

FSAM15SL60

SPM™ (Smart Power Module)

General Description

FSAM15SL60 is an advanced smart power module (SPM) that Fairchild has newly developed and designed to provide very compact and high performance ac motor drives mainly targeting low speed low-power inverter-driven application like air conditioners. It combines optimized circuit protection and drive matched to low-loss IGBTs. Highly effective short-circuit current detection/protection is realized through the use of advanced current sensing IGBT chips that allow continuous monitoring of the IGBTs current. System reliability is further enhanced by the built-in overtemperature monitoring and integrated under-voltage lockout protection. The high speed built-in HVIC provides optocoupler-less IGBT gate driving capability that further reduce the overall size of the inverter system design. In addition the incorporated HVIC facilitates the use of single-supply drive topology enabling the FSAM15SL60 to be driven by only one drive supply voltage without negative bias. Inverter current sensing application can be achieved due to the divided negative dc terminals.

Features

- UL Certified No. E209204
- 600V-15A 3-phase IGBT inverter bridge including control ICs for gate driving and protection
- Divided negative dc-link terminals for inverter current sensing applications
- · Single-grounded power supply due to built-in HVIC
- Typical switching frequency of 3kHz
- · Built-in thermistor for over-temperature monitoring
- Inverter power rating of 0.8kW / 100~253 Vac
- Isolation rating of 2500Vrms/min.
- Very low leakage current due to using ceramic substrate
- Adjustable current protection level by varying series resistor value with sense-IGBTs

Applications

- AC 100V ~ 253V 3-phase inverter drive for small power (0.8kW) ac motor drives
- Home appliances applications requiring low switching frequency operation like air conditioners drive system
- Application ratings:
 - Power: 0.8kW / 100~253 Vac
 - Switching frequency: Typical 3kHz (PWM Control)
 - 100% load current : 5.0A (Irms)
 - 150% load current : 7.5A (Irms) for 1 minute

External View

Top View

Bottom View

Fig. 1.

Integrated Power Functions

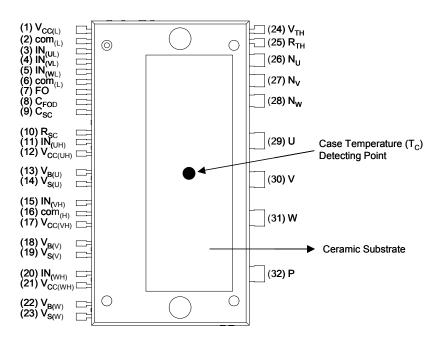
• 600V-15A IGBT inverter for 3-phase DC/AC power conversion (Please refer to Fig. 3)

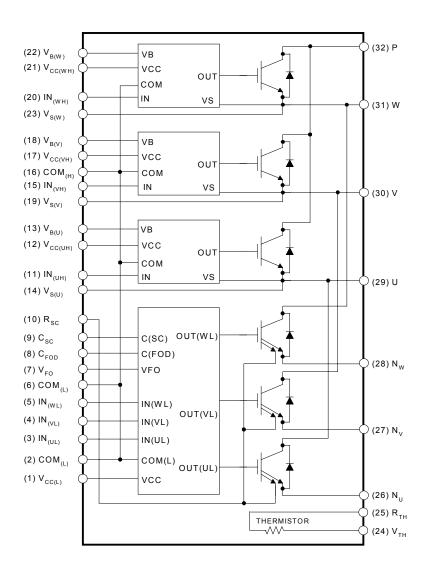
Integrated Drive, Protection and System Control Functions

- For inverter high-side IGBTs: Gate drive circuit, High voltage isolated high-speed level shifting
 Control circuit under-voltage (UV) protection
 - Note) Available bootstrap circuit example is given in Figs. 14 and 15.
- For inverter low-side IGBTs: Gate drive circuit, Short-Circuit (SC) protection
 Control supply circuit under-voltage (UV) protection
- Temperature Monitoring: System over-temperature monitoring using built-in thermistor
 Note) Available temperature monitoring circuit is given in Fig. 15.
- · Fault signaling: Corresponding to a SC fault (Low-side IGBTs) or a UV fault (Low-side control supply circuit)
- Input interface: 5V CMOS/LSTTL compatible, Schmitt trigger input

Pin Configuration

Top View




Fig. 2.

Pin Descriptions

1 V _{CC(L)} Low-side Common Bias Voltage for IC and IGBTs Driving 2 COM _(L) Low-side Common Supply Ground 3 IN _(UL) Signal Input for Low-side U Phase 4 IN _(YL) Signal Input for Low-side V Phase 5 IN _(WL) Signal Input for Low-side W Phase 6 COM _(L) Low-side Common Supply Ground 7 V _{FO} Fault Output 8 C _{FOD} Capacitor for Fault Output Duration Time Selection 9 C _{SC} Capacitor (Low-pass Filter) for Short-Circuit Current Detection Input 10 R _{SC} Resistor for Short-Circuit Current Detection 11 IN _(UH) Signal Input for High-side U Phase 12 V _{CC(UH)} High-side Bias Voltage for U Phase ICBT Driving 14 V _{S(U)} High-side Bias Voltage Ground for U Phase IGBT Driving 15 IN _(VH) Signal Input for High-side V Phase 16 COM _(H) High-side Bias Voltage for V Phase ICBT Driving 17 V _{CC(VH)} High-side Bias Voltage for V Phase ICBT Driving 18 V _{B(V)} High-side Bias Voltage for V Phase ICBT Driving 19 V _{S(V)} High-side Bias Voltage for V Phase ICBT Driving 19 V _{S(V)} High-side Bias Voltage for V Phase ICBT Driving 20 IN _(WH) Signal Input for High-side V Phase ICBT Driving 21 V _{CC(WH)} High-side Bias Voltage for V Phase ICBT Driving 22 V _{B(W)} High-side Bias Voltage for V Phase ICBT Driving 23 V _{S(W)} High-side Bias Voltage for W Phase ICBT Driving 24 V _{TH} Thermistor Bias Voltage for W Phase ICBT Driving 25 R _{TH} Series Resistor for the Use of Thermistor (Temperature Detection) 26 N _U Negative DC-Link Input for V Phase 27 N _V Negative DC-Link Input for V Phase 28 N _W Negative DC-Link Input for W Phase 29 U Output for V Phase 30 V Output for V Phase 31 W Output for V Phase 31 W Output for V Phase	Pin Number	Pin Name	Pin Description			
2 COM(L) Low-side Common Supply Ground 3 IN(UL) Signal Input for Low-side U Phase 4 IN(VL) Signal Input for Low-side V Phase 5 IN(WL) Signal Input for Low-side W Phase 6 COM(L) Low-side Common Supply Ground 7 VFO Fault Output 8 CFOD Capacitor for Fault Output Duration Time Selection 9 CSC Capacitor (Low-pass Filter) for Short-Circuit Current Detection Input 10 RSC Resistor for Short-Circuit Current Detection Input 11 IN(UH) Signal Input for High-side U Phase 12 VCC(UH) High-side Bias Voltage for U Phase IG 13 VB(U) High-side Bias Voltage for U Phase IBBT Driving 14 VS(U) High-side Bias Voltage Ground for U Phase IBBT Driving 15 IN(VH) Signal Input for High-side V Phase 16 COM(H) High-side Common Supply Ground 17 VCC(VH) High-side Bias Voltage for V Phase IC 18 VB(V) High-side Bias Voltage for V Phase IC 19 VS(V) High-side Bias Voltage for V Phase IGBT Driving 19 VS(V) High-side Bias Voltage for V Phase IGBT Driving 19 VS(V) High-side Bias Voltage for V Phase IGBT Driving 19 VS(V) High-side Bias Voltage Ground for V Phase IGBT Driving 19 VS(V) High-side Bias Voltage Ground for V Phase IGBT Driving 20 IN(WH) Signal Input for High-side W Phase 21 VCC(WH) High-side Bias Voltage Ground for V Phase IGBT Driving 22 VB(W) High-side Bias Voltage Ground for W Phase IGBT Driving 23 VS(W) High-side Bias Voltage for W Phase IGBT Driving 24 VTH Thermistor Bias Voltage 25 RTH Series Resistor for the Use of Thermistor (Temperature Detection) 26 NU Negative DC-Link Input for V Phase 27 Ny Negative DC-Link Input for V Phase 28 Nw Negative DC-Link Input for W Phase 29 U Output for V Phase 31 W Output for V Phase	1	V _{CC(L)}	Low-side Common Bias Voltage for IC and IGBTs Driving			
4 IN _(VL) Signal Input for Low-side V Phase 5 IN _(WL) Signal Input for Low-side W Phase 6 COM _(L) Low-side Common Supply Ground 7 V _{FO} Fault Output 8 C _{FOD} Capacitor for Fault Output Duration Time Selection 9 C _{SC} Capacitor (Low-pass Filter) for Short-Circuit Current Detection Input 10 R _{SC} Resistor for Short-Circuit Current Detection Input 11 IN _(UH) Signal Input for High-side U Phase 12 V _{CC(UH)} High-side Bias Voltage for U Phase IGBT Driving 13 V _{B(U)} High-side Bias Voltage for U Phase IGBT Driving 14 V _{S(U)} High-side Bias Voltage Ground for U Phase IGBT Driving 15 IN _(VH) Signal Input for High-side V Phase 16 COM _(H) High-side Common Supply Ground 17 V _{CC(VH)} High-side Bias Voltage for V Phase IGBT Driving 18 V _{B(V)} High-side Bias Voltage for V Phase IGBT Driving 19 V _{S(V)} High-side Bias Voltage for V Phase IGBT Driving 20 IN _(WH) Signal Input for High-side W Phase 21 V _{CC(WH)} High-side Bias Voltage Ground for V Phase IGBT Driving 22 V _{B(W)} High-side Bias Voltage Ground for W Phase IGBT Driving 23 V _{S(W)} High-side Bias Voltage Ground for W Phase IGBT Driving 24 V _{TH} Thermistor Bias Voltage Ground for W Phase IGBT Driving 25 R _{TH} Series Resistor for the Use of Thermistor (Temperature Detection) 26 N _U Negative DC—Link Input for V Phase 27 N _V Negative DC—Link Input for V Phase 28 N _W Negative DC—Link Input for W Phase 29 U Output for V Phase 30 V Output for V Phase	2		Low-side Common Supply Ground			
5 IN _(WL) Signal Input for Low-side W Phase 6 COM _(L) Low-side Common Supply Ground 7 V _{FO} Fault Output 8 C _{FOD} Capacitor for Fault Output Duration Time Selection 9 C _{SC} Capacitor (Low-pass Filter) for Short-Circuit Current Detection Input 10 R _{SC} Resistor for Short-Circuit Current Detection 11 IN _(UH) Signal Input for High-side U Phase 12 V _{CC(UH)} High-side Bias Voltage for U Phase IC 13 V _{B(U)} High-side Bias Voltage Ground for U Phase IGBT Driving 14 V _{S(U)} High-side Bias Voltage Ground for U Phase IGBT Driving 15 IN _(VH) Signal Input for High-side V Phase 16 COM _(H) High-side Bias Voltage for V Phase IC 17 V _{CC(VH)} High-side Bias Voltage for V Phase IC 18 V _{B(V)} High-side Bias Voltage for V Phase IGBT Driving 19 V _{S(V)} High-side Bias Voltage Ground for V Phase IGBT Driving 20 IN _(WH) Signal Input for High-side W Phase 21 V _{CC(WH)} High-side Bias Voltage Ground for V Phase IGBT Driving 22 V _{B(W)} High-side Bias Voltage for W Phase IC 23 V _{S(W)} High-side Bias Voltage for W Phase IGBT Driving 24 V _{TH} Thermistor Bias Voltage Ground for W Phase IGBT Driving 25 R _{TH} Series Resistor for the Use of Thermistor (Temperature Detection) 26 N _U Negative DC-Link Input for V Phase 27 N _V Negative DC-Link Input for W Phase 28 N _W Negative DC-Link Input for W Phase 30 V Output for V Phase 31 W Output for V Phase	3	IN _(UL)	gnal Input for Low-side U Phase			
6 COM _(L) Low-side Common Supply Ground 7 V _{FO} Fault Output 8 C _{FOD} Capacitor for Fault Output Duration Time Selection 9 C _{SC} Capacitor (Low-pass Filter) for Short-Circuit Current Detection Input 10 R _{SC} Resistor for Short-Circuit Current Detection 11 IN _(UH) Signal Input for High-side U Phase 12 V _{CC(UH)} High-side Bias Voltage for U Phase IC 13 V _{B(U)} High-side Bias Voltage Ground for U Phase IGBT Driving 14 V _{S(U)} High-side Bias Voltage Ground for U Phase IGBT Driving 15 IN _(VH) Signal Input for High-side V Phase 16 COM _(H) High-side Bias Voltage for V Phase IC 18 V _{B(V)} High-side Bias Voltage for V Phase IC 18 V _{B(V)} High-side Bias Voltage for V Phase IC 19 V _{S(V)} High-side Bias Voltage for V Phase IC 10 IN _(WH) Signal Input for High-side V Phase IC 11 V _{CC(VH)} High-side Bias Voltage for V Phase IGBT Driving 12 IN _(WH) Signal Input for High-side W Phase 13 V _{S(V)} High-side Bias Voltage for V Phase IGBT Driving 14 V _{S(V)} High-side Bias Voltage for W Phase IC 15 V _{CC(WH)} High-side Bias Voltage For W Phase IC 16 V _{CC(WH)} High-side Bias Voltage For W Phase IC 17 V _{CC(WH)} High-side Bias Voltage For W Phase IGBT Driving 18 V _{S(W)} High-side Bias Voltage Ground for W Phase IGBT Driving 19 V _{S(W)} High-side Bias Voltage Ground for W Phase IGBT Driving 10 V _{S(W)} High-side Bias Voltage Ground for W Phase IGBT Driving 11 V _{CC(WH)} High-side Bias Voltage Ground for W Phase IGBT Driving 12 V _{S(W)} High-side Bias Voltage Ground for W Phase IGBT Driving 13 V _{S(W)} High-side Bias Voltage Ground for W Phase 14 V _{TH} Thermistor Bias Voltage 15 R _{TH} Series Resistor for the Use of Thermistor (Temperature Detection) 16 N _U Negative DC-Link Input for U Phase 17 N _V Negative DC-Link Input for W Phase 18 N _W Negative DC-Link Input for W Phase 19 U Output for V Phase 10 U Output for V Phase	4	IN _(VL)				
7 V _{FO} Fault Output 8 C _{FOD} Capacitor for Fault Output Duration Time Selection 9 C _{SC} Capacitor (Low-pass Filter) for Short-Circuit Current Detection Input 10 R _{SC} Resistor for Short-Circuit Current Detection 11 IN _(UH) Signal Input for High-side U Phase 12 V _{CC(UH)} High-side Bias Voltage for U Phase IC 13 V _{B(U)} High-side Bias Voltage for U Phase IGBT Driving 14 V _{S(U)} High-side Bias Voltage Ground for U Phase IGBT Driving 15 IN _(VH) Signal Input for High-side V Phase 16 COM _(H) High-side Bias Voltage Ground For U Phase IGBT Driving 17 V _{CC(VH)} High-side Bias Voltage for V Phase IGBT Driving 18 V _{B(V)} High-side Bias Voltage for V Phase IGBT Driving 19 V _{S(V)} High-side Bias Voltage for V Phase IGBT Driving 20 IN _(WH) Signal Input for High-side W Phase 21 V _{CC(WH)} High-side Bias Voltage Ground for V Phase IGBT Driving 22 V _{B(W)} High-side Bias Voltage for W Phase IC 22 V _{B(W)} High-side Bias Voltage for W Phase IGBT Driving 23 V _{S(W)} High-side Bias Voltage Ground for W Phase IGBT Driving 24 V _{TH} Thermistor Bias Voltage 25 R _{TH} Series Resistor for the Use of Thermistor (Temperature Detection) 26 N _U Negative DC-Link Input for U Phase 27 N _V Negative DC-Link Input for W Phase 28 N _W Negative DC-Link Input for W Phase 29 U Output for U Phase 30 V Output for V Phase	5	IN _(WL)	Signal Input for Low-side W Phase			
8	6	COM _(L)	Low-side Common Supply Ground			
9 C _{SC} Capacitor (Low-pass Filter) for Short-Circuit Current Detection Input 10 R _{SC} Resistor for Short-Circuit Current Detection 11 IN _(UH) Signal Input for High-side U Phase 12 V _{CC(UH)} High-side Bias Voltage for U Phase IC 13 V _{B(U)} High-side Bias Voltage for U Phase IGBT Driving 14 V _{S(U)} High-side Bias Voltage Ground for U Phase IGBT Driving 15 IN _(VH) Signal Input for High-side V Phase 16 COM _(H) High-side Common Supply Ground 17 V _{CC(VH)} High-side Bias Voltage for V Phase IC 18 V _{B(V)} High-side Bias Voltage for V Phase IGBT Driving 19 V _{S(V)} High-side Bias Voltage Ground for V Phase IGBT Driving 20 IN _(WH) Signal Input for High-side W Phase 21 V _{CC(WH)} High-side Bias Voltage for W Phase IGBT Driving 22 V _{B(W)} High-side Bias Voltage for W Phase IGBT Driving 23 V _{S(W)} High-side Bias Voltage for W Phase IGBT Driving 24 V _{TH} Thermistor Bias Voltage 25 R _{TH} Series Resistor for the Use of Thermistor (Temperature Detection) 26 N _U Negative DC-Link Input for V Phase 27 N _V Negative DC-Link Input for V Phase 28 N _W Negative DC-Link Input for W Phase 29 U Output for V Phase 30 V Output for V Phase 31 W Output for W Phase	7	V_{FO}	Fault Output			
9 C _{SC} Capacitor (Low-pass Filter) for Short-Circuit Current Detection Input 10 R _{SC} Resistor for Short-Circuit Current Detection 11 IN _(UH) Signal Input for High-side U Phase 12 V _{CC(UH)} High-side Bias Voltage for U Phase IC 13 V _{B(U)} High-side Bias Voltage for U Phase IGBT Driving 14 V _{S(U)} High-side Bias Voltage Ground for U Phase IGBT Driving 15 IN _(VH) Signal Input for High-side V Phase 16 COM _(H) High-side Common Supply Ground 17 V _{CC(VH)} High-side Bias Voltage for V Phase IC 18 V _{B(V)} High-side Bias Voltage Ground for V Phase IGBT Driving 19 V _{S(V)} High-side Bias Voltage Ground for V Phase IGBT Driving 20 IN _(WH) Signal Input for High-side W Phase 21 V _{CC(WH)} High-side Bias Voltage for W Phase IC 22 V _{B(W)} High-side Bias Voltage for W Phase IGBT Driving 23 V _{S(W)} High-side Bias Voltage for W Phase IGBT Driving 24 V _{TH} Thermistor Bias Voltage Ground for W Phase IGBT Driving 25 R _{TH} Series Resistor for the Use of Thermistor (Temperature Detection) 26 N _U Negative DC-Link Input for U Phase 27 N _V Negative DC-Link Input for V Phase 28 N _W Negative DC-Link Input for W Phase 29 U Output for U Phase 30 V Output for V Phase 31 W Output for W Phase	8	C_{FOD}	Capacitor for Fault Output Duration Time Selection			
11 IN _(UH) Signal Input for High-side U Phase 12 V _{CC(UH)} High-side Bias Voltage for U Phase IC 13 V _{B(U)} High-side Bias Voltage for U Phase IGBT Driving 14 V _{S(U)} High-side Bias Voltage Ground for U Phase IGBT Driving 15 IN _(VH) Signal Input for High-side V Phase 16 COM _(H) High-side Common Supply Ground 17 V _{CC(VH)} High-side Bias Voltage for V Phase IC 18 V _{B(V)} High-side Bias Voltage for V Phase IGBT Driving 19 V _{S(V)} High-side Bias Voltage Ground for V Phase IGBT Driving 20 IN _(WH) Signal Input for High-side W Phase 21 V _{CC(WH)} High-side Bias Voltage for W Phase IC 22 V _{B(W)} High-side Bias Voltage for W Phase IGBT Driving 23 V _{S(W)} High-side Bias Voltage Ground for W Phase IGBT Driving 24 V _{TH} Thermistor Bias Voltage 25 R _{TH} Series Resistor for the Use of Thermistor (Temperature Detection) 26 N _U Negative DC-Link Input for U Phase 27 N _V Negative DC-Link Input for W Phase 28 N _W Negative DC-Link Input for W Phase 29 U Output for U Phase 30 V Output for W Phase 31 W Output for W Phase	9		Capacitor (Low-pass Filter) for Short-Circuit Current Detection Input			
11 IN _(UH) Signal Input for High-side U Phase 12 V _{CC(UH)} High-side Bias Voltage for U Phase IC 13 V _{B(U)} High-side Bias Voltage for U Phase IGBT Driving 14 V _{S(U)} High-side Bias Voltage Ground for U Phase IGBT Driving 15 IN _(VH) Signal Input for High-side V Phase 16 COM _(H) High-side Common Supply Ground 17 V _{CC(VH)} High-side Bias Voltage for V Phase IC 18 V _{B(V)} High-side Bias Voltage for V Phase IGBT Driving 19 V _{S(V)} High-side Bias Voltage Ground for V Phase IGBT Driving 20 IN _(WH) Signal Input for High-side W Phase 21 V _{CC(WH)} High-side Bias Voltage for W Phase IC 22 V _{B(W)} High-side Bias Voltage for W Phase IGBT Driving 23 V _{S(W)} High-side Bias Voltage Ground for W Phase IGBT Driving 24 V _{TH} Thermistor Bias Voltage 25 R _{TH} Series Resistor for the Use of Thermistor (Temperature Detection) 26 N _U Negative DC-Link Input for V Phase 27 N _V Negative DC-Link Input for W Phase 28 N _W Negative DC-Link Input for W Phase 29 U Output for V Phase 30 V Output for V Phase 31 W Output for W Phase	10	R _{SC}	Resistor for Short-Circuit Current Detection			
12 V _{CC(UH)} High-side Bias Voltage for U Phase IC 13 V _{B(U)} High-side Bias Voltage for U Phase IGBT Driving 14 V _{S(U)} High-side Bias Voltage Ground for U Phase IGBT Driving 15 IN _(VH) Signal Input for High-side V Phase 16 COM _(H) High-side Common Supply Ground 17 V _{CC(VH)} High-side Bias Voltage for V Phase IC 18 V _{B(V)} High-side Bias Voltage for V Phase IGBT Driving 19 V _{S(V)} High-side Bias Voltage Ground for V Phase IGBT Driving 20 IN _(WH) Signal Input for High-side W Phase 21 V _{CC(WH)} High-side Bias Voltage for W Phase IC 22 V _{B(W)} High-side Bias Voltage for W Phase IGBT Driving 23 V _{S(W)} High-side Bias Voltage Ground for W Phase IGBT Driving 24 V _{TH} Thermistor Bias Voltage 25 R _{TH} Series Resistor for the Use of Thermistor (Temperature Detection) 26 N _U Negative DC-Link Input for V Phase 27 N _V Negative DC-Link Input for W Phase 29 U Output for U Phase 30 V Output for V Phase 31 W Output for W Phase	11		Signal Input for High-side U Phase			
13	12		High-side Bias Voltage for U Phase IC			
14 V _{S(U)} High-side Bias Voltage Ground for U Phase IGBT Driving 15 IN _(VH) Signal Input for High-side V Phase 16 COM _(H) High-side Common Supply Ground 17 V _{CC(VH)} High-side Bias Voltage for V Phase IC 18 V _{B(V)} High-side Bias Voltage for V Phase IGBT Driving 19 V _{S(V)} High-side Bias Voltage Ground for V Phase IGBT Driving 20 IN _(WH) Signal Input for High-side W Phase 21 V _{CC(WH)} High-side Bias Voltage for W Phase IGBT Driving 22 V _{B(W)} High-side Bias Voltage Ground for W Phase IGBT Driving 23 V _{S(W)} High-side Bias Voltage Ground for W Phase IGBT Driving 24 V _{TH} Thermistor Bias Voltage 25 R _{TH} Series Resistor for the Use of Thermistor (Temperature Detection) 26 N _U Negative DC-Link Input for U Phase 27 N _V Negative DC-Link Input for W Phase 29 U Output for U Phase 30 V Output for V Phase 31 W Output for W Phase	13		High-side Bias Voltage for U Phase IGBT Driving			
16 COM _(H) High-side Common Supply Ground 17 V _{CC(VH)} High-side Bias Voltage for V Phase IC 18 V _{B(V)} High-side Bias Voltage for V Phase IGBT Driving 19 V _{S(V)} High-side Bias Voltage Ground for V Phase IGBT Driving 20 IN _(WH) Signal Input for High-side W Phase 21 V _{CC(WH)} High-side Bias Voltage for W Phase IC 22 V _{B(W)} High-side Bias Voltage for W Phase IGBT Driving 23 V _{S(W)} High-side Bias Voltage Ground for W Phase IGBT Driving 24 V _{TH} Thermistor Bias Voltage 25 R _{TH} Series Resistor for the Use of Thermistor (Temperature Detection) 26 N _U Negative DC-Link Input for U Phase 27 N _V Negative DC-Link Input for V Phase 28 N _W Negative DC-Link Input for W Phase 29 U Output for U Phase 30 V Output for V Phase 31 W Output for W Phase	14		High-side Bias Voltage Ground for U Phase IGBT Driving			
17 V _{CC(VH)} High-side Bias Voltage for V Phase IC 18 V _{B(V)} High-side Bias Voltage for V Phase IGBT Driving 19 V _{S(V)} High-side Bias Voltage Ground for V Phase IGBT Driving 20 IN _(WH) Signal Input for High-side W Phase 21 V _{CC(WH)} High-side Bias Voltage for W Phase IC 22 V _{B(W)} High-side Bias Voltage for W Phase IGBT Driving 23 V _{S(W)} High-side Bias Voltage Ground for W Phase IGBT Driving 24 V _{TH} Thermistor Bias Voltage 25 R _{TH} Series Resistor for the Use of Thermistor (Temperature Detection) 26 N _U Negative DC-Link Input for U Phase 27 N _V Negative DC-Link Input for V Phase 28 N _W Negative DC-Link Input for W Phase 29 U Output for U Phase 30 V Output for V Phase 31 W Output for W Phase	15	IN _(VH)	Signal Input for High-side V Phase			
18	16		High-side Common Supply Ground			
18 V _{B(V)} High-side Bias Voltage for V Phase IGBT Driving 19 V _{S(V)} High-side Bias Voltage Ground for V Phase IGBT Driving 20 IN _(WH) Signal Input for High-side W Phase 21 V _{CC(WH)} High-side Bias Voltage for W Phase IG 22 V _{B(W)} High-side Bias Voltage for W Phase IGBT Driving 23 V _{S(W)} High-side Bias Voltage Ground for W Phase IGBT Driving 24 V _{TH} Thermistor Bias Voltage 25 R _{TH} Series Resistor for the Use of Thermistor (Temperature Detection) 26 N _U Negative DC-Link Input for U Phase 27 N _V Negative DC-Link Input for V Phase 28 N _W Negative DC-Link Input for W Phase 29 U Output for U Phase 30 V Output for V Phase 31 W Output for W Phase	17	V _{CC(VH)}	High-side Bias Voltage for V Phase IC			
19	18		High-side Bias Voltage for V Phase IGBT Driving			
20 IN _(WH) Signal Input for High-side W Phase 21 V _{CC(WH)} High-side Bias Voltage for W Phase IC 22 V _{B(W)} High-side Bias Voltage for W Phase IGBT Driving 23 V _{S(W)} High-side Bias Voltage Ground for W Phase IGBT Driving 24 V _{TH} Thermistor Bias Voltage 25 R _{TH} Series Resistor for the Use of Thermistor (Temperature Detection) 26 N _U Negative DC-Link Input for U Phase 27 N _V Negative DC-Link Input for V Phase 28 N _W Negative DC-Link Input for W Phase 29 U Output for U Phase 30 V Output for V Phase 31 W Output for W Phase	19		High-side Bias Voltage Ground for V Phase IGBT Driving			
22 V _{B(W)} High-side Bias Voltage for W Phase IGBT Driving 23 V _{S(W)} High-side Bias Voltage Ground for W Phase IGBT Driving 24 V _{TH} Thermistor Bias Voltage 25 R _{TH} Series Resistor for the Use of Thermistor (Temperature Detection) 26 N _U Negative DC-Link Input for U Phase 27 N _V Negative DC-Link Input for V Phase 28 N _W Negative DC-Link Input for W Phase 29 U Output for U Phase 30 V Output for V Phase 31 W Output for W Phase	20		Signal Input for High-side W Phase			
23 V _{S(W)} High-side Bias Voltage Ground for W Phase IGBT Driving 24 V _{TH} Thermistor Bias Voltage 25 R _{TH} Series Resistor for the Use of Thermistor (Temperature Detection) 26 N _U Negative DC-Link Input for U Phase 27 N _V Negative DC-Link Input for V Phase 28 N _W Negative DC-Link Input for W Phase 29 U Output for U Phase 30 V Output for V Phase 31 W Output for W Phase	21	V _{CC(WH)}	High-side Bias Voltage for W Phase IC			
24 V _{TH} Thermistor Bias Voltage 25 R _{TH} Series Resistor for the Use of Thermistor (Temperature Detection) 26 N _U Negative DC-Link Input for U Phase 27 N _V Negative DC-Link Input for V Phase 28 N _W Negative DC-Link Input for W Phase 29 U Output for U Phase 30 V Output for V Phase 31 W Output for W Phase	22	$V_{B(W)}$	High-side Bias Voltage for W Phase IGBT Driving			
25 R _{TH} Series Resistor for the Use of Thermistor (Temperature Detection) 26 N _U Negative DC-Link Input for U Phase 27 N _V Negative DC-Link Input for V Phase 28 N _W Negative DC-Link Input for W Phase 29 U Output for U Phase 30 V Output for V Phase 31 W Output for W Phase	23	$V_{S(W)}$	High-side Bias Voltage Ground for W Phase IGBT Driving			
26 N _U Negative DC-Link Input for U Phase 27 N _V Negative DC-Link Input for V Phase 28 N _W Negative DC-Link Input for W Phase 29 U Output for U Phase 30 V Output for V Phase 31 W Output for W Phase	24	V_{TH}	Thermistor Bias Voltage			
27 N _V Negative DC-Link Input for V Phase 28 N _W Negative DC-Link Input for W Phase 29 U Output for U Phase 30 V Output for V Phase 31 W Output for W Phase	25	R _{TH}	Series Resistor for the Use of Thermistor (Temperature Detection)			
28 N _W Negative DC-Link Input for W Phase 29 U Output for U Phase 30 V Output for V Phase 31 W Output for W Phase	26		Negative DC-Link Input for U Phase			
29 U Output for U Phase 30 V Output for V Phase 31 W Output for W Phase	27	N _V	Negative DC–Link Input for V Phase			
30 V Output for V Phase 31 W Output for W Phase	28	N _W	Negative DC–Link Input for W Phase			
31 W Output for W Phase	29	U	Output for U Phase			
	30	V	Output for V Phase			
32 P Positive DC-Link Input	31	W	Output for W Phase			
	32	Р	Positive DC–Link Input			

Internal Equivalent Circuit and Input/Output Pins

Bottom View

- 1) Inverter low-side is composed of three sense-IGBTs including freewheeling diodes for each IGBT and one control IC which has gate driving, current sensing and protection functions.

 2) Inverter power side is composed of four inverter dc-link input pins and three inverter output pins.

 3) Inverter high-side is composed of three normal-IGBTs including freewheeling diodes and three drive ICs for each IGBT.

Fig. 3.

Absolute Maximum Ratings $(T_J = 25^{\circ}C, Unless Otherwise Specified)$

Inverter Part

Item	Symbol	Condition	Rating	Unit
Supply Voltage	V_{PN}	Applied between P- N _U , N _V , N _W	450	V
Supply Voltage (Surge)	V _{PN(Surge)}	Applied between P- N _U , N _V , N _W	500	V
Collector-Emitter Voltage	V _{CES}		600	V
Each IGBT Collector Current	± I _C	T _C = 25°C	15	Α
Each IGBT Collector Current	± I _C	T _C = 100°C	10	Α
Each IGBT Collector Current (Peak)	± I _{CP}	T _C = 25°C, Instantaneous Value (Pulse)	30	А
Collector Dissipation	P _C	T _C = 25°C per One Chip	46	W
Operating Junction Temperature T		(Note 1)	-20 ~ 125	°C

Control Part

Item	Symbol	Condition	Rating	Unit
Control Supply Voltage	V _{CC}	$ \begin{array}{l} \text{Applied between $V_{CC(UH)}$, $V_{CC(VH)}$, $V_{CC(WH)}$ - $COM_{(H)}$,} \\ V_{CC(L)}$ - $COM_{(L)}$ \end{array} $	20	V
High-side Control Bias Voltage	V _{BS}	Applied between $V_{B(U)}$ - $V_{S(U)}$, $V_{B(V)}$ - $V_{S(V)}$, $V_{B(W)}$ - $V_{S(W)}$	20	V
Input Signal Voltage	V _{IN}	Applied between $IN_{(UH)}$, $IN_{(VH)}$, $IN_{(WH)}$ - $COM_{(H)}$ $IN_{(UL)}$, $IN_{(VL)}$, $IN_{(WL)}$ - $COM_{(L)}$	-0.3~V _{CC} +0.3	V
Fault Output Supply Voltage	V_{FO}	Applied between V _{FO} - COM _(L)	-0.3~V _{CC} +0.3	V
Fault Output Current	I _{FO}	Sink Current at V _{FO} Pin	5	mA
Current Sensing Input Voltage	V_{SC}	Applied between C _{SC} - COM _(L)	-0.3~V _{CC} +0.3	V

Total System

Item	Symbol	Condition	Rating	Unit
Self Protection Supply Voltage Limit (Short-Circuit Protection Capability)	V _{PN(PROT)}	$V_{CC} = V_{BS} = 13.5 \sim 16.5V$ T _J = 25°C, Non-repetitive, less than 6μs	400	V
Module Case Operation Temperature	T _C	Note Fig.2	-20 ~ 100	°C
Storage Temperature	T _{STG}		-20 ~ 125	°C
Isolation Voltage	V _{ISO}	60Hz, Sinusoidal, AC 1 minute, Connection Pins to Heat-sink Plate	2500	V _{rms}

Note:

1. It would be recommended that the average junction temperature should be limited to $T_J \le 125^{\circ}C$ (@ $T_C \le 100^{\circ}C$) in order to guarantee safe operation.

Absolute Maximum Ratings

Thermal Resistance

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Junction to Case Thermal Resistance	R _{th(j-c)Q}	Each IGBT under Inverter Operating Condition	-	1	2.71	°C/W
	R _{th(j-c)F}	Each FWDi under Inverter Operating Condition	-	1	3.71	°C/W
Contact Thermal Resistance	R _{th(c-h)}	Ceramic Substrate (per 1 Module) Thermal Grease Applied (Note 3)	-	1	0.06	°C/W

- $\label{eq:Note:2} \textbf{Note:} \\ 2. \ \ \text{For the measurement point of case temperature}(T_C), \ please \ refer to \ Fig. \ 2. \\ 3. \ \ The \ thickness \ of \ thermal \ grease \ should \ not \ be \ more \ than \ 100 um. \\ \end{cases}$

Electrical Characteristics (T_J = 25°C, Unless Otherwise Specified)

Inverter Part

Item	Symbol	Condition	on	Min.	Тур.	Max.	Unit
Collector - Emitter Saturation Voltage	V _{CE(SAT)}	$V_{CC} = V_{BS} = 15V$ $V_{IN} = 0V$	I _C = 15A, T _J = 25°C	-	-	2.3	V
FWDi Forward Voltage	V_{FM}	V _{IN} = 5V	$I_C = 15A, T_J = 25^{\circ}C$	-	-	2.5	V
Switching Times	t _{ON}	$V_{PN} = 300V, V_{CC} = V_{BS} = 15V$		-	0.39	-	us
	t _{C(ON)}	I _C = 15A, T _J = 25°C		-	0.12	-	us
	t _{OFF}		$V_{IN} = 5V \leftrightarrow 0V$, Inductive Load		1.0	-	us
	t _{C(OFF)}	(High, Low-side)		-	0.6	-	us
	t _{rr}	(Note 4)		-	0.1	-	us
Collector - Emitter Leakage Current	I _{CES}	$V_{CE} = V_{CES}$, $T_{J} = 25$ °C		-	1	250	uA

4. t_{ON} and t_{OFF} include the propagation delay time of the internal drive IC. t_{C(ON)} and t_{C(OFF)} are the switching time of IGBT itself under the given gate driving condition internally. For the detailed information, please see Fig. 4.

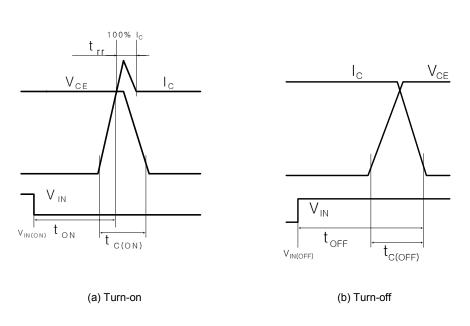


Fig. 4. Switching Time Definition

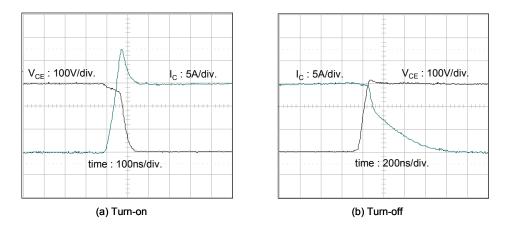


Fig. 5. Experimental Results of Switching Waveforms Test Condition: Vdc=300V, Vcc=15V, L=500uH (Inductive Load), T_J =25°C

Electrical Characteristics

Control Part (T_J = 25°C, Unless Otherwise Specified)

Item	Symbol		Condition	Min.	Тур.	Max.	Unit
Quiescent V _{CC} Supply Cur-	I _{QCCL}	V _{CC} = 15V	$V_{CC(L)}$ - $COM_{(L)}$	-	-	26	mA
rent		$IN_{(UL, VL, WL)} = 5V$					
	I _{QCCH}	$V_{CC} = 15V$ $IN_{(UH, VH, WH)} = 5V$	$V_{CC(UH)}$, $V_{CC(VH)}$, $V_{CC(WH)}$ - $COM_{(H)}$	-	-	130	uA
Quiescent V _{BS} Supply Current	I _{QBS}	V _{BS} = 15V IN _(UH, VH, WH) = 5V	V _{B(U)} - V _{S(U)} , V _{B(V)} -V _{S(V)} , V _{B(W)} - V _{S(W)}	-	-	420	uA
Fault Output Voltage	V _{FOH}	V _{SC} = 0V, V _{FO} Circuit		4.5	-	-	V
	V_{FOL}	V _{SC} = 1V, V _{FO} Circuit	: 4.7kΩ to 5V Pull-up	-	-	1.1	V
Short-Circuit Trip Level	V _{SC(ref)}	V _{CC} = 15V (Note 5)		0.45	0.51	0.56	V
Sensing Voltage of IGBT Current	V _{SEN}	$R_{SC} = 60\Omega$, $R_{SU} = R_{SV} = R_{SW} = 0 \Omega$ and $I_C = 22.5A$ (Note Fig. 7)		0.45	0.51	0.56	V
Supply Circuit Under-	UV _{CCD}	Detection Level		11.5	12	12.5	V
Voltage Protection	UV _{CCR}	Reset Level		12	12.5	13	V
	UV _{BSD}	Detection Level		7.3	9.0	10.8	V
	UV _{BSR}	Reset Level		8.6	10.3	12	V
Fault Output Pulse Width	t _{FOD}	C _{FOD} = 33nF (Note 6))	1.4	1.8	2.0	ms
ON Threshold Voltage	V _{IN(ON)}	High-Side	Applied between IN _(UH) , IN _(VH) ,	-	-	0.8	V
OFF Threshold Voltage	V _{IN(OFF)}		IN _(WH) - COM _(H)	3.0	-	-	V
ON Threshold Voltage	V _{IN(ON)}	Low-Side	Applied between IN _(UL) , IN _(VL) ,	-	-	0.8	V
OFF Threshold Voltage	V _{IN(OFF)}		IN _(WL) - COM _(L)	3.0	-	-	V
Resistance of Thermistor	R _{TH}	@ T _{TH} = 25°C (Note 7 and Fig. 6)		-	50	-	kΩ
		@ T _{TH} = 100°C (Note	7 and Fig. 6)	-	3.4	-	kΩ

- Note: 5. Short-circuit current protection is functioning only at the low-sides. It would be recommended that the value of the external sensing resistor (R_{SC}) should be selected around $60~\Omega$ in order to make the SC trip-level of about 22.5A at the shunt resistors (R_{SU},R_{SV},R_{SW}) of 0.0. For the detailed information about the relationship between the external sensing resistor (R_{SC}) and the shunt resistors ($R_{SU},R_{SV},R_{SW},R_{SW}$), please see Fig. 7.

 6. The fault-out pulse width t_{FOD} depends on the capacitance value of C_{FOD} according to the following approximate equation : C_{FOD} = $18.3 \times 10^{-6} \times t_{FOD}$ [F]

 7. T_{TH} is the temperature of thermistor itself. To know case temperature (T_{C}), please make the experiment considering your application.

Recommended Operating Conditions

lta	Symbol Condition			Unit		
ltem	Symbol	Condition	Min.	Тур.	Max.	Unit
Supply Voltage	V_{PN}	Applied between P - N _U , N _V , N _W	-	300	400	V
Control Supply Voltage	V _{CC}	$ \begin{array}{c} \text{Applied between V}_{\text{CC(UH)}}, \text{V}_{\text{CC(VH)}}, \text{V}_{\text{CC(WH)}} \text{-} \\ \text{COM}_{\text{(H)}}, \text{V}_{\text{CC(L)}} \text{-} \text{COM}_{\text{(L)}} \end{array} $	13.5	15	16.5	V
High-side Bias Voltage	V _{BS}	Applied between $V_{B(U)}$ - $V_{S(U)}$, $V_{B(V)}$ - $V_{S(V)}$, $V_{B(W)}$ - $V_{S(W)}$	13.5	15	16.5	V
Blanking Time for Preventing Arm-short	t _{dead}	For Each Input Signal	3	-	-	us
PWM Input Signal	f _{PWM}	$T_C \le 100^{\circ}C, T_J \le 125^{\circ}C$	-	3	-	kHz
Input ON Threshold Voltage	V _{IN(ON)}	$ \begin{array}{c} \text{Applied between IN}_{(\text{UH})}, \text{IN}_{(\text{VH})}, \text{IN}_{(\text{WH})} \text{-} \\ \text{COM}_{(\text{H})}, \text{IN}_{(\text{UL})}, \text{IN}_{(\text{VL})}, \text{IN}_{(\text{WL})} \text{-} \text{COM}_{(\text{L})} \end{array} $		0 ~ 0.65	5	V
Input OFF Threshold Voltage	V _{IN(OFF)}	$ \begin{array}{c} \text{Applied between IN}_{(\text{UH})}, \text{IN}_{(\text{VH})}, \text{IN}_{(\text{WH})} \text{-} \\ \text{COM}_{(\text{H})}, \text{IN}_{(\text{UL})}, \text{IN}_{(\text{VL})}, \text{IN}_{(\text{WL})} \text{-} \text{COM}_{(\text{L})} \end{array} $	4 ~ 5.5			V

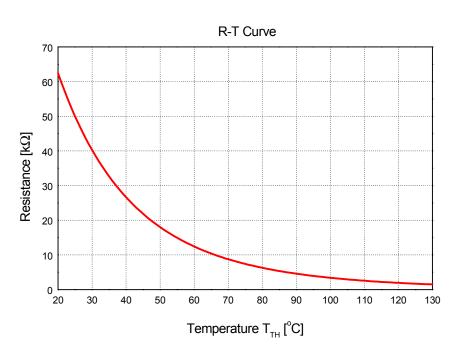


Fig. 6. R-T Curve of The Built-in Thermistor

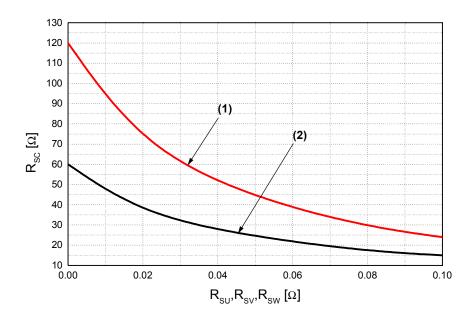


Fig. 7. R_{SC} Variation by change of Shunt Resistors (R_{SU}, R_{SV}, R_{SW}) for Short-Circuit Protection (1)@ around 100% Rated Current Trip (I_C = .15A) (2) @ around 150% Rated Current Trip (I_C = .22.5A)

Mechanical Characteristics and Ratings

Itam		Condition			Limits			
Item		Condition	Min.	Тур.	Max.	Unit		
Mounting Torque	Mounting Screw: M4	Recommended 10Kg•cm	8	10	12	Kg•cm		
	(Note 8 and 9)	Recommended 0.98N•m	0.78	0.98	1.17	N•m		
Ceramic Flatness		Note Fig.8	0	_	+120	um		
Weight			-	35	-	g		

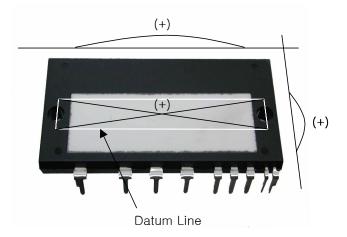
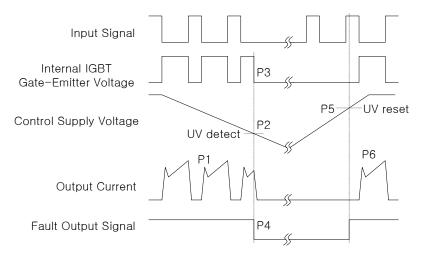


Fig. 8. Flatness Measurement Position of The Ceramic Substrate

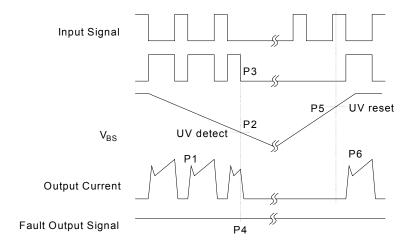
- Note:


 8. Do not make over torque or mounting screws. Much mounting torque may cause ceramic cracks and bolts and Al heat-fin destruction.

 9. Avoid one side tightening stress. Fig.9 shows the recommended torque order for mounting screws. Uneven mounting can cause the SPM ceramic substrate to

Fig. 9. Mounting Screws Torque Order

Time Charts of SPMs Protective Function

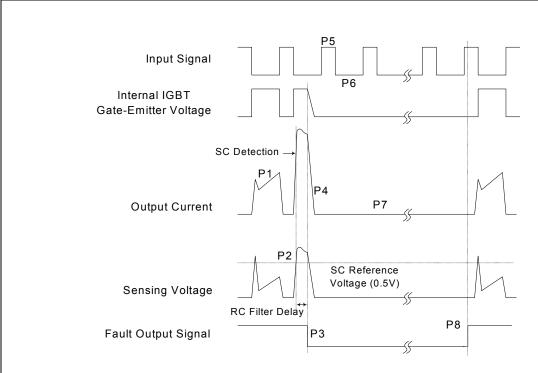


P1: Normal operation - IGBT ON and conducting current

P2 : Under-Voltage detection P3 : IGBT gate interrupt P4 : Fault signal generation P5 : Under-Voltage reset

P6: Normal operation - IGBT ON and conducting current

Fig. 10. Under-Voltage Protection (Low-side)


P1 : Normal operation - IGBT ON and conducting current

P2 : Under-Voltage detection P3 : IGBT gate interrupt

P4 : No fault signal P5 : Under-Voltage reset

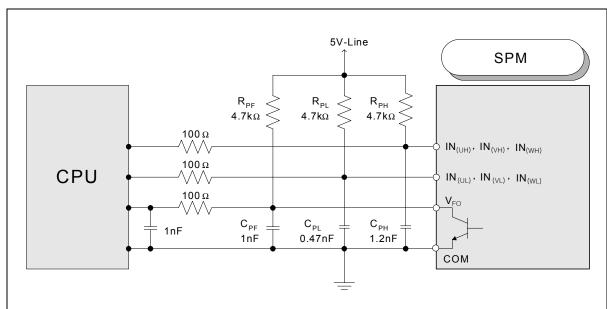
P6: Normal operation - IGBT ON and conducting current

Fig. 11. Under-Voltage Protection (High-side)

P1: Normal operation - IGBT ON and conducting current

P2 : Short-Circuit current detection

P3: IGBT gate interrupt / Fault signal generation

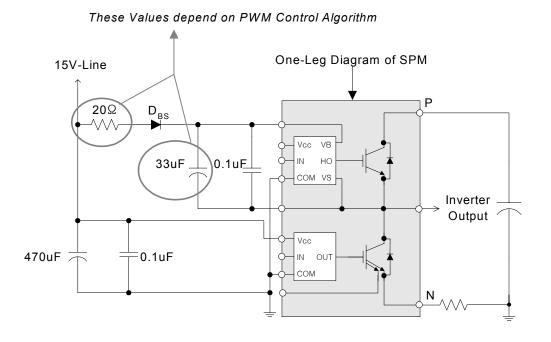

P4: IGBT is slowly turned off

P5 : IGBT OFF signal
P6 : IGBT ON signal - but IGBT cannot be turned on during the fault Output activation

P7 : IGBT OFF state

P8: Fault Output reset and normal operation start

Fig. 12. Short-Circuit Current Protection (Low-side Operation only)



Note:

- 1) It would be recommended that by-pass capacitors for the gating input signals, IN_(UL), IN_(UL), IN_(UL), IN_(UH), IN_(UH), IN_(UH), and IN_(WH) should be placed on the SPM pins and on the both sides of CPU and SPM for the fault output signal, V_{FO}, as close as possible.
 2) The logic input is compatible with standard CMOS or LSTTL outputs.
- 2) The logic imput is companied with standard civicos of LSTTE dupputs.

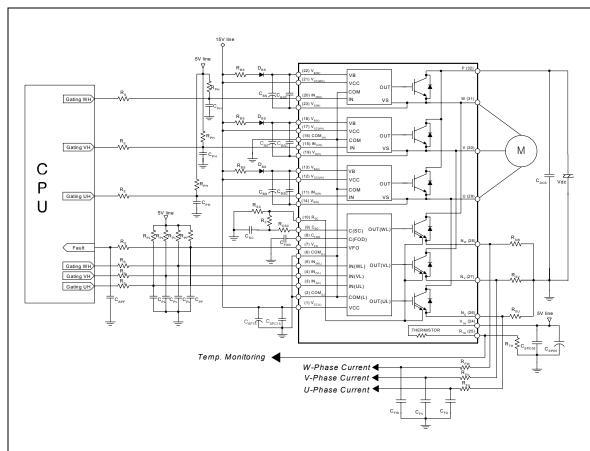

 3) R_{PL}C_{PL}/R_{PH}C_{PH}/R_{PF}C_{PF} coupling at each SPM input is recommended in order to prevent input/output signals' oscillation and it should be as close as possible to each of SPM pins.

Fig. 13. Recommended CPU I/O Interface Circuit

It would be recommended that the bootstrap diode, D_{BS}, has soft and fast recovery characteristics.

Fig. 14. Recommended Bootstrap Operation Circuit and Parameters

- 1) R_{PL}C_{PL}/R_{PH}C_{PH} /R_{PF}C_{PF} coupling at each SPM input is recommended in order to prevent input signals' oscillation and it should be as close as possible to each
- 2) By virtue of integrating an application specific type HVIC inside the SPM, direct coupling to CPU terminals without any opto-coupler or transformer isolation is
- V_{FO} output is open collector type. This signal line should be pulled up to the positive side of the 5V power supply with approximately 4.7k Ω resistance. Please refer to Fig. 15
- C_{SP15} of around 7 times larger than bootstrap capacitor C_{BS} is recommended.
- 5) V_{FO} output pulse width should be determined by connecting an external capacitor(C_{FOD}) between C_{FOD} (pin8) and $COM_{(L)}$ (pin2). (Example : if C_{FOD} = 33 nF, then t_{FO} = 1.8 ms (typ.)) Please refer to the note 6 for calculation method.
- 6) Each input signal line should be pulled up to the 5V power supply with approximately 4.7kΩ resistance (other RC coupling circuits at each input may be needed depending on the PWM control scheme used and on the wiring impedance of the system's printed circuit board). Approximately a 0.22-2nF by-pass capacitor should be used across each power supply connection terminals.

- To prevent errors of the protection function, the wiring around R_{SC}, R_F and C_{SC} should be as short as possible.
 In the short-circuit protection circuit, please select the R_FC_{SC} time constant in the range 3~4 μs.
 To enhance the noise immunity, C_{SC} pin should be connected to the external circuit through a series resistor, R_{CSC}, which is approximately 390Ω. R_{CSC} should be connected to $C_{\mbox{\footnotesize SC}}$ pin as close as possible.
- 10)Each capacitor should be mounted as close to the pins of the SPM as possible.
- 11)To prevent surge destruction, the wiring between the smoothing capacitor and the P&N pins should be as short as possible. The use of a high frequency non-inductive capacitor of around 0.1~0.22 uF between the P&N pins is recommended.
- 12)Relays are used at almost every systems of electrical equipments of home appliances. In these cases, there should be sufficient distance between the CPU and the relays. It is recommended that the distance be 5cm at least.

Fig. 15. Typical Application Circuit

Rev. D, August 2003 ©2003 Fairchild Semiconductor Corporation

Detailed Package Outline Drawings SPM32-AA 28x2.00 ±0.30=(56.0) (2.00) MAX1.05 MAX1.00 2.00 ±0.30 _0.60 ±0.10 0.60 ±0.10 0.40 0.40 28.0 ±0.30 04.30 36.05 ±0.50 31.0 ±0.50 (34.80)(17.00)13.6 ±0.30 dudid (3.30) 7.20 ±0.5 (46.60)12.30 ±0.5 53.0 ±0.30 60.0 ±0.50 3x7.62 ±0.30=(22.86) 11.0 ±0.30 3x4.0 ±0.30=(12.0) (10.14) 2.00 ±0.30 MAX8.20 MAX1.00 (3.50)0.80 MAX1.60 MAX3.20 MAX2.50 Dimensions in Millimeters

©2003 Fairchild Semiconductor Corporation

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

FACT Quiet Series™ LittleFET™ ACEx™ Power247™ SuperSOT™-6 MICROCOUPLER™ PowerTrench® ActiveArray™ SuperSOT™-8 FAST® Bottomless™ MicroFET™ **OFET®** SvncFET™ FASTr™ CoolFET™ QS^{TM} TinyLogic[®] $\mathsf{FRFET}^\mathsf{TM}$ MicroPak™ CROSSVOLT™ MICROWIRE™ QT Optoelectronics™ TINYOPTO™ GlobalOptoisolator™ TruTranslation™ DOME™ $\mathsf{GTO^{\mathsf{TM}}}$ Quiet Series™ MSX™ UHC™ EcoSPARK™ RapidConfigure™ HiSeC™ MSXPro™ UltraFET® E²CMOSTM I2CTM OCX^{TM} RapidConnect™ EnSigna™ SILENT SWITCHER® VCX^{TM} ImpliedDisconnect[™] OCXPro[™] FACT™ OPTOLOGIC® SMART START™ ISOPLANAR™ SPM™ Across the board. Around the world.™ OPTOPLANAR™ Stealth™ PACMAN™ The Power Franchise™ РОРТМ SuperSOT™-3

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS. NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

Programmable Active Droop™

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

Rev. I5