NPN TRANSISTOR POWER MODULE

- NPN TRANSISTOR
- HIGH CURRENT POWER BIPOLAR MODULE
- VERY LOW Rth JUNCTION CASE
- SPECIFIED ACCIDENTAL OVERLOAD AREAS
- FULLY INSULATED PACKAGE (U.L. COMPLIANT) FOR EASY MOUNTING
- LOW INTERNAL PARASITIC INDUCTANCE

APPLICATIONS:

- MOTOR CONTROL
- SMPS \& UPS
- WELDING EQUIPMENT

INTERNAL SCHEMATIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
$\mathrm{V}_{\mathrm{CEV}}$	Collector-Emitter Voltage $\left(\mathrm{V}_{\mathrm{BE}}=-5 \mathrm{~V}\right)$	200	V
$\mathrm{~V}_{\mathrm{CEO}(\mathrm{sus})}$	Collector-Emitter Voltage $\left(\mathrm{I}_{\mathrm{B}}=0\right)$	125	V
$\mathrm{~V}_{\text {EBO }}$	Emitter-Base Voltage $\left(\mathrm{I}_{\mathrm{C}}=0\right)$	7	V
I_{C}	Collector Current	100	A
I_{CM}	Collector Peak Current $\left(\mathrm{t}_{\mathrm{p}}=10 \mathrm{~ms}\right)$	150	A
I_{B}	Base Current	20	A
I_{BM}	Base Peak Current $\left(\mathrm{t}_{\mathrm{p}}=10 \mathrm{~ms}\right)$	30	A
$\mathrm{P}_{\text {tot }}$	Total Dissipation at $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	250	W
$\mathrm{~V}_{\text {isol }}$	Insulation Withstand Voltage (RMS) from All Four Terminals to External Heatsink	2500	
$\mathrm{~T}_{\text {stg }}$	Storage Temperature	-55 to 150	${ }^{\circ} \mathrm{C}$
T_{j}	Max. Operating Junction Temperature	150	${ }^{\circ} \mathrm{C}$

THERMAL DATA

$R_{\text {thj-case }}$ $R_{\text {thc-h }}$	Thermal Resistance Junction-case Thermal Resistance Case-heatsink With Conductive Grease Applied	0.5	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\text {case }}=25^{\circ} \mathrm{C}$ unless otherwise specified)

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
Icer	Collector Cut-off Current ($\mathrm{R}_{\mathrm{BE}}=5 \Omega$)	$\begin{array}{ll} V_{C E}=V_{C E V} & \\ V_{C E}=V_{C E V} & T_{C}=100^{\circ} \mathrm{C} \end{array}$			$\begin{aligned} & 1 \\ & 5 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
Icev	Collector Cut-off Current ($\mathrm{V}_{\mathrm{BE}}=-5 \mathrm{~V}$)	$\begin{aligned} & \mathrm{V}_{C E}=\mathrm{V}_{C E V} \\ & \mathrm{~V}_{C E}=\mathrm{V}_{C E V} \end{aligned} \mathrm{~T}_{\mathrm{C}}=100^{\circ} \mathrm{C}$			$\begin{aligned} & 1 \\ & 4 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
Iebo	Emitter Cut-off Current ($\mathrm{IC}=0$)	$\mathrm{V}_{\mathrm{Eb}}=5 \mathrm{~V}$			1	mA
$\mathrm{V}_{\text {CEO(sus) }}{ }^{*}$	Collector-Emitter Sustaining Voltage $\left(\mathrm{I}_{\mathrm{B}}=0\right)$	$\begin{aligned} & \mathrm{I} \mathrm{C}=0.2 \mathrm{~A} \quad \mathrm{~L}=25 \mathrm{mH} \\ & \mathrm{~V}_{\text {clamp }}=125 \mathrm{~V} \end{aligned}$	125			V
$\mathrm{h}_{\text {FE* }}$	DC Current Gain	$\mathrm{I}_{\mathrm{C}}=100 \mathrm{~A} \quad \mathrm{~V}_{\text {CE }}=5$		27		
$\mathrm{V}_{\text {CE(sat) }}$ *	Collector-Emitter Saturation Voltage	$\begin{array}{lll} \mathrm{I}_{\mathrm{C}}=50 \mathrm{~A} & \mathrm{I}_{\mathrm{B}}=2.5 \mathrm{~A} & \\ \mathrm{I}_{\mathrm{C}}=50 \mathrm{~A} & \mathrm{I}_{\mathrm{B}}=2.5 \mathrm{~A} & \mathrm{~T}_{\mathrm{C}}=100^{\circ} \mathrm{C} \\ \mathrm{I}_{\mathrm{C}}=100 \mathrm{~A} & \mathrm{I}_{\mathrm{B}}=10 \mathrm{~A} & \\ \mathrm{I}_{\mathrm{C}}=100 \mathrm{~A} & \mathrm{I}_{\mathrm{B}}=10 \mathrm{~A} & \mathrm{~T}_{\mathrm{C}}=100^{\circ} \mathrm{C} \end{array}$		$\begin{gathered} 0.45 \\ 0.55 \\ 0.7 \\ 0.9 \end{gathered}$	$\begin{aligned} & 0.9 \\ & 1.2 \\ & 0.9 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
$V_{\text {BE(sat)* }}$	Base-Emitter Saturation Voltage	$\begin{array}{lll} \mathrm{I}_{\mathrm{C}}=50 \mathrm{~A} & \mathrm{I}_{\mathrm{B}}=2.5 \mathrm{~A} & \\ \mathrm{I}_{\mathrm{C}}=50 \mathrm{~A} & \mathrm{I}_{\mathrm{B}}=2.5 \mathrm{~A} & \mathrm{~T}_{\mathrm{C}}=100^{\circ} \mathrm{C} \\ \mathrm{I}_{\mathrm{C}}=100 \mathrm{~A} & \mathrm{I}_{\mathrm{B}}=10 \mathrm{~A} & \\ \mathrm{I}_{\mathrm{C}}=100 \mathrm{~A} & \mathrm{I}_{\mathrm{B}}=10 \mathrm{~A} & \mathrm{~T}_{\mathrm{C}}=100^{\circ} \mathrm{C} \end{array}$		$\begin{gathered} \hline 1.15 \\ 1.1 \\ 1.45 \\ 1.55 \end{gathered}$	$\begin{aligned} & 1.4 \\ & 1.4 \\ & 1.8 \\ & 1.9 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
dic/dt	Rate of Rise of On-state Collector	$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=300 \mathrm{~V} & \mathrm{R}_{\mathrm{C}}=0 \quad \mathrm{t}_{\mathrm{p}}=3 \mu \mathrm{~s} \\ \mathrm{I}_{\mathrm{B} 1}=15 \mathrm{~A} & \mathrm{~T}_{\mathrm{C}}=100^{\circ} \mathrm{C} \end{array}$	270	350		A/ $\mu \mathrm{s}$
$\mathrm{V}_{\text {CE }}(3 \mu \mathrm{~s})$	Collector-Emitter Dynamic Voltage	$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=300 \mathrm{~V} & \mathrm{R}_{\mathrm{C}}=1 \Omega \\ \mathrm{I}_{\mathrm{B} 1}=15 \mathrm{~A} & \mathrm{~T}_{\mathrm{C}}=100^{\circ} \mathrm{C} \\ \hline \end{array}$		2.7	3.5	V
$\mathrm{V}_{\text {CE }}(5 \mu \mathrm{~s})$	Collector-Emitter Dynamic Voltage	$\begin{array}{ll} \hline \mathrm{V}_{\mathrm{cc}}=300 \mathrm{~V} & \mathrm{R}_{\mathrm{c}}=1 \Omega \\ \mathrm{I}_{\mathrm{B} 1}=15 \mathrm{~A} & \mathrm{~T}_{\mathrm{c}}=100^{\circ} \mathrm{C} \\ \hline \end{array}$		2	2.5	V
$\begin{aligned} & \mathrm{t}_{\mathrm{s}} \\ & \mathrm{t}_{\mathrm{f}} \\ & \mathrm{t}_{\mathrm{c}} \end{aligned}$	Storage Time Fall Time Cross-over Time	$\begin{array}{ll} \hline \mathrm{IC}=100 \mathrm{~A} & \mathrm{~V}_{\mathrm{CC}}=90 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{BB}}=-5 \mathrm{~V} & \mathrm{R}_{\mathrm{BB}}=0.47 \Omega \\ \mathrm{~V}_{\text {clamp }}=125 \mathrm{~V} & \mathrm{I}_{\mathrm{B} 1}=10 \mathrm{~A} \\ \mathrm{~L}=45 \mu \mathrm{H} & \mathrm{~T}_{\mathrm{C}}=100^{\circ} \mathrm{C} \\ \hline \end{array}$		$\begin{gathered} 1 \\ 0.1 \\ 0.2 \end{gathered}$	$\begin{gathered} 2 \\ 0.2 \\ 0.35 \end{gathered}$	$\mu \mathrm{S}$ $\mu \mathrm{S}$ $\mu \mathrm{S}$
$\mathrm{V}_{\text {cew }}$	Maximum Collector Emitter Voltage Without Snubber	$\begin{array}{ll} \hline \mathrm{I}_{\mathrm{CWoff}}=150 \mathrm{~A} & \mathrm{I}_{\mathrm{B} 1}=10 \mathrm{~A} \\ \mathrm{~V}_{\mathrm{BB}}=-5 \mathrm{~V} & \mathrm{~V}_{\mathrm{CC}}=90 \mathrm{~V} \\ \mathrm{~L}_{2}=30 \mu \mathrm{H} & \mathrm{R}_{\mathrm{BB}}=0.5 \Omega \\ \mathrm{~T}_{\mathrm{C}}=125^{\circ} \mathrm{C} & \\ \hline \end{array}$	125			V

* Pulsed: Pulse duration = $300 \mu \mathrm{~s}$, duty cycle 1.5%

Safe Operating Areas

Derating Curve

Collector Emitter Saturation Voltage

Thermal Impedance

Collector-emitter Voltage Versus Base Emitter Resistance

Base-Emitter Saturation Voltage

$\sqrt{7 / 7}$

Reverse Biased SOA

Reverse Biased AOA

Switching Times Inductive Load

Foward Biased SOA

Forward Biased AOA

Switching Times Inductive Load Versus Temperature

Dc Current Gain

Turn-on Switching Test Circuit

(1) Fast electronic switch
(2) Non-inductive load

Turn-on Switching Waveforms

Turn-off Switching Test Circuit

(1) Fast electronic switch
(3) Fast recovery rectifier
(2) Non-inductive load

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a trademark of STMicroelectronics
© 2003 STMicroelectronics - Printed in Italy - All Rights Reserved
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.

http://www.st.com

