

Drawing-No.: 9.800-5092.01-4

Issue: 1; 14.05.07

20611

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk and agree to fully indemnify and hold Vishay and its distributors harmless from and against any and all claims, liabilities, expenses and damages arising or resulting in connection with such use or sale, including attorneys fees, even if such claim alleges that Vishay or its distributor was negligent regarding the design or manufacture of the part. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Document Number: 91000 www.vishay.com
Revision: 11-Mar-11 1