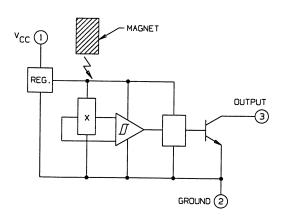


Hallogic® Hall Effect Sensor Assembly Type OHB900

Features

- Non-contact motion sensing
- Operates over a broad range of supply voltages
- Excellent temperature stability
- Hall element, linear amplifier, and Schmitt trigger on a single Hallogic[®] silicon chip
- Performs in high dust and dirt environments
- 0.125" (3.18mm) wide gap


Description

The OHB900 consists of a Hall Effect sensor similar to the OH180U and a rare earth magnet mounted in a low cost plastic housing. The magnet produces optimum magnetic flux at the Hall Effect sensor location. The sensor has an open collector transistor output which is activated when the slot is open. When the slot is blocked by a ferrous material, reducing the magnetic flux density at the Hall Effect sensor location, the open collector output transistor switches off. The device provides up to 25 mA of sink current. Output characteristics are constant at switching frequencies from DC to over 200 kHz.

Absolute Maximum Ratings (T_A = 25° C unless otherwise noted)

Supply Voltage, V _{CC}	25 V
Storage Temperature Range, T _S	·50° C to +160° C
Operating Temperature Range, T _A	.50° C to +150° C
Lead Soldering Temperature [1/8 inch (3.2 mm) from case for 5 sec.	with soldering
ironj	260° C
Output ON Current, Isink	25 mA
Output OFF Voltage, Vout	25 V
Magnetic Flux Density, B	Unlimited

Sensor Functional Block Diagram

Type OHB900

Electrical Characteristics (V_{CC} = 4.5 V to 24 V, T_A = 25° C unless otherwise noted)

Symbol	Parameter	Min	Тур	Max	Units	Test Conditions	
lcc	Supply Current		4	7	mA	V _{CC} = 24 V, Output Off	
VoL	Output Saturation Voltage		100	400	mV	V _{CC} = 4.5 V, I _{OL} = 20 mA, Slot Open	
Іон	Output Leakage Current		0.1	10.0	μА	V _{CC} = 4.5 V, V _{OUT} = 24 V, Slot Blocked ⁽¹⁾	
tr	Output Rise Time		0.21	1.00	μs	$R_L = 820 \Omega$, $C_L = 20 pF$	
t _f	Output Fall Time		0.25	1.00	μs	η_ = 020 32, 0_ = 20 βι	

⁽¹⁾ Slot blocked with a ferrous material to interrupt magnetic flux.

Typical Performance Curves

10-11