

High Voltage Rectifiers

 $V_{RRM} = 3200 V$ $I_{F(AV)M} = 22.9 A$

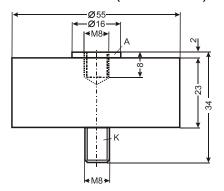
V _{RR}	Standard	d Power Designation
320	0 UGE 042	21 AY4 Si-E 1125 / 500-6

Symbol	Conditions		Ratings	
I _{F(RMS)}	air self cooling,	$T_{amb} = 45^{\circ}C$	40	A
		without cooling platewith colling plate	7.4 10.9	A A
	forced air cooling v = 3 m/s,	g: T _{amb} = 35°C - without cooling plate - with cooling plate	14.2 18.8	A A
	oil cooling,	T _{amb} = 35°C - without cooling plate - with cooling plate	19.7 22.9	A A
P _{RSM}	T _(vj) = 150°C;	t _p = 10 μs	7	kW
I _{FSM}	non repetitive, 50 $T_{(vj)} = 45^{\circ}C$;	0 c/s (for 60 c/s add 10%) t _p = 10 ms	300	А
	$T_{(vj)} = 150^{\circ}C;$	$t_p = 10 \text{ ms}$	250	Α
T _{amb} T _{stg} T _(vj)			-40+150 -40+150 150	°C °C °C
Weight			115	g

Symbol	Conditions		Characteristic	Values
I _R	T _(vj) = 150°C;	$V_R = V_{RRM}$	≤ 2	mA
V _F	$I_F = 55 \text{ A}$ $T_{(vj)} = 25^{\circ}\text{C}$		2.72	V
V _{TO}	$T_{(vj)} = 150^{\circ}C$ $T_{(vj)} = 150^{\circ}C$		1.7 16	V mΩ
а	f = 50Hz		5 x 9,81	m/s ²
M _d			8	Nm

Features

- · Hermetically sealed Epoxy
- Use in oil
- · Avalanche characteristics


Applications

- X-Ray equipment
- · Electrostatic dust precipitators
- · Electronic beam welding
- Lasers
- · Cable test equipment

Advantages

- Simple mounting
- Improved temperature and power cycling
- Reduced protection circuits
- Series and parallel operation

Dimensions in mm (1 mm = 0.0394")

Data according to IEC 60747-2

IXYS reserve the right to change limits, test conditions and dimensions.

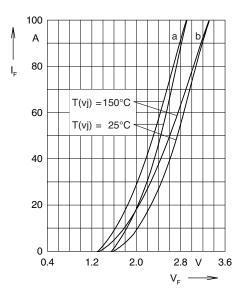


Fig. 1: Forward characteristics

Instantaneous forward current I $_{\rm F}$ as a function of instantaneous forward voltage drop V $_{\rm F}$ for junction temperature T $_{\rm (vj)}=25^{\circ}{\rm C}$ and T $_{\rm (vj)}=150^{\circ}{\rm C}$ a = Mean value characteristic

b = Limit value characteristic

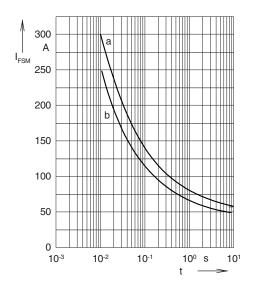


Fig. 2: Characteristics of maximum permissible current

The curves show the non repetitive peak one cycle surge forward current $I_{\rm FSM}$ as a function of time t and serve for rating protective devices.

 $\begin{array}{ll} a = Initial \; state & \qquad T_{(vj)} = \; 45^{\circ}C \\ b = Initial \; state & \qquad T_{(vj)} = \; 150^{\circ}C \\ \end{array}$

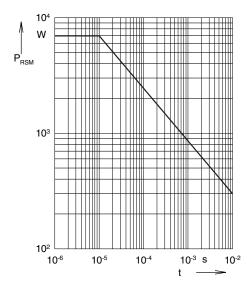


Fig. 3: Power loss

Non repetitive peak reverse power loss $P_{\rm RSM}$ as a function of time t, $T_{\rm (vj)} = 150 {\rm ^{\circ}C}$

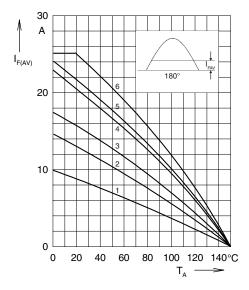


Fig. 4: Load diagramm

Mean forward current $I_{F(AV)}$ of <u>one</u> module for a sine half wave for various cooling modes as a function of the cooling medium temperature T_{amb} for a resistive load (horizontal mounting).

Cooling modes

1 = air self cooling	without	cooling plate
2 = air self cooling	with	cooling plate
3 = forced air cooling	without	cooling plate
4 = forced air cooling	with	cooling plate
5 = oil cooling	without	cooling plate
6 = oil cooling	with	cooling plate