High Power Chip Resistors / Wide Terminal Type 2512, 2010, 1206, 0805

Type: ERJ A1, B1, B2, B3

RIO

- High solder-joint reliability by wide terminal construction
- Excellent heat dissipation characteristics by wide terminal construction
- RoHS compliant

Features

- Recommended Applications
- Automotive electronic circuits including ECUs (Electrical control unit), anti-lock breaking systems and air-bag systems
- Current sensing for power supply circuits in a variety of equipment

■ Packaging Methods Please see Pages 40 to 43

■ Recommended Land Pattern Please see Pages 44 to 45

Recommended Soldering Conditions Please see Page 46

■Safety Precautions Ple

Please see Page 47

■ Explanation of Part Numbers

■ Construction (Example : ERJA1 type)

■ Dimensions in mm (not to scale)

■ Circuit Configuration

Design and specifications are each subject to change without notice. Ask factory for the current technical specifications before purchase and/or use. Should a safety concern arise regarding this product, please be sure to contact us immediately.

■ Ratings

Type (inch size)	Power Rating at 70 °C (W)	Limiting Element Voltage ⁽¹⁾ (V)	Maximum Overload Voltage ⁽²⁾ (V)	Resistance Tolerance (%)	Resistance Range (Ω)	T.C.R. (×10 ⁻⁶ /°C)	Category Temperature Range (°C)
ERJA1 (2512)	1.33	200	400	±1	100 m to 10 k (E24)	R < 100 mΩ : ±350 100 mΩ ≤ R : ±100 (±1%) ±200 (±2%, ±5%)	-55 to +155
				±2, ±5	10 m to 10 k (E24)		
ERJB1 (2010)	$1 \ 2(R \le 10 \ \Omega)^{(3)}$	200	400	±1, ±2, ±5	10 m to 10 k (E24)	$\begin{array}{l} R < 22\text{m}\Omega: \pm 350 \\ 22\text{m}\Omega \leq R < 47\text{m}\Omega \ : \ \pm 200 \\ 47\text{m}\Omega \leq R < 100\text{m}\Omega : \ \pm 150 (\pm 1\%) \\ \pm 200 (\pm 2\%, \pm 5\%) \\ 100\text{m}\Omega \leq R: \pm 100 (\pm 1\%) \\ \pm 200 (\pm 2\%, \pm 5\%) \end{array}$	-55 to +155
ERJB2 (1206)	0.75 $1(R \le 10 \ \Omega)^{(3)}$	200	400	±1, ±2	10 m to 1 M (E24)	$\begin{array}{l} R\!<\!22m\Omega:0\text{to}+\!300 \\ 22m\Omega\!$	-55 to +155
				±5	5 m to 1 M (5 m to 9 m : 1mΩ step 10 m to 1 M : E24		
ERJB3 (0805)	0.33 $0.5(R \le 1 \Omega)^{(3)}$	150	200	±1, ±2, ±5	20 m to 10 (E24)	$\begin{array}{l} R < 47 \; m\Omega : 0 \; to \; +300 \\ 47 \; m\Omega \le R \le 1 \; \Omega : 0 \; to \; +200 \\ 1 \; \Omega < R : \; \pm 100 \; (\pm 1\%) \\ \; \; \pm 200 \; (\pm 2\%, \; \pm 5\%) \end{array}$	-55 to +155

⁽¹⁾ Rated Continuous Working Voltage (RCWV) shall be determined from RCWV=√Power Rating × Resistance Values, or Limiting Element Voltage

Power Derating Curve

For resistors operated in ambient temperature above 70 °C, power rating shall be derated in accordance with the figure on the right.

listed above, whichever less.

(2) Overload (Short-time Overload) Test Voltage (SOTV) shall be determined from SOTV=2.5 × Power Rating or max. Overload Voltage listed above whichever less.

⁽³⁾ Please contact us when resistons with guaranteed high power are needed.