technologies

Wireless Components

ASK/FSK Transmitter 915 MHz
TDA 5102 Version 1.1

Specification October 2001

Revision History		
Current Version: 1.1 as of October 2001		
Previous Version: 1.0, March 2001		
Page (in previous Version)	Page (in current Version)	Subjects (major changes since last revision)
$2-2,5-3,5-6$	$2-2,5-3,5-6$	Frequency range increased
$3-3 \ldots 3-6$	$3-3 \ldots 3-6$	ESD-structures added to interface schematics
$3-10,5-3$	$3-10,5-3$	Typical value for Power-Down-Mode current added
$4-8 \ldots 4-10$		Description of Application board deleted
$5-2$	$5-2$	Supply voltage range added to Absolute Maximum Ratings
$5-2$	$5-2$	ESD integrity specified in detail
$5-3,5-6$	$5-3,5-6$	Loop filter voltages adapted
$5-4,5-7$	$5-4,5-7$	Saturation voltage of Clock Driver Output reduced
$5-5,5-8$	$5-5,5-8$	Output Power Tolerances reduced

 2, $\mathrm{SICOF}^{\circledR}-4$, SICOF $^{\circledR}-4 \mu \mathrm{C}$, $\mathrm{SLICOFI}^{\circledR}$ are registered trademarks of Infineon Technologies AG.
ACE $^{T M}$, ASM $^{T M}$, ASP $^{T M}$, POTSWIRE ${ }^{T M}$, QuadFALC ${ }^{T M}$, SCOUT ${ }^{m M}$ are trademarks of Infineon Technologies AG.

Edition 15.02.2001
Published by Infineon Technologies AG,
Balanstraße 73,
81541 München
© Infineon Technologies AG 2001.
All Rights Reserved.
Attention please!
As far as patents or other rights of third parties are concerned, liability is only assumed for components, not for applications, processes and circuits implemented within components or assemblies.
The information describes the type of component and shall not be considered as assured characteristics.
Terms of delivery and rights to change design reserved.
Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.
Infineon Technologies AG is an approved CECC manufacturer.

Packing

Please use the recycling operators known to you. We can also help you - get in touch with your nearest sales office. By agreement we will take packing material back, if it is sorted. You must bear the costs of transport.
For packing material that is returned to us unsorted or which we are not obliged to accept, we shall have to invoice you for any costs incurred.

Components used in life-support devices or systems must be expressly authorized for such purpose!

Critical components ${ }^{1}$ of the Infineon Technologies AG, may only be used in life-support devices or systems ${ }^{2}$ with the express written approval of the Infineon Technologies AG.
1 A critical component is a component used in a life-support device or system whose failure can reasonably be expected to cause the failure of that lifesupport device or system, or to affect its safety or effectiveness of that device or system.
2 Life support devices or systems are intended (a) to be implanted in the human body, or (b) to support and/or maintain and sustain human life. If they fail, it is reasonable to assume that the health of the user may be endangered.

Table of Contents

1 Table of Contents 1-i
2 Product Description 2-1
2.1 Overview 2-2
2.2 Applications 2-2
2.3 Features 2-2
2.4 Package Outlines 2-3
3 Functional Description 3-1
3.1 Pin Configuration 3-2
3.2 Pin Definitions and Functions 3-3
3.3 Functional Block diagram 3-7
3.4 Functional Blocks 3-8
4 Applications 4-1
4.1 50 Ohm-Output Testboard Schematic 4-2
4.2 50 Ohm-Output Testboard Layout 4-3
4.3 Bill of material (50 Ohm-Output Testboard) 4-4
4.4 Hints 4-5
5 Reference 5-1
5.1 Absolute Maximum Ratings 5-2
5.2 Operating Range 5-2
5.3 AC/DC Characteristics 5-3

Product Info

General Description

The TDA 5102 is a single chip ASK/ FSK transmitter for the frequency band $905-925 \mathrm{MHz}$. The IC offers a high level of integration and needs only a few external components. The device contains a fully integrated PLL synthesizer and a high efficiency power amplifier to drive a loop antenna. A special circuit design and an unique power amplifier design are used to save current consumption and therefore to save battery life. Additionally features like a power down mode, a low power detect, a selectable crystal oscillator frequency and a divided clock output are implemented. The IC can be used for both ASK and FSK modulation.

Features	- fully integrated frequency synthesizer - VCO without external components - high efficiency power amplifier - frequency range $905-925 \mathrm{MHz}$ - ASK/FSK modulation - low supply current (typically 7 mA) ■ voltage supply range 2.1-4 V	- power down mode - low voltage sensor - selectable crystal oscillator 7.15 MHz/14.3 MHz - programmable divided clock output for $\mu \mathrm{C}$ - low external component count
Applications	- Keyless entry systems - Remote control systems	- Alarm systems - Communication systems

Ordering Information

available on tape and reel

Product Description

Contents of this Chapter

2.1 Overview 2-2
2.2 Applications 2-2
2.3 Features 2-2
2.4 Package Outlines 2-3

2.1 Overview

The TDA 5102 is a single chip ASK/FSK transmitter for the frequency band 905925 MHz . The IC offers a high level of integration and needs only a few external components. The device contains a fully integrated PLL synthesizer and a high efficiency power amplifier to drive a loop antenna. A special circuit design and an unique power amplifier design are used to save current consumption and therefore to save battery life. Additional features like a power down mode, a low power detect, a selectable crystal oscillator frequency and a divided clock output are implemented. The IC can be used for both ASK and FSK modulation.

2.2 Applications

■ Keyless entry systems

- Remote control systems
- Alarm systems
- Communication systems

2.3 Features

- fully integrated frequency synthesizer
- VCO without external components
- high efficiency power amplifier
- frequency range $905-925 \mathrm{MHz}$
- ASK/FSK modulation
- low supply current (typically 7 mA)

■ voltage supply range 2.1-4 V

- power down mode

■ low voltage sensor

- selectable crystal oscillator 7.15 MHz/14.3 MHz
- programmable divided clock output for $\mu \mathrm{C}$
- low external component count

2.4 Package Outlines

Figure 2-1 $\quad \mathrm{P}$-TSSOP-16

3 Functional Description

Contents of this Chapter

3.1 Pin Configuration 3-2
3.2 Pin Definitions and Functions 3-3
3.3 Functional Block diagram 3-7
3.4 Functional Blocks 3-8
3.4.1 PLL Synthesizer 3-8
3.4.2 Crystal Oscillator 3-8
3.4.3 Power Amplifier 3-9
3.4.4 Low Power Detect 3-10
3.4.5 Power Modes 3-10
3.4.5.1 Power Down Mode 3-10
3.4.5.2 PLL Enable Mode 3-10
3.4.5.3 Transmit Mode 3-10
3.4.5.4 Power mode control. 3-10
3.4.6 Recommended timing diagrams for ASK- and FSK-Modulation 3-12

3.1 Pin Configuration

Figure 3-1 IC Pin Configuration

Pin No.	Symbol	Function
1	PDWN	Power Down Mode Control
2	LPD	Low Power Detect Output
3	VS	Voltage Supply
4	LF	Loop Filter
5	GND	Ground
6	ASKDTA	Amplitude Shift Keying Data Input
7	FSKDTA	Frequency Shift Keying Data Input
8	CLKOUT	Clock Driver Output
9	CLKDIV	Clock Divider Control
10	COSC	Crystal Oscillator Input
11	FSKOUT	Frequency Shift Keying Switch Output
12	FSKGND	Frequency Shift Keying Ground
13	PAGND	Power Amplifier Ground
14	PAOUT	Power Amplifier Output
15	FSEL	Frequency Range Selection: Has to be left open for 915 MHz operation
16	CSEL	Crystal Frequency Selection (7.15 or 14.3 MHz)

TDA 5102

Functional Description

3.2 Pin Definitions and Functions

Table 3-2

No. Symbol | Disable pin for the complete transmitter cir- |
| :--- |
| cuit. |

(FF

Functional Description
8 CLKOUT

12 FSKGND | Ground connection for FSK modulation out- |
| :--- |
| put FSKOUT. |

3.3 Functional Block diagram

Funct_Block_Diagram.wmf
Figure 3-2 Functional Block diagram

3.4 Functional Blocks

3.4.1 PLL Synthesizer

The Phase Locked Loop synthesizer consists of a Voltage Controlled Oscillator (VCO), an asynchronous divider chain, a phase detector, a charge pump and a loop filter. It is fully implemented on chip. The tuning circuit of the VCO consisting of spiral inductors and varactor diodes is on chip, too. Therefore no additional external components are necessary. The nominal center frequency of the VCO is 915 MHz . The oscillator signal is fed both, to the synthesizer divider chain and to the power amplifier. The overall division ratio of the asynchronous divider chain is 128 in case of a 7.15 MHz crystal or 64 in case of a 14.3 MHz crystal and can be selected via CSEL (pin 16). The phase detector is a Type IV PD with charge pump. The passive loop filter is realized on chip.

3.4.2 Crystal Oscillator

The crystal oscillator operates either at 7.15 MHz or at 14.3 MHz .
The reference frequency can be chosen by the signal at CSEL (pin 16).

Table 3-3

CSEL (pin 16)	Crystal Frequency
Low $^{1)}$	7.15 MHz
Open $^{2)}$	14.3 MHz

1) Low: Voltage at pin $<0.2 \mathrm{~V}$
2) Open: Pin open

For both quartz frequency options, 894 kHz or 3.57 MHz are available as output frequencies of the clock output CLKOUT (pin 8) to drive the clock input of a micro controller.
The frequency at CLKOUT (pin 8) is controlled by the signal at CLKDIV (pin 9)

Functional Description

To achieve FSK transmission, the oscillator frequency can be detuned by a fixed amount by switching an external capacitor via FSKOUT (pin 11).
The condition of the switch is controlled by the signal at FSKDTA (pin 7).

Table 3-5	FSK Switch
Low (pin7)	CLOSED
Open $^{2)}$, High $^{3)}$	OPEN

1) Low: Voltage at pin $<0.5 \mathrm{~V}$
2) Open: Pin open
3) High: Voltage at pin $>1.5 \mathrm{~V}$

3.4.3 Power Amplifier

For operation at 915 MHz , the power amplifier is fed directly from the voltage controlled oscillator. It is possible to feed the power amplifier with the VCO frequency divided by 2. This is controlled by FSEL (pin 15) as described in the table below.

Table 3-6	
FSEL (pin 15)	Radiated Frequency Band
Low $^{1)}$	457 MHz
Open $^{2)}$	915 MHz

1) Low: Voltage at pin $<0.5 \mathrm{~V}$
2) Open: Pin open

The Power Amplifier can be switched on and off by the signal at ASKDTA (pin 6).

Table 3-7	Power Amplifier
ASKDTA (pin 6)	OFF
Low $^{1)}$	ON
Open $^{2)}$, High 31	

1) Low: Voltage at pin $<0.5 \mathrm{~V}$
2) Open: Pin open
3) High: Voltage at pin $>1.5 \mathrm{~V}$

The Power Amplifier has an Open Collector output at PAOUT (pin 14) and requires an external pull-up coil to provide bias. The coil is part of the tuning and matching LC circuitry to get best performance with the external loop antenna. To achieve the best power amplifier efficiency, the high frequency voltage swing at PAOUT (pin 14) should be twice the supply voltage.
The power amplifier has its own ground pin PAGND (pin 13) in order to reduce the amount of coupling to the other circuits.

3.4.4 Low Power Detect

The supply voltage is sensed by a low power detector. When the supply voltage drops below 2.15 V, the output LPD (pin 2) switches to the low-state. To minimize the external component count, an internal pull-up current of $40 \mu \mathrm{~A}$ gives the output a high-state at supply voltages above 2.15 V .
The output LPD (pin 2) can either be connected to ASKDTA (pin 6) to switch off the PA as soon as the supply voltage drops below 2.15 V or it can be used to inform a micro-controller to stop the transmission after the current data packet.

3.4.5 Power Modes

The IC provides three power modes, the POWER DOWN MODE, the PLL ENABLE MODE and the TRANSMIT MODE.

3.4.5.1 Power Down Mode

In the POWER DOWN MODE the complete chip is switched off.
The current consumption is typically 0.3 nA at $3 \mathrm{~V} 25^{\circ} \mathrm{C}$.

3.4.5.2 PLL Enable Mode

In the PLL ENABLE MODE the PLL is switched on but the power amplifier is turned off to avoid undesired power radiation during the time the PLL needs to settle. The turn on time of the PLL is determined mainly by the turn on time of the crystal oscillator and is typically less than 1 msec , depending on the crystal.

The current consumption is typically 3.5 mA .

3.4.5.3 Transmit Mode

In the TRANSMIT MODE the PLL is switched on and the power amplifier is turned on too.

The current consumption of the IC is typically 7 mA when using a proper transforming network at PAOUT, see Figure 4-1.

3.4.5.4 Power mode control

The bias circuitry is powered up via a voltage $\mathrm{V}>1.5 \mathrm{~V}$ at the pin PDWN (pin 1). When the bias circuitry is powered up, the pins ASKDTA and FSKDTA are pulled up internally.
Forcing the voltage at the pins low overrides the internally set state.
Alternatively, if the voltage at ASKDTA or FSKDTA is forced high externally, the PDWN pin is pulled up internally via a current source. In this case, it is not necessary to connect the PDWN pin, it is recommended to leave it open.

The principle schematic of the power mode control circuitry is shown in Figure 3-5.

Power_Mode.wmf
Figure 3-5 Power mode control circuitry

Table 3-8 provides a listing of how to get into the different power modes

Table 3-8			
PDWN	FSKDTA	ASKDTA	MODE
Low ${ }^{1)}$	Low, Open	Low, Open	POWER DOWN
Open ${ }^{2)}$	Low	Low	
High ${ }^{3)}$	Low, Open, High	Low	PLL ENABLE
Open	High	Low	
High	Low, Open, High	Open, High	TRANSMIT
Open	High	Open, High	
Open	Low, Open, High	High	
1) Low:	Voltage at pin $<0.7 \mathrm{~V}$ (PDWN) Voltage at pin $<0.5 \mathrm{~V}$ (FSKDTA, ASKDTA)		
2) Open:	Pin open		
3) High:	Voltage at pin $>1.5 \mathrm{~V}$		

Other combinations of the control pins PDWN, FSKDTA and ASKDTA are not recommended.
3.4.6 Recommended timing diagrams for ASK- and FSK-Modulation

ASK Modulation using FSKDTA and ASKDTA, PDWN not connected

ASK_mod.wmf
Figure 3-6 ASK Modulation
FSK Modulation using FSKDTA and ASKDTA, PDWN not connected

FSK_mod.wmf
Figure 3-7 FSK Modulation
echnologies
Functional Description

Alternative ASK Modulation, FSKDTA not connected.

Alt_ASK_mod.wmf
Figure 3-8 Alternative ASK Modulation

Alternative FSK Modulation

Figure 3-9 Alternative FSK Modulation

4 Applications

Contents of this Chapter

4.1 50 Ohm-Output Testboard Schematic
 4-2

4.2 50 Ohm-Output Testboard Layout 4-3
4.3 Bill of material (50 Ohm-Output Testboard) 4-4
4.4 Hints 4-5

4.1 50 Ohm-Output Testboard Schematic

50ohm_test_v5.wmf
Figure 4-1 50Ω-Output testboard schematic

4.2 50 Ohm-Output Testboard Layout

Oben (3.00 09/14/99 tda5100_v5.tc)
Figure 4-2 Top Side of TDA 5102-Testboard with 50Ω-Output. It is the same testboard as for the TDA 5100.

Unten (3.00 09/14/99 tda5100_v5.tc)
Figure 4-3 Bottom Side of TDA 5102-Testboard with 50Ω-Output. It is the same testboard as for the TDA 5100.

TDA 5102

4.3 Bill of material (50 Ohm-Output Testboard)

Table 4-1	Bill of material		Specification
Part	ASK	FSK	
	915 MHz	915 MHz	
R1	$4.7 \mathrm{k} \Omega$	$4.7 \mathrm{k} \Omega$	0805, $\pm 5 \%$
R2		$12 \mathrm{k} \Omega$	0805, $\pm 5 \%$
R3A	$15 \mathrm{k} \Omega$		0805, $\pm 5 \%$
R3F		$15 \mathrm{k} \Omega$	0805, $\pm 5 \%$
R4	open	open	0805, $\pm 5 \%$
C1	47 nF	47 nF	0805, X7R, $\pm 10 \%$
C2	47 pF	47 pF	0805, COG, $\pm 5 \%$
C3	2.7 pF	2.7 pF	0805, COG, ± 0.1 pF
C4	100 pF	100 pF	0805, COG, $\pm 5 \%$
C5	1 nF	1 nF	0805, X7R, $\pm 10 \%$
C6	5.6 pF	5.6 pF	0805, COG, ± 0.1 pF
C7	0Ω Jumper	47 pF	0805, COG, $\pm 5 \%$ 0805, 0Ω Jumper
C8	8.2 pF	8.2 pF	0805, COG, $\pm 5 \%$
L1	33 nH	33 nH	TOKO LL2012-J
L2	15 nH	15 nH	TOKO LL1608-J
Q3	14.3 MHz	14.3 MHz	
IC1	TDA 5102	TDA 5102	
B1	Battery clip	Battery clip	HU2031-1, RENATA
T1	Push-button	Push-button	replaced by a short
X1	SMA-S	SMA-S	SMA standing
X2	SMA-S	SMA-S	SMA standing

4.4 Hints

1. Application Hints on the crystal oscillator

As mentioned before, the crystal oscillator achieves a turn on time less than 1 msec . To achieve this, a NIC oscillator type is implemented in the TDA 5102. The input impedance of this oscillator is a negative resistance in series to an inductance. Therefore the load capacitance of the crystal CL (specified by the crystal supplier) is transformed to the capacitance Cv.

$$
C v=\frac{1}{\frac{1}{C L}+\omega^{2} L}
$$

Formula 1)

CL: crystal load capacitance for nominal frequency
ω : angular frequency
L : inductivity of the crystal oscillator

Example for the ASK-Mode:

Referring to the application circuit, in ASK-Mode the capacitance C7 is replaced by a short to ground. Assume a crystal frequency of 14.3 MHz and a crystal load capacitance of $C L=20 \mathrm{pF}$. The inductance L is specified within the electrical characteristics at 14.3 MHz to a value of $11 \mu \mathrm{H}$. Therefore C 6 is calculated to 7.2 pF .

$$
C v=\frac{1}{\frac{1}{C L}+\omega^{2} L}=C 6
$$

Example for the FSK-Mode:

FSK modulation is achieved by switching the load capacitance of the crystal as shown below.

The frequency deviation of the crystal oscillator is multiplied with the divider factor N of the Phase Locked Loop to the output of the power amplifier. In case of small frequency deviations (up to $+/-1000 \mathrm{ppm}$), the two desired load capacitances can be calculated with the formula below.

$$
C L \pm=\frac{C L \mp C 0 \frac{\Delta f}{N^{*} f 1}\left(1+\frac{2(C 0+C L)}{C 1}\right)}{1 \pm \frac{\Delta f}{N^{*} f 1}\left(1+\frac{2(C 0+C L)}{C 1}\right)}
$$

C_{L} : crystal load capacitance for nominal frequency
C_{0} : shunt capacitance of the crystal
f: frequency
ω : $\quad \omega=2 \pi \mathrm{f}$: angular frequency
N : division ratio of the PLL
df: peak frequency deviation
Because of the inductive part of the TDA 5102, these values must be corrected by formula 1). The value of $\mathrm{Cv} \pm$ can be calculated.

If the FSK switch is closed, Cv- is equal to Cv1 (C6 in the application diagram). If the FSK switch is open, Cv2 (C7 in the application diagram) can be calculated.

$$
C v 2=C 7=\frac{C s w * C v 1-(C v+) *(C v 1+C s w)}{(C v+)-C v 1}
$$

Csw: parallel capacitance of the FSK switch (3 pF)

Remark: These calculations are only approximations. The necessary values depend on the layout also and must be adapted for the specific application board.

2. Design hints on the buffered clock output (CLKOUT)

The CLKOUT pin is an open collector output. An external pull up resistor (RL) should be connected between this pin and the positive supply voltage. The value of RL is depending on the clock frequency and the load capacitance CLD (PCB board plus input capacitance of the microcontroller). RL can be calculated to:

$$
R L=\frac{1}{f C L K O U T * 8 * C L D}
$$

Table 4-2	fCLKOUT= 894 kHz	fCLKOUT $=$ 3.57 MHz	
CLD[pF]	RL[kOhm]	CLD[pF]	RL[kOhm]
5	27	5	6.8
10	12	10	3.3
20	6.8	20	1.8

Remark: To achieve a low current consumption and a low spurious radiation, the largest possible RL should be chosen.

5 Reference

Contents of this Chapter

5.1 Absolute Maximum Ratings 5-2
5.2 Operating Range 5-2
5.3 AC/DC Characteristics 5-3
5.3.1 AC/DC Characteristics at $3 \mathrm{~V}, 25^{\circ} \mathrm{C}$ 5-3
5.3.2 AC/DC Characteristics at $2.1 \mathrm{~V} . .4 .0 \mathrm{~V},-25^{\circ} \mathrm{C} . . .+85^{\circ} \mathrm{C}$. 5-6

5.1 Absolute Maximum Ratings

The AC / DC characteristic limits are not guaranteed. The maximum ratings must not be exceeded under any circumstances, not even momentarily and individually, as permanent damage to the IC may result.

Table 5-1					
Parameter	Symbol	Limit Values		Unit	Remarks
		Min	Max		
Junction Temperature	T_{J}	-40	150	${ }^{\circ} \mathrm{C}$	
Storage Temperature	T_{s}	-40	125	${ }^{\circ} \mathrm{C}$	
Thermal Resistance	$\mathrm{R}_{\text {thJA }}$		230	K/W	
Supply voltage	V_{S}	-0.3	4.0	V	
ESD integrity, all pins	$V_{\text {ESD }}$	-1	+1	kV	$100 \mathrm{pF}, 1500 \Omega$
ESD integrity, pins 11 and 14 not tested	$\mathrm{V}_{\text {ESD }}$	-2	+2	kV	$100 \mathrm{pF}, 1500 \Omega$

Ambient Temperature under bias: $\mathrm{T}_{\mathrm{A}}=-25$ to $+85^{\circ} \mathrm{C}$

5.2 Operating Range

Within the operational range the IC operates as described in the circuit description.

Table 5-2					
Parameter	Symbol	Limit Values		Unit	Test Conditions
		Min	Max		
Supply voltage	V_{S}	2.1	4.0	V	
Ambient temperature	$\mathrm{T}_{\text {A }}$	-25	85	${ }^{\circ} \mathrm{C}$	

TDA 5102

5.3 AC/DC Characteristics

5.3.1 AC/DC Characteristics at $3 \mathrm{~V}, 25^{\circ} \mathrm{C}$

Parameter	Symbol	Limit Values		Max	Unit	Test Conditions
		Min	Typ			
Current consumption						
Power down mode	IS PDWN		0.3	100	nA	$\begin{aligned} & \mathrm{V}(\text { Pins } 1,6 \text {, and } 7) \\ & <0.2 \mathrm{~V} \end{aligned}$
PLL enable mode	IS PLL_EN		3.3	4.2	mA	
Transmit mode	$I_{\text {StRANSM }}$		7	9	mA	Load tank see Figure 4-1
Power Down Mode Control (Pin 1)						
Power down mode	$\mathrm{V}_{\text {PDWN }}$	0		0.7	V	$\begin{aligned} & \mathrm{V}_{\text {ASKDTA }}<0.2 \mathrm{~V} \\ & \mathrm{~V}_{\text {FSKDTA }}<0.2 \mathrm{~V} \end{aligned}$
PLL enable mode	$\mathrm{V}_{\text {PDWN }}$	1.5		V_{S}	V	$\mathrm{V}_{\text {ASKDTA }}<0.5 \mathrm{~V}$
Transmit mode	VPDWN	1.5		V_{S}	V	$\mathrm{V}_{\text {ASKDTA }}>1.5 \mathrm{~V}$
Input bias current PDWN	IPDWN			30	$\mu \mathrm{A}$	$\mathrm{V}_{\text {PDWN }}=\mathrm{V}_{\text {S }}$
Low Power Detect Output (Pin 2)						
Internal pull up current	$\mathrm{I}_{\text {LPD1 }}$	30			$\mu \mathrm{A}$	$\mathrm{V}_{S}=2.3 \mathrm{~V} \ldots \mathrm{~V}_{\mathrm{S}}$
Input current low voltage	$\mathrm{I}_{\text {LPD2 }}$	1			mA	$\mathrm{V}_{\mathrm{S}}=1.9 \mathrm{~V} \ldots 2.1 \mathrm{~V}$
Loop Filter (Pin 4)						
VCO tuning voltage	VLF	$\mathrm{V}_{\mathrm{S}}-1.5$		$\mathrm{V}_{\mathrm{S}}-0.7$	V	$\mathrm{f}_{\mathrm{VCO}}=915 \mathrm{MHz}$
Output frequency range 915 MHz -band	$\mathrm{f}_{\text {OUT, } 915}$	902	915	928	MHz	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}-\mathrm{V}_{\mathrm{LF}}= \\ & 0.54 \mathrm{~V} \ldots 1.76 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{FSEL}}=\text { open } \end{aligned}$
ASK Modulation Data Input (Pin 6)						
ASK Transmit disabled	$\mathrm{V}_{\text {ASKDTA }}$	0		0.5	V	
ASK Transmit enabled	$V_{\text {ASKDTA }}$	1.5		V_{S}	V	
Input bias current ASKDTA	$\mathrm{I}_{\text {ASKDTA }}$			30	$\mu \mathrm{A}$	$\mathrm{V}_{\text {ASKDTA }}=\mathrm{V}_{\mathrm{S}}$
Input bias current ASKDTA	$\mathrm{I}_{\text {ASKDTA }}$	-20			$\mu \mathrm{A}$	$\mathrm{V}_{\text {ASKDTA }}=0 \mathrm{~V}$
ASK data rate	$\mathrm{f}_{\text {ASKDTA }}$			20	kHz	

TDA 5102

Reference

Parameter	Symbol	Limit Values		Max	Unit	Test Conditions
		Min	Typ			
FSK Modulation Data Input (Pin 7)						
FSK Switch on	$\mathrm{V}_{\text {FSKDTA }}$	0		0.5	V	
FSK Switch off	$\mathrm{V}_{\text {FSKDTA }}$	1.5		$\mathrm{V}_{\text {S }}$	V	
Input bias current FSKDTA	$\mathrm{I}_{\text {FSKDTA }}$			30	$\mu \mathrm{A}$	$\mathrm{V}_{\text {FSKDTA }}=\mathrm{V}_{\text {S }}$
Input bias current FSKDTA	$\mathrm{I}_{\text {FSKDTA }}$	-20			$\mu \mathrm{A}$	$\mathrm{V}_{\text {FSKDTA }}=0 \mathrm{~V}$
FSK data rate	$\mathrm{f}_{\text {FSKDTA }}$			20	kHz	
Clock Driver Output (Pin 8)						
Output current (Low)	ICLKOUT	1			mA	$\mathrm{V}_{\text {CLKOUT }}=\mathrm{V}_{\text {S }}$
Output current (High)	I CLKOUT			5	$\mu \mathrm{A}$	$\mathrm{V}_{\text {CLKOUT }}=0 \mathrm{~V}$
Saturation Voltage (Low)	$\mathrm{V}_{\text {SATL }}$			0.56	V	$\mathrm{I}_{\text {CLKOUT }}=1 \mathrm{~mA}$
Clock Divider Control (Pin 9)						
Setting Clock Driver output frequency $\mathrm{f}_{\text {CLKOUt }}=3.57 \mathrm{MHz}$	$\mathrm{V}_{\text {CLKDIV }}$	0		0.2	V	
Setting Clock Driver output frequency $\mathrm{f}_{\text {CLKOUT }}=894 \mathrm{kHz}$	$\mathrm{V}_{\text {CLKDIV }}$				V	pin open
Input bias current CLKDIV	ICLKDIV			30	$\mu \mathrm{A}$	$\mathrm{V}_{\text {CLKDIV }}=\mathrm{V}_{\mathrm{S}}$
Input bias current CLKDIV	ICLKDIV	-20			$\mu \mathrm{A}$	$\mathrm{V}_{\text {CLKDIV }}=0 \mathrm{~V}$
Crystal Oscillator Input (Pin 10)						
Load capacitance	$\mathrm{C}_{\text {cosCmax }}$			5	pF	
Serial Resistance of the crystal				100	Ω	$\mathrm{f}=7.15 \mathrm{MHz}$
Input inductance of the COSC pin			12		$\mu \mathrm{H}$	$\mathrm{f}=7.15 \mathrm{MHz}$
Serial Resistance of the crystal				100	Ω	$\mathrm{f}=14.3 \mathrm{MHz}$
Input inductance of the COSC pin			11		$\mu \mathrm{H}$	$\mathrm{f}=14.3 \mathrm{MHz}$
FSK Switch Output (Pin 11)						
On resistance	$\mathrm{R}_{\text {FSKout }}$			220	Ω	$\mathrm{V}_{\text {FSKDTA }}=0 \mathrm{~V}$
On capacitance	$\mathrm{C}_{\text {FSKout }}$			6	pF	$\mathrm{V}_{\text {FSKDTA }}=0 \mathrm{~V}$
Off resistance	$\mathrm{R}_{\text {FSkout }}$	10			$\mathrm{k} \Omega$	$\mathrm{V}_{\text {FSKDTA }}=\mathrm{V}_{\text {S }}$
Off capacitance	C FSKOUT			1.5	pF	$\mathrm{V}_{\text {FSKDTA }}=\mathrm{V}_{\mathrm{S}}$

Parameter	Symbol	Limit Values			Unit	Test Conditions
		Min	Typ	Max		
Power Amplifier Output (Pin 14)						
Output Power ${ }^{1)}$ transformed to 50 Ohm	Pout915	0	2	4	dBm	$\begin{aligned} & \mathrm{f}_{\text {OUT }}=915 \mathrm{MHz} \\ & \mathrm{~V}_{\text {FSEL }}=\mathrm{open} \end{aligned}$
Frequency Range Selection (Pin 15)						
Transmit frequency 915 MHz	$V_{\text {FSEL }}$				V	pin open
Transmit frequency 457 MHz	$\mathrm{V}_{\text {FSEL }}$	0		0.5	V	
Input bias current FSEL	$\mathrm{I}_{\text {FSEL }}$			30	$\mu \mathrm{A}$	$\mathrm{V}_{\text {FSEL }}=\mathrm{V}_{\mathrm{S}}$
Input bias current FSEL	$\mathrm{I}_{\text {FSEL }}$	-20			$\mu \mathrm{A}$	$\mathrm{V}_{\text {FSEL }}=0 \mathrm{~V}$
Crystal Frequency Selection (Pin 16)						
Crystal frequency 7.15 MHz	$\mathrm{V}_{\text {CSEL }}$	0		0.2	V	
Crystal frequency 14.3 MHz	$\mathrm{V}_{\text {CSEL }}$				V	pin open
Input bias current CSEL	ICSEL			50	$\mu \mathrm{A}$	$\mathrm{V}_{\text {CSEL }}=\mathrm{V}_{\text {S }}$
Input bias current CSEL	$\mathrm{I}_{\text {CSEL }}$	-25			$\mu \mathrm{A}$	$\mathrm{V}_{\text {CSEL }}=0 \mathrm{~V}$

1) Power amplifier in overcritical C -operation. Matching circuitry as used in the 50 Ohm-Output Testboard. Tolerances of the passive elements not taken into account.

TDA 5102

Reference

5.3.2 AC/DC Characteristics at 2.1 V ... 4.0 V, $-25^{\circ} \mathrm{C} . . .+85^{\circ} \mathrm{C}$

Parameter	Symbol	Limit Values		Max	Unit	Test Conditions
		Min	Typ			
Current consumption						
Power down mode	IS PDWN			250	nA	$\begin{aligned} & \text { V (Pins 1, 6, and 7) } \\ & <0.2 \mathrm{~V} \end{aligned}$
PLL enable mode	IS PLL_EN		3.3	4.6	mA	
Transmit mode	$I_{\text {S TRANSM }}$		7	9.5	mA	Load tank see Figure 4-1 and 4-2
Power Down Mode Control (Pin 1)						
Power down mode	$\mathrm{V}_{\text {PDWN }}$	0		0.5	V	$\begin{aligned} & \mathrm{V}_{\text {ASKDTA }}<0.2 \mathrm{~V} \\ & \mathrm{~V}_{\text {FSKDTA }}<0.2 \mathrm{~V} \end{aligned}$
PLL enable mode	$V_{\text {PDWN }}$	1.5		$\mathrm{V}_{\text {S }}$	V	$\mathrm{V}_{\text {ASKDTA }}<0.5 \mathrm{~V}$
Transmit mode	$V_{\text {PDWN }}$	1.5		V_{S}	V	$\mathrm{V}_{\text {ASKDTA }}>1.5 \mathrm{~V}$
Input bias current PDWN	IPDWN			30	$\mu \mathrm{A}$	$\mathrm{V}_{\text {PDWN }}=\mathrm{V}_{\mathrm{S}}$
Low Power Detect Output (Pin 2)						
Internal pull up current	$\mathrm{I}_{\text {LPD1 }}$	30			$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{S}}=2.3 \mathrm{~V} \ldots \mathrm{~V}_{\mathrm{S}}$
Input current low voltage	$\mathrm{I}_{\text {LPD2 }}$	1			mA	$\mathrm{V}_{\mathrm{S}}=1.9 \mathrm{~V} \ldots 2.1 \mathrm{~V}$
Loop Filter (Pin 4)						
VCO tuning voltage	$\mathrm{V}_{\text {LF }}$	$\mathrm{V}_{\mathrm{S}}-1.74$		$\mathrm{V}_{\mathrm{S}}-0.52$	V	$\mathrm{f}_{\mathrm{VCO}}=915 \mathrm{MHz}$
Output frequency range 915 MHz -band	$\mathrm{f}_{\text {OUT, }} 915$	905	915	925	MHz	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}-\mathrm{V}_{\mathrm{LF}}=0.4 \mathrm{~V} . . .1 .95 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{FSEL}}=\text { open } \end{aligned}$
ASK Modulation Data Input (Pin 6)						
ASK Transmit disabled	$\mathrm{V}_{\text {ASKDTA }}$	0		0.5	V	
ASK Transmit enabled	$V_{\text {ASKDTA }}$	1.5		$\mathrm{V}_{\text {S }}$	V	
Input bias current ASKDTA	$I_{\text {ASKDTA }}$			30	$\mu \mathrm{A}$	$\mathrm{V}_{\text {ASKDTA }}=\mathrm{V}_{\mathrm{S}}$
Input bias current ASKDTA	$\mathrm{I}_{\text {ASKDTA }}$	-20			$\mu \mathrm{A}$	$\mathrm{V}_{\text {ASKDTA }}=0 \mathrm{~V}$
ASK data rate	$\mathrm{f}_{\text {ASKDTA }}$			20	kHz	

Parameter	Symbol	Limit Values		Max	Unit	Test Conditions
		Min	Typ			
FSK Modulation Data Input (Pin 7)						
FSK Switch on	$\mathrm{V}_{\text {FSKDTA }}$	0		0.5	V	
FSK Switch off	$\mathrm{V}_{\text {FSKDTA }}$	1.5		V_{S}	V	
Input bias current FSKDTA	$\mathrm{I}_{\text {FSKDTA }}$			30	$\mu \mathrm{A}$	$\mathrm{V}_{\text {FSKDTA }}=\mathrm{V}_{\text {S }}$
Input bias current FSKDTA	$\mathrm{I}_{\text {FSKDTA }}$	-20			$\mu \mathrm{A}$	$\mathrm{V}_{\text {FSKDTA }}=0 \mathrm{~V}$
FSK data rate	$\mathrm{f}_{\text {FSKDTA }}$			20	kHz	
Clock Driver Output (Pin 8)						
Output current (Low)	ICLKOUT	1			mA	$\mathrm{V}_{\text {CLKOUT }}=\mathrm{V}_{\text {S }}$
Output current (High)	$\mathrm{I}_{\text {CLKOUT }}$			5	$\mu \mathrm{A}$	$\mathrm{V}_{\text {CLKOUT }}=0 \mathrm{~V}$
Saturation Voltage (Low) ${ }^{1 /}$	$\mathrm{V}_{\text {SATL }}$			0.5	V	$\mathrm{I}_{\text {CLKOUT }}=0.8 \mathrm{~mA}$
Clock Divider Control (Pin 9)						
Setting Clock Driver output frequency $\mathrm{f}_{\mathrm{CLK}}$ Dut $=3.57 \mathrm{MHz}$	$\mathrm{V}_{\text {CLKDIV }}$	0		0.2	V	
Setting Clock Driver output frequency fclkout=894 kHz	$\mathrm{V}_{\text {CLKDIV }}$				V	pin open
Input bias current CLKDIV	$I_{\text {CLKDIV }}$			30	$\mu \mathrm{A}$	$\mathrm{V}_{\text {CLKDIV }}=\mathrm{V}_{\mathrm{S}}$
Input bias current CLKDIV	ICLKDIV	-20			$\mu \mathrm{A}$	$\mathrm{V}_{\text {CLKDIV }}=0 \mathrm{~V}$
Crystal Oscillator Input (Pin 10)						
Load capacitance	$\mathrm{C}_{\text {cosCmax }}$			5	pF	
Serial Resistance of the crystal				100	Ω	$\mathrm{f}=7.15 \mathrm{MHz}$
Input inductance of the COSC pin			12		$\mu \mathrm{H}$	$\mathrm{f}=7.15 \mathrm{MHz}$
Serial Resistance of the crystal				100	Ω	$\mathrm{f}=14.3 \mathrm{MHz}$
Input inductance of the COSC pin			11		$\mu \mathrm{H}$	$\mathrm{f}=14.3 \mathrm{MHz}$
FSK Switch Output (Pin 11)						
On resistance	$\mathrm{R}_{\text {FSKOUT }}$			220	Ω	$\mathrm{V}_{\text {FSKDTA }}=0 \mathrm{~V}$
On capacitance	$\mathrm{C}_{\text {FSKOUT }}$			6	pF	$\mathrm{V}_{\text {FSKDTA }}=0 \mathrm{~V}$
Off resistance	$\mathrm{R}_{\text {FSKOUT }}$	10			$\mathrm{k} \Omega$	$\mathrm{V}_{\text {FSKDTA }}=\mathrm{V}_{\text {S }}$
Off capacitance	$\mathrm{C}_{\text {FSKOUT }}$			1.5	pF	$\mathrm{V}_{\text {FSKDTA }}=\mathrm{V}_{\mathrm{S}}$

TDA 5102
,

Parameter	Symbol	Limit Values		Max	Unit	Test Conditions
		Min	Typ			
Power Amplifier Output (Pin 14)						
Output Power ${ }^{2)}$ at 915 MHz transformed to 50 Ohm .	Pout, 915	-2.3	0.2	1.8	dBm	$\mathrm{V}_{\mathrm{S}}=2.1 \mathrm{~V}$
	Pout, 915	-2.0	2	4.9	dBm	$\mathrm{V}_{\mathrm{S}}=3.0 \mathrm{~V}$
$\mathrm{V}_{\text {FSEL }}=$ open	Pout, 915	-1.7	3.2	7.2	dBm	$\mathrm{V}_{\mathrm{S}}=4.0 \mathrm{~V}$
Frequency Range Selection (Pin 15)						
Transmit frequency 915 MHz	$\mathrm{V}_{\text {FSEL }}$				V	pin open
Transmit frequency 457 MHz	$\mathrm{V}_{\text {FSEL }}$	0		0.5	v	
Input bias current FSEL	$\mathrm{I}_{\text {FSEL }}$			30	$\mu \mathrm{A}$	$\mathrm{V}_{\text {FSEL }}=\mathrm{V}_{\text {S }}$
Input bias current FSEL	$\mathrm{I}_{\text {FSEL }}$	-20			$\mu \mathrm{A}$	$\mathrm{V}_{\text {FSEL }}=0 \mathrm{~V}$
Crystal Frequency Selection (Pin 16)						
Crystal frequency 7.15 MHz	$\mathrm{V}_{\text {CSEL }}$	0		0.2	v	
Crystal frequency 14.3 MHz	$\mathrm{V}_{\text {CSEL }}$				V	pin open
Input bias current CSEL	$I_{\text {cSel }}$			50	$\mu \mathrm{A}$	$\mathrm{V}_{\text {CSEL }}=\mathrm{V}_{\text {S }}$
Input bias current CSEL	ICSEL	-25			$\mu \mathrm{A}$	$\mathrm{V}_{\text {CSEL }}=0 \mathrm{~V}$

1) Derating linearly to a saturation voltage of max .140 mV at $\mathrm{I}_{\text {CLKOUT }}=0 \mathrm{~mA}$
2) Matching circuitry as used in the 50 Ohm-Output Testboard for 915 MHz operation.

Range @ $2.1 \mathrm{~V},+25^{\circ} \mathrm{C}: 0.2 \mathrm{dBm}+/-1.0 \mathrm{dBm}$
Temperature dependency at $2.1 \mathrm{~V}:+0.6 \mathrm{dBm} @-25^{\circ} \mathrm{C}$ and $-1.5 \mathrm{dBm} @+85^{\circ} \mathrm{C}$, reference $+25^{\circ} \mathrm{C}$. Range @ $3.0 \mathrm{~V},+25^{\circ} \mathrm{C}: 2.0 \mathrm{dBm}+/-2.0 \mathrm{dBm}$
Temperature dependency at $3.0 \mathrm{~V}:+0.9 \mathrm{dBm} @-25^{\circ} \mathrm{C}$ and $-2.0 \mathrm{dBm} @+85^{\circ} \mathrm{C}$, reference $+25^{\circ} \mathrm{C}$. Range @ $4.0 \mathrm{~V},+25^{\circ} \mathrm{C}: 3.2 \mathrm{dBm}+/-2.7 \mathrm{dBm}$ Temperature dependency at $4.0 \mathrm{~V}:+1.3 \mathrm{dBm} @-25^{\circ} \mathrm{C}$ and $-2.2 \mathrm{dBm} @+85^{\circ} \mathrm{C}$, reference $+25^{\circ} \mathrm{C}$. Tolerances of the passive elements not taken into account.

A smaller load impedance reduces the supply-voltage dependency. A higher load impedance reduces the temperature dependency.

