

DHG 50 X 1200 NA

 $I_{FAV} = 2x \quad 25 \text{ A}$

=

1200 V

tentative

Sonic Fast Recovery Diode

High Performance Fast Recovery Diode Low Loss and Soft Recovery Parallel legs

DHG 50 X 1200 NA

Features / Advantages:

- Planar passivated chips
- Very low leakage current
- Very short recovery time
- Improved thermal behaviour
- Very low Irm-values
- Very soft recovery behaviour
- Avalanche voltage rated for reliable operation
- Soft reverse recovery for low EMI/RFI
 Low Irm reduces:
- Power dissipation within the diode
- Turn-on loss in the commutating switch

Applications:

- Antiparallel diode for high frequency
- switching devices
- Antisaturation diode
- Snubber diode
- Free wheeling diode
- Rectifiers in switch mode power supplies (SMPS)
- Uninterruptible power supplies (UPS)

75 ns

Backside: Isolated

Package:

 $V_{RRM} =$

t ...

- Housing: SOT-227B (minibloc)
- Industry standard outline
- Cu base plate internal DCB isolated
- Isolation Voltage 3000 V
- UL registered E 72873
- Epoxy meets UL 94V-0
- RoHS compliant

				Ratings			
Symbol	Definition	Conditions		min.	typ.	max.	Unit
V _{RRM}	max. repetitive reverse voltage		$T_{vJ} = 25^{\circ}C$			1200	V
I _R	reverse current	V _R = 1200 V	$T_{vJ} = 25^{\circ}C$			50	μA
		V _R = 1200 V	T _{vJ} = 125°C			2	mA
V _F	forward voltage	I _F = 25A	$T_{vJ} = 25^{\circ}C$			2.12	V
		$I_F = 50 A$				2.70	V
		$I_F = 25A$	T _{vJ} = 125°C			2.00	V
		$I_F = 50 A$				2.73	V
I _{FAV}	average forward current	rectangular d = 0.5	$T_c = 70^{\circ}C$			25	Α
V _{F0}	threshold voltage		T _{vJ} = 150°C			1.17	V
r _F	slope resistance } for power loss of				28.8	mΩ	
R _{thJC}	thermal resistance junction to case					1.20	K/W
T _{vj}	virtual junction temperature			-55		150	°C
P _{tot}	total power dissipation		$T_c = 25^{\circ}C$			100	W
I _{FSM}	max. forward surge current	t = 10 ms (50 Hz), sine	$T_{vJ} = 45^{\circ}C$			180	Α
I _{RM}	max. reverse recovery current		$T_{vJ} = 25^{\circ}C$		25		Α
		$I_F = 25 A; V_R = 800 V$	T _{vJ} = °C		tbd		Α
t _{rr}	reverse recovery time	-di _F /dt = 1000 A/µs	$T_{vJ} = 25^{\circ}C$		75		ns
			T _{VJ} = °C		tbd		ns
C	junction capacitance	V_{R} = 600 V; f = 1 MHz	$T_{vJ} = 25^{\circ}C$		11		pF

IXYS reserves the right to change limits, conditions and dimensions.

20090323

© 2009 IXYS all rights reserved

DHG 50 X 1200 NA

tentative

Symbol	Definition		Ratings				
		Conditions	min.	typ.	max.	Unit	
I _{RMS}	RMS current	per pin ¹⁾			100	Α	
R _{thCH}	thermal resistance case to hea	tsink		0.10		K/W	
T _{stg}	storage temperature		-55		150	°C	
Weight				30		g	
M _D	mounting torque		1.1		1.5	Nm	
M _T	terminal torque		1.1		1.5	Nm	
	isolation voltage	t = 1 second	3000			V	
		t = 1 minute	2500			V	
ds	creapage distance on surface		8			mm	
d⊾	striking distance through air		4			mm	

 $^{1\!\!\!0}$ I_{RMS} is typically limited by: 1. pin-to-chip resistance; or by 2. current capability of the chip.

In case of 1, a common cathode/anode configuration and a non-isolated backside, the whole current capability can be used by connecting the backside.

Part number

- D = Diode
- H = Sonic Fast Recovery Diode
- G = extreme fast
- 50 = Current Rating [A] X = Parallel legs
- 1200 = Reverse Voltage [V]
- NA = SOT-227B (minibloc)

Product Marking

Ordering	Part Name	Marking on Product	Delivering Mode	Base Qty	Code Key
Standard	DHG 50 X 1200 NA	DHG50X1200NA	Tube	10	507766

© 2009 IXYS all rights reserved

DHG 50 X 1200 NA

tentative

IXYS reserves the right to change limits, conditions and dimensions.

20090323